Wpływ zewnętrznych źródeł węgla na efektywność usuwania azotu w komorach osadu czynnego

dr Marek Swinarski Saur Neptun Gdańsk SA

Wstęp

Powszechnie stosowane w oczyszczalniach komunalnych układy wielofazowe umożliwiają efektywny przebieg procesów biologicznego usuwania związków organicznych, azotu i fosforu. Uzyskanie niskich stężeń związków biogennych w ściekach oczyszczonych wymaga zapewnienia optymalnych warunków przebiegu procesów biochemicznych takich jak nitryfikacja, denitryfikacja czy biologiczna defosfatacja. Jedną z podstawowych przyczyn niezadowalających efektów usuwania związków azotu w oczyszczalniach jest niedobór organicznych związków węgla, który limituje przebieg procesu denitryfikacji (Oleszkiewicz i in., 2004). W celu uzyskania wymaganych przepisami, niskich stężeń azotu w ściekach oczyszczonych konieczne jest w takich przypadkach wprowadzanie do komór anoksycznych zewnętrznego źródła węgla organicznego.

Istnieje wiele różnych związków organicznych, komercyjnych i alternatywnych, które mogą być wykorzystywane jako źródła wegla do wspomagania procesu denitryfikacji. Do tzw. komercyjnych źródeł węgla zaliczyć można metanol, etanol, kwas octowy, octan sodu i glukozę. Spośród nich najczęściej stosowany i najlepiej udokumentowany jest metanol (WEF, 2005; Pagilla i in., 2006). Również według USEPA (1993) metanol jest najwłaściwszym, zewnętrznym źródłem węgla ze względu na jego dostępność, stosunkowo niski koszt, niską produkcję osadu oraz brak zawartości azotu i fosforu. Stosowanie metanolu może jednak spowodować znaczący wzrost kosztów eksploatacyjnych, szczególnie w przypadku dużych oczyszczalni (WEF, 2005; Oleszkiewicz i in., 2004). Istotnym problemem związanym z zastosowaniem metanolu jest konieczność adaptacji osadu czynnego wynikająca z rozwoju denitryfikantów (tzw. metylotrofów) przystosowanych do rozkładu tego związku. Wiekszość badań w literaturze stwierdza, że dozowanie metanolu do reaktorów biologicznych z niezaadaptowanym osadem czynnym nie wpływa znacząco na zmianę przebiegu denitryfikacji i wymagany jest długi czas adaptacji osadu czynnego (Nyberg i in., 1996; Hallin i Pell, 1998; Bailey i in., 1998; Louzeiro i in., 2002; Peng i in., 2007). Potencialnym źródłem wegla organicznego do wspomagania procesu denitryfikacji. mogą być także tzw. alternatywne źródła węgla, np. ścieki z niektórych zakładów przemysłu spożywczego (Cappai i in., 2004; Quan i in., 2005; Sage i in., 2006; Rodriguez i in., 2007). O przydatności tych ścieków decydować będzie każdorazowo dostępność prostych związków organicznych lub podatność na ich generację w procesach fermentacji oraz niska zawartość związków azotu i fosforu. Alternatywne źródła wegla zewnętrznego stanowią obecnie jeden z priorytetów w obszarze badań zwiazanych z usuwaniem biogenów. Istnieje duży potenciał w zastosowaniu ścieków z różnych gałęzi przemysłu spożywczego, przy czym konieczne jest przeprowadzenie odpowiednich badań technologicznych określających warunki i skutki ich dawkowania. Prezentowane wyniki wskazują, że istnieje duży potencjał w zastosowaniu ścieków z różnych gałęzi przemysłu spożywczego jako zewnętrznego źródła węgla organicznego w procesie denitryfikacji. Konieczne jest jednak przeprowadzenie badań technologicznych określających warunki i skutki ich dawkowania do systemów oczyszczania ścieków opartych na osadzie czynnym.

Metodyka badań

Pomiary szybkości denitryfikacji (SDN)

Badania laboratoryjne z różnymi źródłami węgla zewnętrznego zostały przeprowadzone w reaktorze nieprzepływowym o maksymalnej pojemności 4 dm³. Reaktor był wyposażony w mieszadło mechaniczne i elektrody do pomiaru pH, redox, temperatury i stężenia rozpuszczonego tlenu.

Konwencjonalny pomiar szybkości denitryfikacji. Osad recyrkulowany z oczyszczalni rozcieńczany był ściekami po oczyszczaniu mechanicznym lub innym źródłem węgla zewnętrznego. Pomiar stężenia biomasy osadu czynnego odbywał się na początku doświadczenia, które prowadzono przez 4 h po dodaniu 432 mg azotanu potasu (KNO₃) w celu podniesienia stężenia azotanów w reaktorze o 20 mg N/dm³. Próbki o objętości 50 cm³ były pobierane z częstotliwością 8-30 min, filtrowane przez sączki typu Whatman GF/C i poddawane analizom laboratoryjnym w celu określenia stężeń NO₃-N i ChZT.

Pomiar szybkości denitryfikacji w trakcie anoksycznego poboru fosforanów. Osad recyrkulowany z oczyszczalni był rozcieńczany ściekami po oczyszczaniu mechanicznym. Doświadczenie składało się z dwóch faz – beztlenowej (150 min) i anoksycznej (240 min). Na początku fazy anoksycznej, do reaktora dodawano 390 mg azotanu potasu (KNO₃) w celu podniesienia stężenia azotanów w reaktorze o 15 mg N/dm³. Jednocześnie dodawano 0,3 dm³ ścieków po oczyszczaniu mechanicznym lub inne źródła węgla zewnętrznego. Dla porównania wykonywano testy z dodatkiem ścieków oczyszczonych (pozbawionych rozkładalnych związków organicznych). Próbki o objętości 50 cm³ były pobierane z częstotliwością 10-30 min, filtrowane przez sączki typu Whatman GF/C i poddawane analizom laboratoryjnym w celu określenia stężeń PO₄-P i ChZT (faza beztlenowa) oraz PO₄-P, NO₃-N i ChZT (faza anoksyczna).

