University of Manitoba, Winnipeg (17 September 2010)

## Internal vs. external carbon sources for enhancing denitrification in activated sludge systems

Jacek Makinia Co-authors: Krzysztof Czerwionka, Jakub Drewnowski, Marek Swinarski



Gdansk University of Technology Faculty of Civil & Environmental Engineering















| Carbon source                   | NUR, mg N/(kg VSS·h) | Reference                                                                                            |
|---------------------------------|----------------------|------------------------------------------------------------------------------------------------------|
| INTERNAL*                       |                      |                                                                                                      |
| - readily biodegradable         | 3.3 – 5.7            | Naidoo et al. (1998)                                                                                 |
| - slowly biodegradable          | 1.6 – 3.6            | Naidoo et al. (1998)                                                                                 |
| EXTERNAL<br>(CONVENTIONAL)      |                      |                                                                                                      |
| - methanol (acclimated biomass) | 3.0 – 4.5            | Christensson et al., 1994<br>Nyberg et al., 1996;<br>Purtschert et al., 1996;<br>Fillos et al., 2007 |
| EXTERNAL<br>(ALTERNATIVE)       |                      |                                                                                                      |
| - winery wastes                 | 2.0                  | Rodriguez et al. (2007)                                                                              |
| - potato processing             | 4.1                  | Rodriguez et al. (2007)                                                                              |
| - ice cream production          | 2.7                  | Cappai et al. (2004)                                                                                 |
| - beet-sugar processing         | 3.3                  | Cappai et al. (2004)                                                                                 |













| Character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ristics of the st           | udied               | plant                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameter                   | Unit                | Monthly averages<br>(2006 – 2009) |
| and and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Operating parameters:       |                     |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Influent flow rate          | m³/d                | 75,800 - 98,400                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | MGD                 | 20.1 – 25.3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Process temperature         | °C                  | 11.8 – 21.7                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sludge Retention Time       | d                   | 17 – 25                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hydraulic Retention Time    | d                   | 0.9 – 1.3                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Concentrations in primary e | effluent:           |                                   |
| Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COD                         | gCOD/m <sup>3</sup> | 540 - 930                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total N                     | gN/m <sup>3</sup>   | 70 – 97                           |
| and the second sec | Total P                     | gP/m <sup>3</sup>   | 11.5 – 19.2                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Concentrations in secondar  | ry effluent:        |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COD                         | gCOD/m <sup>3</sup> | 36 – 67                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total N                     | gN/m <sup>3</sup>   | 9.3 – 12.8                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total P                     | gP/m <sup>3</sup>   | 0.4 - 1.1                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                                   |









| Examined carbon sources                  |                      |                    |                      |                   |                       |    |
|------------------------------------------|----------------------|--------------------|----------------------|-------------------|-----------------------|----|
|                                          |                      | Parameter          | Unit                 | Settle<br>wastew  | ed Acetic aci<br>ater | id |
| (Frank)                                  |                      | COD                | g COD/m <sup>3</sup> | <b>633 ±</b> 1    | 913,000               |    |
|                                          |                      | COD soluble        | g COD/m <sup>3</sup> | 206 ±             | 65 913,000            |    |
|                                          | TN                   | g N/m <sup>3</sup> | 77 ±                 | 9 -               |                       |    |
| 5500 E E E E E E E E E E E E E E E E E E |                      | ТР                 | g P/m <sup>3</sup>   | 18 ±              | 2 -                   |    |
|                                          |                      | TSS                | g/m³                 | 286 ±             | 68 -                  |    |
| Parameter                                | Unit                 | Ethanol            | Disti<br>al          | lled raw<br>cohol | Fusel oil             |    |
| COD                                      | g COD/m <sup>3</sup> | 1,598,000          | 2,1                  | 43,000            | 1,989,000             |    |
| COD soluble                              | g COD/m <sup>3</sup> | 1,598,000          | 1,2                  | 10,000            | 1,809,000             |    |
| TN                                       | g N/m <sup>3</sup>   | -                  |                      | 500               | 0.3                   |    |
| ТР                                       | g P/m <sup>3</sup>   | -                  |                      | 0.6               | 0.2                   |    |
| TSS                                      | g/m³                 | -                  |                      | 13                | 69                    |    |











| Process<br>rate | Unit                       | Settled<br>wastewater | Pretreated<br>settled<br>wastewater | Average reduction |
|-----------------|----------------------------|-----------------------|-------------------------------------|-------------------|
|                 | "Conven                    | tional" denitrifica   | ation test                          |                   |
| NUR1            | mg N/(gVSS⋅h)              | 3.7 – 5.5             | 2.6 - 4.2                           | 24%               |
| NUR2            |                            | 1.3 – 2.0             | 1.0 – 1.6                           | 14%               |
|                 | PRR &                      | anoxic/aerobic P      | UR test                             |                   |
| PRR             | mg P/(gVSS⋅h)              | 7.8 – 13.0            | 3.9 – 11.6                          | 14%               |
|                 | mg P/(gVSS⋅h)              | 3.4 - 6.6             | 1.2 - 6.0                           | 46%               |
| NUR             | mg N/(gVSS⋅h)              | 1.6 – 2.7             | 0.7 – 2.7                           | <b>26%</b>        |
|                 | mg P/(gVSS·h)              | 5.3 – 13.8            | 2.1 – 12.6                          | 34%               |
| OUR             | maO <sub>2</sub> /(aVSS·h) | 22.0 - 33.4           | 18.2 – 31.0                         | 11%               |











|             |                                                |                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Summary of the conventional OUR measurements                                                                                                                                      |  |  |  |  |
|-------------|------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             |                                                |                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                   |  |  |  |  |
| Number      | 1st<br>assay                                   | 2nd<br>assay                                             | 3rd<br>assay                                                                                                        | 4th<br>assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average<br>value                                                                                                                                                                  |  |  |  |  |
| of assays - |                                                | (                                                        | g COD/g C                                                                                                           | OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   |  |  |  |  |
| 4           | 0.60                                           | 0.69                                                     | 0.66                                                                                                                | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.65                                                                                                                                                                              |  |  |  |  |
| 4           | 0.77                                           | 0.74                                                     | 0.76                                                                                                                | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.76                                                                                                                                                                              |  |  |  |  |
| 4           | 0.72                                           | 0.71                                                     | 0.74                                                                                                                | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.72                                                                                                                                                                              |  |  |  |  |
| 3           | 0.70                                           | 0.79                                                     | 0.66                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.72                                                                                                                                                                              |  |  |  |  |
| 2           | 0.76                                           | 0.79                                                     |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.78                                                                                                                                                                              |  |  |  |  |
|             |                                                |                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                   |  |  |  |  |
|             |                                                |                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                   |  |  |  |  |
|             | Number<br>of assays -<br>4<br>4<br>4<br>3<br>2 | Number<br>of assays1st<br>assay40.6040.7740.7230.7020.76 | Number<br>of assays 1st<br>assay 2nd<br>assay   4 0.60 0.69   4 0.77 0.74   4 0.72 0.71   3 0.70 0.79   2 0.76 0.79 | Number<br>of assays 1st<br>assay 2nd<br>assay 3rd<br>assay | Number<br>of assays 1st<br>assay 2nd<br>assay 3rd<br>assay 4th<br>assay   4 0.60 0.69 0.66 0.65   4 0.77 0.74 0.76 0.78   4 0.72 0.71 0.74 0.69   3 0.70 0.79 0.66    2 0.76 0.79 |  |  |  |  |





















