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ABSTRACT 

At the beginning of this work a short characteristic of the methodology of modelling rules of welding process is provided. 
The relation between both the intensive and extensive parameters are mainly discussed. Additionally, the theoretical bases 
of modelling of welding processes are presented. In further on the bases of modelling of inverse heat conduction problem 
is talked over. It bases on the strategy of solving inverse problems [2], it employs the hybrid an analytic – numerical 
method for analysis these questions. Finally, the appropriate algorithms in moving and stationary systems are established 
which can be directly applied to solving inverse problem. 
Key words: temperature distribution, welded joints, algorithms, inverse modelling. 

INTRODUCTION 

The process of welding has dynamic character and is related with the local change of the 
internal energy E of welded system. The change of the internal energy E can be defined by 
general dependence: 
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where:  
jϕ  – intensive parameters, 

jψ  – extensive parameters. 

 
The intensive parameters (e.q. temperature T, pressure p, chemical potential µ, voltage U) 

and pseudo intensive ones (quotients of two extensive magnitudes – like mass density m/V = ρ 
etc.) are field magnitudes, creating time – space field where in every space point a real physic 
magnitude is defined. 

The extensive parameters may be transported and summed up in finish dimension areas and 
may be the scalar (mass, entropy), vectors (energy stream) and tensors (momentum stream). 

Some examples of change of the internal energy E in welded joints through interaction of 
the parameters ϕ and ∆ψ are presented in Tab.1. 

The selection of the proper intensive parameter ϕj related with the extensive parameter ∆ψj 
and energy E is possible to perform according to dependence:  
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The knowledge of the run of thermo-dynamical process under welding indicates on the 

possibility of active modelling and control of welding process. Moreover, in calculating process 
there are material parameters, e.g. thermal conductivity λ, thermal diffusivity α, specific  
heat c, etc. 

The transport process of the extensive magnitudes requires observations and estimation of 
the intensive parameters during welding and is realised by using such procedures as transient 
Lagrangian or steady state Eulerian formulations of thermal cycle. 

We can define Eulerian (moving) frame with origin at the centre of the source and  
co-ordinates (x, y, z). For cartesian co-ordinate system ( ) which remains stationary for 
all time t and the loading history, the Lagrangian co-ordinate reference is defined. 

000 z,y,x

 
Table 1. Characteristic of change of the internal energy E as result of interaction of parameters ϕ and ∆ψ 

Kind of interaction between ϕ 
and ∆ψ Change of internal energy E 

thermal T ∆S [T – temperature (ϕ), ∆S – entropy (∆ψ)], 

mechanical p ∆V [p – pressure (ϕ), ∆V – volume (∆ψ)], 

chemical µi ∆mi  [µi – chemical potential (ϕ),∆mi  – mass of i-component (∆ψ)]. 

THEORETICAL  BASES  OF  MODELLING  OF  WELDING  PROCESSES 

Practically, there are a few groups of modelling tasks, in dependence on which 
mathematical modelling elements are known: 
• the direct task, when a reaction of system to outside factors is investigated, e.g. the results of 

heat flow inside steel plate from the moving point heat source, 
• the indirect task, inverses to the previous one, when we want to obtain information how the 

conditions must change in order to get the required reaction of system, e.g. define temperature 
distribution in welding steel plate, 

• the inductive task, when relying on series of measurements for various boundary conditions, 
mathematical form describing the real process is to be found, e.g. estimation of temperature 
distribution during layer stitch welding. 

The definition of theoretical structure of research object is performed with the use of: 
• the physic model, describing the actual object, 
• the mathematical model, being an equation or system of equations, describing processes 

together with the boundary conditions, characteristic for given phenomenon. 

The indispensable conditions for similarity existing between the models and actual objects 
is describing the happening physic processes by: 
• the same differential equations with appropriate boundary and initial conditions, 
• the similarity of criterion verification. 

The direct task with indispensable conditions which have been described over are referred 
to as direct thermal problems. The main purpose of direct problems is to find the results, e.g. the 

 



E. Ranatowski: Remarks on an inverse modelling of welding processes   23 

temperature distribution in welded joints from the known differential equation, boundary and 
initial conditions, but the similarity of criterion verification are not used principally. 

The another class of problems arises in indirect task when some parameters or conditions 
are either unknown or not fully specified. The unknown quantity is to be determined with the 
help of an extra condition are fulfil. Such a problem is termed an inverse problem and can be 
regarded as discovering the cause from a know result. 