Pomiary szybkości poboru tlenu (SPT)

Zastosowany w badaniach zestaw doświadczalny (własność Wydziału Inżynierii Lądowej i Środowiska Politechniki Gdańskiej) został specjalnie skonstruowany do prowadzenia tego typu badań. Składa się on z dwóch równoległych reaktorów nieprzepływowych (tzw. wsadowych) o pojemności 4 dm³ każdy, sterownika programowalnego, umieszczonego w szafie sterującej oraz komputera. W każdym reaktorze istnieje możliwość pomiaru stężenia rozpuszczonego tlenu oraz automatycznego pomiaru szybkości poboru tlenu (SPT) za pomocą sond tlenowych (WTW Stirox G), umieszczonych w dodatkowych komorach pomiarowych. Utrzymywanie stałej temperatury lub jej regulację zapewnia łaźnia wodna połączona z płaszczem wodnym reaktorów. Dodatkowo, umieszczone sondy umożliwiają pomiar odczynu pH i potencjału redox. Wyniki pomiarów są na bieżąco rejestrowane i archiwizowane on-line podczas wykonywania testu.

W celu ustalenia szybkości poboru tlenu osad recyrkulowany z oczyszczalni rozcieńczany był ściekami po oczyszczaniu mechanicznym lub ściekami oczyszczonymi biologicznie z dodatkiem odpowiedniego źródła węgla zewnętrznego. W doświadczeniu utrzymywano stężenie tlenu rozpuszczonego na poziomie ok. 6 mg O_2/dm^3 . Na początku testu dodawano ok. 30 mg inhibitora nitryfikacji (ATU), aby powstrzymać pobór tlenu przez bakterie nitryfikacyjne. Pomiar stężenia biomasy osadu czynnego po wymieszaniu w reaktorze (ok. 2,0 g/dm³) odbywał się na początku doświadczenia. Próbki do badań o objętości 50 cm³ pobierano z częstotliwością co 5-30 min, filtrowano przez sączki typu Whatman GF/C i poddawano analizom laboratoryjnym w celu określenia stężenia ChZT. Natomiast szybkość poboru tlenu (SPT) była mierzona automatycznie (co 3 min) za pomocą sond tlenowych, umieszczonych w oddzielnych reaktorach, aż do zakończenia doświadczenia (tj. po czasie 5-7 h). Pomiary całkowitej szybkości poboru tlenu (ĴSPT(t)dt) i stopnia rozkładu związków organicznych (Δ ChZT), pozwoliły wyznaczyć szybkość utleniania związków rozkładalnych oraz wartość współczynnika przyrostu osadu (Y_H), który posłużył do oszacowania ilości produkowanego osadu nadmiernego według wzoru:

$$Y_{H} = \frac{\Delta ChZT - \int_{t0}^{tk} SPT_{net} \cdot Vdt}{\Delta ChZT}$$

gdzie:

- Y_H heterotroficzny współczynnik przyrostu osadu, mg ChZT (biomasa)/mg ChZT (substrat)
- ΔChZT różnica stężeń substratu na początku i na końcu doświadczenia, mg O₂/dm³
- t0/tk początkowy/końcowy czas doświadczenia, h
- SPT_{net} szybkość poboru tlenu netto (bez endogennej respiracji), mg O₂/(dm³·h)
- V pojemność reaktora, dm³

Charakterystyka badanych źródeł węgla

Pomiary szybkości denitryfikacji wykonane zostały dla dziewięciu różnych źródeł węgla:

- ścieków oczyszczonych mechanicznie,
- czystych związków chemicznych: metanolu, etanolu i kwasu octowego,
- ścieków przemysłowych: z browaru i przetwórstwa ryb,
- produktów ubocznych z przemysłu: alkohol surowy i oleje fuzlowe z destylarni.

Badania wstępne próbek ścieków i produktów ubocznych z przemysłu wykazały, że istnieje możliwość wykorzystania ich jako źródeł węgla dla procesu denitryfikacji z uwagi na wysoką zawartość rozpuszczonej frakcji związków organicznych oraz wysoki stosunek ChZT/N. Szczegółowa charakterystyka badanych źródeł węgla (wartości średnie i odchylenia standardowe) przedstawiona jest w Tabeli 1. Przed rozpoczęciem pomiarów szybkości denitryfikacji w testach wsadowych, próbki badanych źródeł węgla były rozcieńczane, aby uzyskać stężenie ChZT ok. 600 mg/dm³, które jest zbliżone do średniej wartości ChZT w ściekach oczyszczonych mechanicznie. Do rozcieńczeń stosowano ścieki oczyszczone biologicznie po przeprowadzeniu denitryfikacji z kwasem octowym.

Ścieki oczyszczone mechanicznie. Do badań wykorzystano próbki ścieków średniodobowych po oczyszczaniu mechanicznym. Stężenie ChZT w badanych próbkach wahało się od 422 do 1 024 mg ChZT/dm³, przy stosunku ChZT/N = 5,2-11,6. Zawartość rozpuszczonej frakcji ChZT wahała się od 23,5% do 47,0%.

Metanol. Czysty metanol (99.9%) o stężeniu ChZT wynoszącym 1 188 000 mg ChZT/dm³ (T = 20°C) był rozcie ńczany odpływem z oczyszczalni aby osiągnąć stężenie ChZT 600 mg/dm³.

Ethanol. Do badań wykorzystano czysty etanol (95%). Stężenie ChZT alkoholu wynosiło 1 598 000 mg CHZT/dm³. Etanol był rozcieńczany odpływem z oczyszczalni aby uzyskać stężenie ChZT około 600 mg ChZT/dm³.

Kwas octowy. Czysty kwas octowy (80%) o stężeniu ChZT wynoszącym 913 000 mg ChZT/dm³ był testowany jako źródło węgla do denitryfikacji. Kwas octowy był rozcieńczany odpływem z oczyszczalni, tak aby ChZT roztworu wynosiło ok. 600 mg ChZT/dm³.

