

Plan prezentacji

· Podstawowe pojęcia

przykład

Słupsku

INNOWACYJNA GOSPODARKA

• Budowa modelu części biologicznej Organizacja badań symulacyjnych

• Dalsze plany badań symulacyjnych

Frakcja	Symbol	Wartość typowa (% ChZT)	Zakres (% ChZT)
Łatwo rozkładalna	Ss	20	8-25
Nierozkładalna, rozpuszczona	Sı	5	4-16
Nierozkładalna, zawiesinowa	XI	13	7-20
Wolno rozkładalna	Xs	62	50-75

Parametr	Zakres		
Ch7T//SS	1.5-2.2 (dopływ)		
01121 X/ V 33	1.42-1.48 (osad)		
Veerree	0.6-0.8 (śc. surowe)		
V33/133	0.8-0.9 (śc. ocz. mech.)		
	0.66 (śc. surowe)		
DZ I 5/DZ I całk.	0.66-0.85 (śc. ocz. mech.)		
Nora. X/Nora.	0.9-0.99 (?)		

Model transf	eru tlenu (3)		
Czynniki wpływające na K _L a: • temperatura	Czynniki wpływające na S _{o,sat} • temperatura		
 głębokość komory 	 stężenie substancji rozpusz 		
 charakterystyka ścieków i warunki procesu. 	 charakterystyka ścieków i warunki procesu. 		
Źródło	Równanie		
Eckenfelder and O'Connor (1954), Chen et al. (1980)	$\boldsymbol{K}_L \boldsymbol{a} = \boldsymbol{m}_l \boldsymbol{Q}_A^{b_l}$		
Holmberg (1986)	$K_L a = m_I Q_A$		
Goto and Andrews (1985)	$K_{\rm L}a=m_{\rm l}Q_{\rm A}-b_{\rm l}$		
Reinius and Hultgren (1988)	$\mathbf{K}_{\mathrm{L}} \mathbf{a} = \mathbf{m}_{\mathrm{l}} \mathbf{Q}_{\mathrm{A}} + \mathbf{b}_{\mathrm{l}}$		
Holmberg (1989)	$K_L a = m_1 \sqrt{Q_A}$		
	37 UNIA EUROPEISKA EUROPEISKI INDUSZ ROZWOLIWEGROWLEGO		

Bilanse masy dla części biologicznej

	Punk	t pomiarowy	/ w komorze	osadu czyr	inego
	Dopływ	Beztlen.	Anoks.	Tlen. 1	Tlen. 2
eń.	P og.				
	P-PO4	P-PO ₄	P-PO ₄	P-PO ₄	P-PO ₄
	N og.				
acz	$N-NH_4^+$		$N-NH_4^+$	$N-NH_4^+$	N-NH4
u z			N-NO ₃ ⁻	N-NO ₃	N-NO ₃
ŝ	Zaw. og.				
kre	Zaw. og.				
Za	(cz.org.)				
	ChZ1				
	ChZI _{filt.} *	ChZI _{filt.}	ChZI _{filt.}		ChZI filt

Obiekt	Model	Napowietrzanie	Pompowanie	Unieszkodli- wianie osadu	Dawkowanie chemikaliów	Inne formy zużycia energii
	acetate					
	asm2					
DOPŁYW	bodbased					
DOPEN	methanol					
	states					
	water					
BIOREAKTOR	wszystkie					
ZKF	wszystkie					
ODWADNIANIE	wszystkie					
OSADNIK, ZAGĘSZCZACZ	wszystkie	T				