BASES OF MODELLING OF INVERSE HEAT CONDUCTION PROBLEM 

The inverse heat conduction problem is much more difficult to solve than the direct problem 
because it is mathematically ill – posed problem [1, 2]. The mathematical ill-posed nature of 
inverse problems results from their physical nature. The ill-posed nature makes that various fine 
methods based on procedures used for direct problems are inapplicable to a wide range of inverse 
problems but the algorithm of the inverse heat conduction problem solution is based on the 
corresponding direct problem. 

Currently predominate solutions of the heat transfer in welded joints base on the Fourier-
Kirchhoff (F-K) equation: 

 

  ( ) vp q
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∂
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where: 
T – temperature, °C or K, 
λ – thermal conductivity, W cm-1K-1, 
cp – specific heat, J kg-1K-1, 
ρ – mass density, kg cm-3, 
t – time, sec, 
qv – power input in volume, W cm-3. 

 
In this situation heat transport in welded joints is mainly progressed by the thermal 

conductions. A useful parameter for describing conditions of heat transport is the Peclet  
number [3]: 
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where: 
v – constant velocity of transformation, cm s-1

l – characteristic length scale of the process, cm, 
α – thermal diffusivity, m s-2. 

 
The heat can be transported in liquid molten region – weld pool by both convection and 
conduction process. In the solid region heat is transported relative to material of the work piece 
by conduction process only [4]. The conduction becomes significant and dominate under welding 
process in weld pool as the Peclet number is much less than unity: Pe < 1. The only difference 
between conduction and convection lies in the type of particle movement [2]. When the particles 
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demonstrate only atomic and molecular activity around ground level, energy is transported by 
conduction. The convective heat transfer requires the bulk motion of the medium in weld pool 
and involves the transport of energy due to gradient of temperature but also due to enthalpy 
transport, viscous dissipation, compression, etc. [2]. If the Peclet number is greater than 1 it is 
necessary to insert the additional term: 
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are the components of convective velocity w of the fluid in weld pool, 

v – velocity of heat source in direction x. 
to equation (3).  
Besides, motion of the medium is described by the continuity equation and the Navier – Stokes 
equation and that simultaneously complicates solution of the modified eq. (3). 

The main purpose of inverse heat conduction problem solution is to obtain the parameters of 
the welding process which agree satisfactorily with the observed or desired characteristic of the 
welded joints. Furthermore, the structures dimensions, material properties and boundary 
conditions are assumed to be known. 

The general strategy of solving the inverse problems, suggested by Nowak [2], can be 
summarised by the following steps: 
• to make the mathematical description of the boundary problem completion assuming arbitrary 

values as required by direct problem but not specified in inverse problem input date. In 
another words, to make the considered problem well – posed, 

• to solve direct problem, 
• to calculate values of measured quantity at measuring sensor locations, 
• to compare calculated and measured values and to modify assumed input date to ensure the 

best matching of these quantities. 

APPLICATION OF AN INVERSE – PROBLEM APPROACH TO WELDING PROCESSES 

The direct heat conduction problem is solved by using an analytic method for plate with 
optional thickness by using the Fourier transformation method [5]. The cylindrical – involution – 
normal (C-I-N), three dimensional heat source (HS) model, is used in this study: 
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where: 

Q – net power received by the weldment, W, 
k – a factor designating the HS concentration , cm -2, 
Kz – involution factor of HS, cm-1, 
s – HS penetration depth, cm, 
u(z-s) – Heaviside’s function. 
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An analytic solutions for the temperature distribution in the welded joints are established [5, 6]. 
This is possible because the partial differential equation (3) is linear, the boundary condition for 
plate with optional thickness: 
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and the initial condition  

( ) 0T0t,z,y,xT 0000 ===  
(7e)

where: 
α0 – the surface coefficient of conductance at z0 = 0, W cm-2K-1, 
α1 – the surface coefficient of conductance at z0 = g, W cm-2K-1, 
g – the thickness plate, cm, 

 
are consistent, the problem is well posed and the unique solution exists. 

The obtained temperature field solution has an algebraic form and must be discretised in 
order to make computer calculations possible. For this purpose we will use calculations in 
Mathcad programme [7]. An account will concern of the pulsed power welding (PPW). In this 
account we will follow PPW analytical scheme for the time dependence of heat input q(t) – 
proposed by Karkhin el.al [8] – Fig 1. 