Ścieki z browaru. Ścieki wykorzystane do badań pochodziły z procesu płukania zbiorników fermentacyjnych wodą wodociągową. Zawartość rozpuszczonej, łatworozkładalnej frakcji ChZT była bardzo wysoka i wahała się w granicach 71,8- 80,7% całkowitego ChZT przy stosunku ChZT/N_{og} = 23,5-105. Skład ścieków może zmieniać się znacznie w zależności od bieżącego procesu produkcji, jak również rodzaju i jakości użytego ziarna. Średnia dobowa ilość produkowanych ścieków wynosi około 700 m³.

Ścieki z zakładu przetwórstwa rybnego. Próbki pobierane były ze zbiornika namaczania ryb w marynatach. Głównym składnikiem ścieków jest kwas octowy oraz związki organiczne wyekstrachowane z rybich tusz. Skład ścieków zależy od rodzaju zalew i gatunku ryb stosowanych do produkcji marynat. Zawartość rozpuszczonej, łatworozkładalnej frakcji ChZT była bardzo wysoka i wahała się w granicach 44,0-88,5% całkowitego ChZT przy stosunku ChZT/N_{og.} = 15,1-36,4. Średnia dobowa ilość produkowanych ścieków wynosi około 20 m³.

Spirytus surowy. Do badań zastosowano spirytus surowy będący produktem ubocznym procesu destylacji alkoholu. Produkt ten zawiera około 88% alkoholu etylowego. Stężenie ChZT w badanych próbkach spirytusu surowego wynosiło 2 143 000 mg CHZT/dm³ przy niskim stężeniu azotu 500 mg N/dm³. Rozpuszczona, łatworokładalna frakcja ChZT stanowiła 56,5% całkowitego ChZT.

Oleje fuzlowe (wyższe alkohole). W skład olei fuzlowych wchodzą wyższe alkohole (m.in. alkohol izoamylowy, izobutylowy, amylowy, butylowy, propylowy), estry, kwasy tłuszczowe i aldehydy. Związki te są produkowane podczas metabolizmu drożdży w procesie fermentacji. Mieszanina wyższych alkoholi jest produktem niepożądanym powstającym w procesie destylacji alkoholu. Stężenie ChZT olei fuzlowych wynosiło 1 989 000 mg/dm³ przy śladowej zawartości azotu of 0,3 mg N/dm3. Rozpuszczona, łatworozkładalna frakcja ChZT była bardzo wysoka i stanowiła 91,0% całkowitego ChZT.

		Wartość średnia (±odchylenie standardowe)							
Parametr	Jedn.	Ścieki oczyszczone mechanicznie	Metanol	Etanol	Kwas octowy	Ścieki z przemysłu rybnego	Ścieki z browaru	Spirytus surowy	Oleje fuzlowe
Konwencjonalne pomia	ry SDN								
ChZT całk.	mg ChZT/m ³	619 (±113)	1 188 000	1 598 000	913 000	47 600 (±13 800)	4 550 (±2 350)	2 143 000	1 989 000
Ch∠T rozp. BZT₅	mg Ch21/dm³ mg BZT₅/dm³	189 (±62) 290 (±70)	1 188 000 -	1 598 000 -	913 000	27 900 (±1 300) 23 600 (±5 330)	3 520 (±1 700) 2 520 (±1 090)	1 210 000 1 247 000	1 809 000 -
Azot ogólny	mg N/dm ³	73 (±7)	-	-	-	1 840 (±903)	130 (±147)	500	0,3
NH₄-N Fosfor ogólny	mg N/dm° mg P/dm ³	57 (±6) 17 (±1)	-	-	-	75 (±3) 880 (±518)	10 (±11) 10 (±5)	0,5 0,6	0,2
PO ₄ -P	mg P/dm ³	12 (±2)	-	-	-	<u>-</u>	-	-	-
Zawiesina ogólna Zawiesina organiczna	mg/dm [°] mg/dm ³	267 (±27) 162 (±24)	-	-	-	9 670 (±10 200) 8 490 (±9 920)	677 (±626) 562 (±676)	13 11	69 68
ChZT rozp./ChZT całk.	-	0,30 (±0,06)	-	-	-	0,63 (±0,23)	0,78 (±0,03)	0,56	0,91
ChZT/N	mg ChZT/mg N	8,4 (±0,9)	-	-	-	28 (±7)	59 (±42)	4 285	6 628 800
Pomiary SDN podczas anoksycznego poboru P									
ChZT całk. ChZT rozp.	mg ChZT/dm ³ ma ChZT/dm ³	576 (±52) 208 (±47)	1 188 000 1 188 000	1 598 000 1 598 000	913 000 913 000	51 500 (±7 950) 29 500 (±3 910)	3 270 (±916) 2 530 (±733)	2 143 000 1 210 000	1 989 000 1 809 000
BZT₅	mg BZT₅/dm ³	287 (±85)	-	-	-	23 100 (±6 260)	1 990 (±386)	1 247 000	-
Azot ogólny NH -N	mg N/dm ³	77 (±2) 53 (+7)	-	-	-	2 520 (±537) 84 (+17)	43 (±6) 13 (+11)	500 0 5	0,3 0
Fosfor ogólny	mg P/dm ³	18 (±4)	-	-	-	1 193 (±326)	15 (±11)	0,6	0,2
PO ₄ -P	mg P/dm ³	12 (±2)	-	-	-	-	-	-	-
Zawiesina ogólna	mg/dm ³	277 (±30)	-	-	-	13 900 (±7 410)	497 (±324)	13	69
Zawiesina organiczna	mg/dm ³	166 (±30)	-	-	-	12 800 (±7 290)	243 (±146)	11	68
ChZT rozp./ChZT całk.	-	0,36 (±0,10)	-	-	-	0,59 (±0,16)	0,77 (±0,05)	0,56	0,91
ChZT/N	mg ChZT/mg N	7,5 (±0,8)	-	-	-	21 (±6)	78 (±29)	4 285	6 628 800

Tab. 1. Charakterystyka źródeł węgla wykorzystanych do pomiarów szybkości denitryfikacji.