In the case when pulses have idealised trapezium waveform, the function q(t) can be 
described by 5 parameters: high pulse (peak) power qp, high pulse time (peak duration) tp,  low 
pulse (background) power qb,  low pulse time (background duration) time tb, and slope-up and 
slope-down  pulse time ts. 

The heat input is a function of time q(t) and this way will be included in Mathcad 
procedures, which are very useful for modelling and simulation of welding thermal process. 

If parameters λ, cp , ρ, α there are functions of temperature T, eq. (3) is nonlinear and it 
makes pure analytical calculation impossible. The nonlinear form of eq. (3) can be solved only 
by approximate manner , because it is mathematically complicated problem, and a pure nonlinear 
solution of eq. (3) does not exist. 

Presently, the finite element method (FEM) has the best capability for nonlinear analysis of 
thermal cycle welding in approximate way. The another methodology and created hybride an 
analytic-numerical method is used in this solution which lead to similar results as FEM [9]. The 
basis of this method is a linear interpolation procedure. In calculating procedures there is no local 
fitting of the properties λ and α as in a pure numerical calculation. The idea in this solution in 
fact was to use the same general solution obtained for the linear equation of heat conduction, but 
use it repeatedly in respect of temperature change in every point. These solutions are valid only if 
the properties of λ and α are constant at any time t and of course these properties are constant but 
within given impulse affects lasting. In other words, in every time step we solve the equations as 
linear problem with λ(T), α(T) and generate the results for temporary situation. Then we analyse 
the local temperatures after an impulse generation and change λ(T), α(T) (and many other 
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physical parameters) in respect of actual temperature. Providing that the time step “∆t” is very 
small, we are allowed to assume that this thermal phenomena are being analysed at non-linear 
principles. So, there is a specific and logic assumption performed in order to numerically 
approximate well the pure analytic solution. The details of this method are presented in [9]. 
Finally, the following computing expressions for heat flow solutions are obtained from pulsed  
C-I-N heat source model:  
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Moving co-ordinates system 

( ) ( ) ( )
( )( )

( )( )
( )( )( )

( )( )
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+∆−−⋅⋅α⋅

+∆⋅ν−−−
⋅

+−−⋅⋅α⋅

⋅
⎪⎩

⎪
⎨
⎧

⋅−−⋅⋅π

⋅⋅
∆⋅−<= ∑

= γ

1t1jtk4

yt1jxk
exp

11jtk4

1

sKexp1c

Kktq
,0,t1jtift,z,y,xT

2
0

2

n

1j

z

 

 

( )( )[ ]
⎪⎭

⎪
⎬
⎫

∆−−⋅⋅α−⋅⋅⋅⋅∑
=

last

1j

2
iiii t1jtrexpDCB  

(9) 

 
where:  

( ) ( )0i
i

0
0ii zrsin

r
 zrcos = B ⋅⋅

⋅λ
α

+⋅  
 

(10) 

λ
α

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ⋅+α

λ⋅α
+⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

λ
α

⋅

0
22

i
2

1

12
i2

2
0

2
i

i

r
gr

r2 = C  
 
 

(11) 

( )
( ) ( ) ( ) ( )( )

( )

( ) λ⋅+

α+λ⋅
+

+
⋅λ⋅+

⋅⋅⋅α−⋅⋅⋅α−λ⋅⋅⋅+⋅λ⋅⋅⋅−
⋅

⋅⋅

2
i

2
z

0z

i
2

i
2

z

iz0ii0i
2

iiiz

zi

rK

K
rrK

srsinKsrcosrsrsinrrsrcosK

sK-exp =D

 
(12) 

 



E. Ranatowski: Remarks on an inverse modelling of welding processes   27 

( ) ( ) ( )∫ ⋅⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅

⋅λ

α
+⋅=

g

0
i

i

0
ii dznlast,c,zapproxzrsin

r
zrcosE  

 
(13) 

and 

r1, r2, r3  . . . ri   are roots of:                    
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cγ = cp ρ is a volumetric specific heat, J K-1 cm-3. 
 