Adaptacja osadu do metanolu w układzie przepływowym

Badania czasu adaptacji osadu czynnego do metanolu były prowadzone w modelu fizycznym przepływowego reaktora biologicznego pracującego w układzie A²/O i Johannesburg (JHB). Schematy obu układów laboratoryjnych pokazano na Rysunkach 1 i 2. Pierwsza seria badań wykonana była w reaktorze A²/O o objętości całkowitej 27 dm³. Stosunki objętościowe poszczególnych stref (bezlenowej : anoksycznej : tlenowej = $4:9:14 \text{ dm}^3$) były podobne do odpowiadających im stosunkom w reaktorze w skali technicznej. Osad czynny utrzymywany był w zawieszeniu przy użyciu mieszadeł mechanicznych. Model reaktora biologicznego zasilany był rzeczywistymi ściekami oczyszczonymi mechanicznie. Natężenie dopływu ścieków było stałe (= 1,13 dm³/h) i proporcjonalne do średniego rzeczywistego dopływu do bioreaktorów w skali pełnotechnicznej. Nateżenia recyrkulacji osadu i recyrkulacji wewnętrznej (z komory tlenowej do anoksycznej) były ustawione na stałą wartość wynosząca odpowiednio 1,08 i 3,94 dm³/h. Roztwór czystego metanolu o steżeniu 35 100 mg ChZT/dm³ dozowany był w sposób ciągły do komory anoksycznej przy natężeniu 7,8 cm³/h. W czasie procesu adaptacji osadu do metanolu prowadzono regularne (co 3-7 dni) pomiary szybkości denitryfikacji metodą konwencjonalną. Do badań wykorzystywano osad pobierany z komorv tlenowei.

W drugiej serii badań do układu laboratoryjnego na linii recyrkulacji zewnętrznej dodana została mała strefa anoksyczna celem zmiany konfiguracji układu A²/O na układ JHB. Natężenie dopływu ścieków (= 1,20 dm³/h), podobnie jak w pierwszej serii badań, było proporcjonalne do dopływu rzeczywistego do oczyszczalni. Natężeni recyrkulacji zewnętrznej i wewnętrznej ustawione były odpowiednio na poziomie 1,0 i 3,44 dm³/h. Natężenie dozowania roztworu metanolu o stężeniu ChZT równym 17 500 mg ChZT/dm³ wynosiło 13,3 cm³/h.

Efektywność działania układów laboratoryjnych A²/O i JHB podczas badań adaptacji osadu czynnego do metanolu oceniana była na podstawie regularnych analiz (1 raz w tygodniu) stężenia NO₃-N i PO₄-P w odpływie ze strefy beztlenowej i anoksycznej, zawiesiny ogólnej i organicznej w strefie tlenowej oraz ChZT, NO₃-N, NH₄-N, PO₄-P w odpływie. Ponadto przebieg procesu kontrolowany był elektrodami do ciągłego pomiaru tlenu rozpuszczonego (strefa tlenowa i beztlenowa), potencjału redoks (strefa anoksyczna), odczynu (strefa tlenowa) i temperatury (strefa tlenowa).

Podczas procesu adaptacji osadu czynnego wykonywane były regularne (co 3-7 dni) pomiary konwencjonalne SDN. Pomiary te prowadzono w próbce osadu czynnego o objętości 1,5 dm³ pobieranej ze strefy tlenowej układu laboratoryjnego. Czas trwania pomiaru wynosił 180 minut od momentu dodania czystego metanolu i azotanu potasu (KNO₃). Dawki reagentów były tak dobrane, aby podnieść stężenie ChZT i NO₃-N odpowiednio o 500 mg ChZT/dm³ i 20 mg N/dm³.

Rys. 1. Schemat laboratoryjnego układu A2/O do pomiaru czasu adaptacji osadu do metanolu.

Rys. 2. Schemat laboratoryjnego układu JHB do pomiaru czasu adaptacji osadu do metanolu.

Wyniki badań

Pomiary konwencjonalne szybkości denitryfikacji

Średnie szybkości denitryfikacji (SDN) zmierzone podczas konwencjonalnych pomiarów przedstawiono w Tabeli 2. Przykładowe wyniki pomiarów przedstawiono na Rysunkach 3a i 4a.

W trakcie testów ze ściekami oczyszczonymi mechanicznie jako źródłem węgla obserwowane były dwie szybkości procesu. Pierwsza szybkość denitryfikacji (SDN1) związana jest z zawartością w ściekach frakcji łatworozkładalnej ChZT, podczas gdy druga szybkość denitryfikacji (SDN2) z zawartością frakcji wolnorozkładalnej.

Wyniki pomiarów dla wszystkich badanych czystych związków chemicznych (metanol, etanol, kwas octowy) charakteryzowały się pojedynczymi szybkościami denitryfikacji (1,0–4,0 g N/(kg smo·h)), które jednak były znacznie niższe od tych jakie zmierzono dla związków łatwo rozkładalnych w ściekach oczyszczonych mechanicznie denitryfikacji (5,0–7,8 g N/(kg smo·h)). Spośród tych źródeł węgla najwyższe szybkości procesu uzyskano dla kwasu octowego (3,1–4,0 g N/(kg smo·h)).

Wartości SDN dla metanolu (1,0–1,5 g N/(kg smo·h)) były zbliżone do wartości denitryfikacji endogennej zmierzonej podczas testów referencyjnych bez dodatku źródła węgla (1,2–1,7 g N/(kg smo·h)). Bardzo niskie szybkości dla metanolu potwierdziły konieczność adaptacji osadu czynnego do tego źródła węgla.

Spośród ścieków i produktów odpadowych z przemysłu, wartości SDN porównywalne z szybkościami uzyskanymi dla frakcji łatworozkładalnej w ściekach oczyszczonych mechanicznie zmierzono w testach ze ściekami z przemysłu rybnego (5,5 ±0,4 g N/(kg smo·h)) i podczas jednego testu ze ściekami z przemysłu browarniczego (5,3 g N/(kg smo·h)). W przypadku ścieków z browaru obserwowano dużą rozbieżność wyników SDN1 (2,4–5,3 g N/(kg smo·h)), co spowodowane było znaczną zmiennością jakości badanych próbek ścieków. Podczas pomiarów z olejami fuzlowymi uzyskano pojedyncze prędkości denitryfikacji z uwagi na dostępność dużych ilości łatwo rozkładalnego ChZT. Szybkości procesu (2,4 ±0,3 g N/(kg smo·h)) były zbliżone do wartości SDN2, które uzyskano dla frakcji wolno rozkładalnej ChZT w ściekach oczyszczonych mechanicznie (2,6 ±1,1 g N/(kg smo·h)). Podobnie wysoka zawartość rozpuszczonego ChZT w alkoholu surowym skutkowała pojedynczymi szybkościami denitryfikacji, przy czym zmierzone wartości (1,9 ±0,1 g N/(kg smo·h)) były niższe w porównaniu do olei fuzlowych.

	Liczba	Temperatura	Wartość średnia (±odchylenie standardowe)			
Żródło węgla	testów	procesu	SDN1	SDN2	∆ChZT:∆N	
		°C	g N/(kg smo⋅h)		g ChZT/g N	
Brak węgla	3	20,3 - 21,5	1,3 (±0,3)	-	-	
Ścieki oczyszczone mechanicznie	5	18,2 – 22,1	6,1 (±1,1)	2,6 (±1,1)	4,8 (±1,5)	
Metanol (biomasa niezaadaptowana)	3	19,4 – 22,2	1,3 (±0,3)	-	-	
Methanol (biomasa zaadaptowana) ²⁾	5	21,2 – 21,8	4,2 (±0,2) ¹⁾ 6,2 ²⁾	-	3,6 (±0,1) ³⁾	
Etanol	3	19,9 – 21,5	2,0 (±0,2)	-	4,6 (±1,5)	
Kwas octowy	3	18,4 – 20,5	3,5 (±0,5)	-	9,5 (±1,9)	
Ścieki z przemysłu rybnego	3	19,0 – 21,8	5,5 (±0,4)	1,7 (±0,6)	10,8 (±2,7)	
Ścieki z browaru	3	18,8 – 22,7	3,8 (±1,4)	1,8 (±0,1)	6,9 (±0,6)	
Alkohol surowy	3	19,9 – 20,7	1,9 (±0,1)	-	5,4 (±1,9)	
Oleje fuzlowe	3	21,4 – 21,8	2,4 (±0,3)	-	5,4 (±1,1)	

Tab. 2. Szybkości denitryfikacji i stosunki ∆CHZT:∆N zmierzone podczas konwencjonalnych testów pomiarów szybkości denitryfikacji (Swinarski i in., 2007, 2009b, 2009c)

¹⁾ Pierwsza seria badań adaptacji osadu czynnego do metanolu (15-34 dzień badań).

²⁾ Druga seria badań adaptacji osadu czynnego do metanolu (dzień 36). Proces adaptacji został zatrzymany z uwagi na zbyt duże wychłodzenie osadu czynnego w okresie zimowym.

³⁾ Wartość obliczona na podstawie dwóch z pięciu przeprowadzonych testów z powodu dużych wahań oznaczeń ChZT

Porównując ścieki i produkty uboczne z przemysłu z czystymi chemicznie związkami, należy podkreślić, że średnie szybkości denitryfikacji zmierzone w testach konwencjonalnych dla ścieków z przemysłu rybnego (5,5 ±0,4 g N/(kg smo·h)) i browaru (3,8 ±1,4 g N/(kg smo·h)) były wyższe w porównaniu do metanolu (1,3 ±0,3 g N/(kg smo·h) z biomasą niezaadaptowaną), etanolu (2,0 ±0,2 g N/(kg smo·h)) i kwasu octowego (3,5 ±0,5 g N/(kg smo·h)). W przypadku olei fuzlowych, które są mieszaniną wyższych alkoholi, estrów, kwasów tłuszczowych i aldehydów, średnie szybkości denitryfikacji (2,4 g ±0,3 N/(kg smo·h)) były wyższe niż dla metanolu (z biomasa niezaadaptowaną) i etanolu, ale znacznie niższe niż dla kwasu octowego.

Pomiary ze ściekami z przemysłu rybnego zawierającymi głównie kwas octowy (5,5 \pm 0,4 g N/(kg smo·h)), dały wyniki znacznie wyższe niż podczas pomiarów z czystym kwasem octowym (3,5 \pm 0,5 g N/(kg smo·h)). Szybkości denitryfikacji z alkoholem surowym zawierającym ok. 88% alkoholu etylowego (1,9 \pm 0,1 g N/(kg smo·h)) były podobne do tych jakie uzyskano z czystym etanolem (2,0 \pm 0,2 g N/(kg smo·h)).

Podczas badań z kwasem octowym, ściekami z browaru i przemysłu rybnego, dla których uzyskano najwyższe prędkości denitryfikacji, związki organiczne były wykorzystywane mniej efektywnie, czego odzwierciedleniem były wyższe stosunki ΔChZT:ΔN w porównaniu ze ściekami oczyszczonymi mechanicznie (tabela 2).

Rys. 3. Przykładowy pomiar szybkości denitryfikacji z wykorzystaniem ścieków komunalnych jako źródła węgla: (a) pomiar konwencjonalny (T=18,8 °C, stężenie osadu smo=1,95 kg/m³), (b) pomiar w czasie anoksycznego poboru P (T=23,9 °C, stężenie osadu smo=2,18 kg/m³) (Swinarski i in., 2009a).