For accounts of distribution of the temperature fields in welded joints there is the necessity 
of physical parameters such as λ(T), α(T). The discrete values of λ(T), α(T) are known and 
shown in Tab. 2 the matrices containing and corresponding λ(T), α(T) values are defined 
experimentally. 

 
Table 2.  λ(T), cp(T), ρ(T), and α(T) values in several temperatures for low carbon steel–0,1%C 

T 
°C 

λ(T) 
λWcm-1K-1  T 

°C 
ρ(T).cp (T) 
JK-1cm-3  T 

°C 
α (T) 

cm2s-1

0 0,6285  0 3,307  0 0,190 
100 0,5866  100 3,666  100 0,160 
200 0,5447  200 4,190  200 0,130 
300 0,5028  300 4,570  300 0,110 
400 0,4609  400 4,950  400 0,093 
500 0,4190  500 5,303  500 0,079 
600 0,3771  600 6,082  600 0,062 
700 0,3477  700 6,955  700 0,050 
800 0,3268  768 9,809  768 0,034 
900 0,3226  800 6,536  800 0,042 
1000 0,3268  900 5,866  900 0,055 
1100 0,3310  901 5,204  901 0,062 
1200 0,3352  1200 5,406  1200 0,062 
1300 0,3352  1300 5,406  1300 0,062 
1400 0,3352  1400 5,406  1400 0,062 
1500 0,3352  1500 5,406  1500 0,062 

 
Than with use of linear interpolation procedure, continuous functions were created and built in 
inside calculation sheet in Mathcad programme as follows: 

 

 
 

Fig. 1. Schematic diagram of pulsed power: a. course of function q(t) and her characteristic dimensions,  
b. details of course of function q(t) for ts 
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- sub-procedure λ(T) 
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0 0,6285 
100 0,5866 
200 0,5447 
300 0,5028 
400 0,4609 
500 0,419 
600 0,3771 
700 0,3487 
800 0,3268 
900 0,3226 
1000 0,3268 
1100 0,331 
1200 0,3352 
1300 0,3352 
1400 0,3352 
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- sub-procedure α(T) 
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0 0,19 
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300 0,11 
400 0,093 
500 0,079 
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1300 0,062 
1400 0,062 
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On Fig. 2 discrete values of  λ(T), α(T) are presented and determined by continuous 
functions with used sub-procedures (15) and (16) for a. λ(T), b. α(T). 

We have high conformity of continuous functions and discrete value of λ(T), α(T) from 
above-mentioned date on Fig. 2. 

The final main-procedure “Temperature – T”, in accordance with eqs. (8) or (9), 
summarises thermal fields from several heat energy impulses using a proper formula specific for 
appropriated H-S model. In Mathcad programme, the heat source pulses have trapezium 
waveform and are represented by the following sub-procedure: 
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where:  w – dead pulse time 

 “mod(a,b)” is a function giving the rest of dividing “a” by “b” (b ≠ 0). 
 
Let’s analyse the structure of (17) which may look a little complicated at the first look. 
 

  
 

Fig. 2.  Values of a. λ(T) and b. α(T) in agreement with Tab. 1 and continuous functions for low carbon steel 0,1% C 
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There are five “if” conditions. The result of conditions no. 1, 3 and 5 is as seen below (peak 
and background values reflected) – Fig. 3. 

 
q(t)

0 2 4 6 8 1
0

5

10

0
100 t  

Fig. 3.  Peak and background values of q(t) (conditions no. 1, 3, 5 assumed) 

 
Whereas, the result of conditions no. 2 and 4 (slope and down) is seen below – Fig. 4. 

Eqs. (8), (9) with appropriated sub-procedures (15), (16), (17) and date in Tab. 2 can be directly 
applied to solving an inverse problem. 

 
 q(t) 

0 2 4 6 8
0

5

10

7.790.01 t  
Fig. 4. Slope and down lines of q(t) characteristic ( conditions no. 2 and 4 assumed) 

CONCLUSIONS 

In this work some extended consideration about analytic-numerical methods conforming 
has taken place. The temperature fields generated by three dimensional C-I-N heat source with 
pulsed power welding in both stationary and moving co-ordinates systems are established. This is 
possible through employment of hybrid analytical-numerical method and new methodology of 
non-linear calculation described in this paper. Finally, it bases on the strategy of solving inverse 
problems, the appropriate algorithms are established in moving and stationary systems, which 
can be directly applied to solving inverse problem with used Mathcad programme. 
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