Rys. 4. Przykładowy pomiar szybkości denitryfikacji z wykorzystaniem ścieków z przemysłu rybnego jako źródła węgla: (a) pomiar konwencjonalny (T=19,0 °C, stężenie osadu smo=1,65 kg/m³), (b) pomiar w czasie anoksycznego poboru P (T=25,9 °C, stężenie osadu smo=1,24 kg/m³) (Swinarski i in., 2009a).

Adaptacja osadu czynnego do metanolu

Wyniki konwencjonalnych pomiarów SDN z metanolem i biomasą niezaadaptowaną były bardzo niskie (1,3 ±0,3 g N/(kg smo·h)), tj. na poziomie szybkości denitryfikacji opartej na endogennym źródle węgla, jakie uzyskano w testach bez dodatku węgla zewnętrznego (1,3 ±0,3 g N/(kg smo·h)) (Tabela 2). Jeszcze niższe wartości SDN dla osadu niezaadaptowanego (0,4–0,7 g N/(kg smo·h)) uzyskano w początkowym okresie jednej z dwóch przeprowadzonych sesji pomiarowych adaptacji osadu czynnego do metanolu. Wyniki tych pomiarów potwierdziły, że metanol nie może być wykorzystywany jako źródło węgla zewnętrznego przez niezaadaptowany osad czynny oczyszczalni ścieków "Wschód".

W trakcie prowadzonych badań widoczny był bardzo wyraźny efekt adaptacji osadu czynnego do metanolu. Podczas pierwszej serii pomiarowej (Rysunek 5a) wartości SDN sukcesywnie wzrastały w początkowej fazie adaptacji (0-14 d) w tempie 0,3 g N/(kg smo·h) na dobę. Po ponad dwóch tygodniach szybkość denitryfikacji ustabilizowała się na poziomie 4,0–4,5 g N/(kg smo·h). Szybkości denitryfikacji uzyskane dla osadu zaadaptowanego były wyższe niż te, które zmierzono podczas testów konwencjonalnych z czystymi związkami chemicznymi (etanolem i kwasem octowym) i porównywalne z niektórymi szybkościami jakie zmierzono dla ścieków z przemysłu rybnego i browaru. Po zatrzymaniu dozowania metanolu szybkości procesu zaczęły stopniowo maleć. Po 10 dniach wartości SDN osiągnęły poziom 2,3–2,9 g N/(kg smo·h) i wahały się nieznacznie przez następne 14 dni do zakończenia badań.

Rys. 5. Efekt adaptacji osadu czynnego do metanolu wyrażony za pomocą wyników pomiarów konwencjonalnych szybkości denitryfikacji: (a) pierwsza seria badań, (b) druga seria badań (Swinarski i in., 2007, 2009a).

Podczas drugiej serii badań adaptacji osadu czynnego do metanolu, proces adaptacji przebiegał wolniej (rysunek 5b). Początkowo wartości SDN wynosiły zaledwie 0,3-0,4 g N/(kg smo·h) w porównaniu do początkowej wartości 1,4 g N/(kg smo·h) zmierzonej w pierwszej serii badań. Po czterech dniach szybkość denitryfikacji zaczęła stopniowo wzrastać o wartość 0,2 g N/(kg smo·h) na dobę. Po 36 dniach szybkość denitryfikacji osiągnęła wartość 6,2 g N/(kg smo·h) w 20,9 °C, wyższa o 40% niż wartość maksymalna jaką osiągnięto z osadem zaadaptowanym podczas pierwszej serii badań. Proces adaptacji nie mógł być kontynuowany z uwagi na wychłodzenie osadu czynnego spowodowane wystąpieniem ekstremalnych warunków pogodowych w okresie zimowym (temperatura osadu czynnego w stacji pilotowej spadła do 1,5 °C).

Należy podkreślić, że zarówno podczas pierwszej jak i drugiej serii badań adaptacji osadu czynnego do metanolu obserwowany był znaczny wzrost udziału frakcji organicznej w osadzie czynnym instalacji pilotowej. W pierwszej serii badań stosunek zawiesiny organicznej do zawiesiny całkowitej wzrósł z 71% dla osadu niezaadaptowanego do 77-79% dla osadu zaadaptowanego. Natomiast w drugiej serii badań udział frakcji organicznej w osadzie czynnym wzrósł z 69% do 83%.

Pomiary szybkości denitryfikacji w trakcie anoksycznego poboru fosforanów

Metoda wyznaczania efektywności denitryfikacji w wysokoefektywnych systemach osadu czynnego z biologicznym usuwaniem fosforu różni się od metody stosowanej w odniesieniu do systemów, w których zachodzi jedynie usuwanie azotu (nitryfikacja-denitryfikacja). W tych pierwszych prawie cała frakcja łatworozkładalna ChZT jest zużywana w strefie beztlenowej oraz znaczna część bakterii fosforowych jest zdolna do denitryfikacji z wykorzystaniem związków zmagazynowanych wewnątrz komórek. W celu oceny wpływu strefy beztlenowej na proces denitryfikacji, przeprowadzone zostały pomiary SDN podczas testów składających się z dwóch faz: beztlenowego uwalniania fosforanów i anoksycznego poboru fosforanów. Średnie wartości zmierzonych SDN i szybkości poboru fosforanów (SPP) wyszczególnione są w Tabeli 3. Przykładowe wyniki pomiarów przedstawiono na Rysunkach 3b i 4b.

	Liczba testów	Temperatura	Wartość średnia (± odchylenie stndardowe)				
Źródło węgla		procesu	SDN	$\Delta ChZT:\Delta N$	SPP	ΔΝ:ΔΡ	
		°C	g N/(kg smo⋅h)	g ChZT/g N	g P/(kg smo⋅h)	g N/g P	
Brak węgla	3	21,0 – 21,3	3,6 (±0,2)	-	4,1 (±2,3)	1,0 (±0,4)	
Ścieki oczyszczone mechanicznie	3	21,1 – 23,8	3,9 (±0,5)	1,9 (±0,8)	3,2 (±1,1)	1,2 (±0,7)	
Metanol (biomasa niezaadaptowana)	3	19,2 – 22,1	3,1 (±0,9)	-	2,8 (±0,6)	1,2 (±0,3)	
Etanol	3	18,5 – 20,0	4,3 (±0,6)	1,6 (±0,5)	6,3 (±1,0)	0,7 (±0,1)	
Kwas octowy	3	18,2 – 18,5	3,8 (±0,4)	3,0 (±0,9)	4,3 (±0,7)	1,0 (±0,3)	
Ścieki z przemysłu rybnego	3	18,9 – 25,9	3,1 (±0,7)	3,0 (±1,1)	3,0 (±0,8)	1,0 (±0,1)	
Ścieki z browaru	3	18,5 – 20,3	2,3 (±0,9)	1,2 (±0,5)	2,3 (±1,0)	1,0 (±0,2)	
Alkohol surowy	3	18,8 – 19,8	4,1 (±0,4)	2,2 (±0,2)	5,5 (±0,6)	0,7 (±0,1)	
Oleje fuzlowe	3	19,2 – 22,3	4,2 (±0,7)	2,1 (±0,1)	5,1 (±2,1)	0,8 (±0,2)	

Tab. 3. Szybkość denitryfikacji, poboru P w fazie anoksycznej, stosunki ΔChZT:ΔN i ΔN:ΔP zmierzone podczas testów dwufazowych (beztlenowe uwalnianie P/anoksyczny pobór P) (Swinarski i in., 2007, 2009b, 2009c).

Spośród alternatywnych źródeł węgla zewnętrznego najwyższe szybkości denitryfikacji uzyskano dla produktów ubocznych z destylarni tj. alkoholu surowego (4,1 ±0,4 g N/(kg smo·h)) i olei fuzlowych (4,2 ±0,7 g N/(kg smo·h)). Porównywalne wyniki uzyskano również dla konwencjonalnych źródeł węgla tj. kwasu octowego (3,8 ±0,4 g N/(kg smo·h)) i etanolu (4,3 ±0,6 g N/(kg smo·h)). W przypadku pozostałych zewnętrznych źródeł węgla wartości SDN kształtowały się na wyraźnie niższym poziomie od 2,3 ±0,9 do 3,1 ±0,9 g N/(kg smo·h) g N/(kg smo·h).

Wyniki pomiarów równoległych procesów SDN i SPP wskazują, że dodatek zewnętrznych źródeł węgla w postaci ścieków oczyszczonych mechanicznie, etanolu, kwasu octowego, alkoholu surowego i olei fuzlowych może poprawić szybkość procesu denitryfikacji bez istotnego wpływu na proces anoksycznego poboru fosforanów. Podczas testów z pozostałymi źródłami węgla dodawanymi na początku fazy anoksycznej tj. metanolem, ściekami z browaru i ściekami z przemysłu rybnego, nie odnotowano pozytywnego wpływu zarówno na szybkość denitryfikacji jak i szybkość poboru fosforanów w porównaniu do testów ze ściekami oczyszczonymi mechanicznie.

Analizując uzyskane wyniki badań należy podkreślić, że na szybkość denitryfikacji zmierzonej w fazie anoksycznej miała wpływ niewątpliwie obecność łatworozkładalnych i

wolnorozkładalnych związków organicznych obecnych w ściekach oczyszczonych mechanicznie, które nie zostały zużyte przez bakterie fosforowe w fazie beztlenowej. Ponadto, w warunkach anoksycznych bakterie fosforowe mogły wykorzystywać wewnątrzkomórkowe związki organiczne (zmagazynowane w czasie fazy beztlenowej) do redukcji azotanów powodując tym samym wzrost szybkości denitryfikacji (Henze i in., 1999; Mąkinia i in., 2006).

Wpływ zewnętrznych źródeł węgla na przyrost osadu czynnego

Współczynniki przyrostu osadu określone zostały dla poszczególnych źródeł węgla na podstawie dwóch serii badań szybkości poboru tlenu (SPT). Wyniki badań przedstawiono w Tabeli 4. Przykładowe pomiary szybkości poboru tlenu dla wybranych źródeł węgla zewnętrznego pokazano na Rysunku 6.

Wartości współczynników Y_H określonych dla wszystkich badanych źródeł węgla zewnętrznego wahały się w wąskim zakresie pomiędzy 0,72-0,78 g ChZT/g ChZT. Dla porównania wartości uzyskane dla łatworozkładalnego substratu obecnego w ściekach oczyszczonych mechanicznie były znacznie niższe, tj. 0.64-0.67 g ChZT/g ChZT.

Dricks i in. (1999) wyznaczyli współczynniki przyrostu osadu dla osadu czynnego z dwóch duńskich oczyszczalni ścieków wykorzystując pomiary zużycia substratu i konsumpcji tlenu. Określone przez autorów wartości współczynnika Y_H wyniosły 0,71-0,72 g ChZT/g ChZT oraz 0,66-0,67 g ChZT/g ChZT, odpowiednio dla octanu i etanolu.

Podobne wartości dla octanu uzyskano w niniejszych badaniach z osadem czynnym pobranym z oczyszczalni "Wschód" w Gdańsku. W przypadku etanolu uzyskany współczynnik przyrostu osadu był znacznie wyższy w porównaniu do wartości przedstawionych dla tego samego źródła węgla w badaniach Drics i in. (1999).

Wartości Y_H zmierzone dla czystych związków chemicznych (etanol i kwas octowy) były porównywalne do tych jakie uzyskano dla ścieków i produktów odpadowych z przemysłu.

Carbon course	Liczba	1 test	2 test	Wartość średnia
	testów		g ChZT/g ChZ	Т
Ścieki oczyszcone mechanicznie	2	0,67	0,64	0,66
Etanol	2	0,75	0,76	0,76
Kwas octowy	2	0,74	0,76	0,75
Ścieki z przemysłu rybnego	2	0,76	0,77	0,77
Ścieki z browaru	2	0,72	0,76	0,74
Alkohol surowy	2	0,75	0,72	0,74
Oleje fuzlowe	2	0,78	0,76	0,77

Tab. 4. Współczynniki przyrostu heterotrofów określone na podstawie badań respirometrycznych (Swinarski i in., 2009c).

Rys. 6. Przykładowe pomiary szybkości poboru tlenu z wykorzystaniem: (a) ścieków oczyszczonych mechanicznie (T=13.7 °C, stężenie osadu smo=2,150 kg/m³, (b) kwasu octowego (T=17.5 °C, stężenie osadu smo=1,270 kg/m³) (Swinarski, 2011).

Wnioski

Na podstawie uzyskanych wyników badań sformułować można następujące wnioski:

- Ścieki przemysłowe mogą stanowić potencjalne źródło węgla do poprawy efektywności procesu denitryfikacji. SDN zmierzone z alternatywnymi źródłami węgla były wyraźnie wyższe od szybkości procesu opartego na endogennym źródle węgla.
- 2. Najwyższe średnie SDN w testach konwencjonalnych z zewnętrznymi źródłami węgla zmierzono dla ścieków z zakładu rybnego, browaru, kwasu octowego i metanolu z biomasą zaadaptowaną.
- 3. Wyniki badań z metanolem wykazały, że uzyskanie efektu wzrostu szybkości denitryfikacji opartej na tym źródle węgla wymaga minimum 2-tygodniowego okresu adaptacji biomasy.
- 4. Badane źródła węgla nie zakłóciły anoksycznego poboru P.
- 5. Średnie wartości współczynników przyrostu osadu (Y_H) dla wszystkich badanych źródeł węgla zewnętrznego były wyraźnie wyższe (12%-16%) niż dla ścieków komunalnych. Oznacza to, że w przypadku podejmowania decyzji o zastosowaniu zewnętrznego źródła węgla należy wziąć pod uwagę dodatkowe koszty zagospodarowania większej ilości osadu nadmiernego.
- 6. Praktycznym problemem, który może pojawić się w trakcie dozowania ścieków przemysłowych w obiektach w skali technicznej, może być okresowa zmienność ich składu. Dotyczy to szczególnie łatworozkładalnej, rozpuszczonej frakcji związków organicznych. Utrudnia to wyznaczenie optymalnej dawki zewnętrznego źródła węgla.

Podziękowania

Badania zrealizowano w ramach projektu UDA-POIG.01.03.01-22-140/09-01 finansowanego ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego "Innowacyjna Gospodarka".

Bibliografia

Cappai G., Carucci A. i Onnis A. (2004). Use of industrial wastewaters for the optimization and control of nitrogen removal processes. *Wat. Sci. Tech.*, 50(6), 17-24.

- Dircks, K., Pind, P.F., Mosbaek, H. i Henze, M. (1999). Yield determination by respirometry The possible influence of storage under aerobic conditions in activated sludge. *Water SA*, 25, 69–74.
- Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.v.R. i van Loosdrecht, M. (1999). Activated Sludge Model No. 2d. *Water Sci. Technol.*, 39 (1), 165-182.
- Mąkinia, J., Rosenwinkel, K.-H., Swinarski, M. i Dobiegala, E. (2006). Experimental and model-based evaluation of the role of denitrifying PAO at two large scale WWTPs in northern Poland. *Water Sci. Technol.*, 54 (8), 73-81.
- Oleszkiewicz J.A., Kalinowska E., Dold P., Barnard J.L., Bieniowski M., Ferenc Z., Jones R., Rypina A. i Sudol J. (2004). Feasibility studies and pre-design simulation of Warsaw's new wastewater treatment plant. *Env. Tech.*, 25, 1405-1411.
- Quan Z.X., Jin Y.S., Yin C.R., Lee J.J. i Lee S.T. (2005). Hydrolyzed molasses as an external carbon source in biological nitrogen removal. *Bioresource Tech.*, 96, 1690-1695.
- Rodriguez, L., Villasenor, J. i Fernandez, F.J. (2007) Use of agro-food wastewaters for the optimisation of the denitrification process. *Wat. Sci. Tech.*, 55(10), 63-70.
- Sage, M., Daufin, G. i Gesan-Guiziou, G. (2006). Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. *Wat. Res.*, 40, 2747-2755.
- Swinarski, M., Mąkinia, J., Czerwionka, K. i Fordoński, W. (2007). Improving denitrification efficiency at the "Wschod" WWTP in Gdansk (Poland) – effects of different carbon sources. W: Proc. of the IWA Specialty Conf. on the Design, Operation and Economics of Large WWTPs, Vienna (Austria), 9-13 September, 2007.
- Swinarski, M., Mąkinia, J., Czerwionka, K., Chrzanowska, M. i Drewnowski, J. (2009a). Comparison of the Effects of Conventional and Alternative External Carbon Sources for Enhancing of the Denitrification Process. *Water Environment Research*, 81 (9), 896-906.
- Swinarski, M., Mąkinia, J., Czerwionka, K. i Chrzanowska, M. (2009b). Industrial wastewater as an external carbon source for optimization of nitrogen removal at the "Wschod" WWTP in Gdansk (Poland). *Water Science & Technology*, 59 (1), 57-64.
- Swinarski, M., J Mąkinia, J., Fordoński, W., Drewnowski, J., Chrzanowska, M., Czerwionka, K. i Fernandez, F.J. (2009c). The potential of enhancing denitrification in the activated sludge process with by-products from the alcohol production. W: *Proc. of the 2nd IWA Specialized Conference "Nutrient Management in Wastewater Treatment Processes*", 6-9 września 2009 r., Kraków, 451-458.
- Swinarski, M. (2011). The effect of external carbon sources on enhancing the denitrification process in activated sludge systems. Rozprawa doktorska, Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej.