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Symbol conventions

General symbols
L — operator
u — function
j — imaginary unity
A — matrix
I — unit matrix
a — tensor
a — vector of parameters
�A — vector function
A(·) — (·) component of a vector function
n̂ — unit vector normal to a surface
(̂·) — unit vector in (·) direction
(·)∗ — complex conjugation
(·)−1 — inverse of an operator
(·)T — transpose of an operator
(·)H — Hermitian transpose of an operator(

u, v
)

— standard inner product (=
∫
Ω

uv∗ dΩ)

(·) × (·) — vector product of two vectors
(·) · (·) — scalar product of two vectors

Physical quantities
�D — electric flux density
�B — magnetic flux density
�E — electric field intensity
�H — magnetic field intensity
ε — permittivity tensor of the medium
µ — permeability tensor of the medium
ε0 — permittivity of the vacuum
µ0 — permeability of the vacuum
vc — speed of light in the vacuum
ω — angular frequency
f — frequency
β — propagation constant
k(·) — wavenumber in (·) direction

Operators
∇× (·) — rotation operator
∇ · (·) — divergence operator
∇(·) — gradient operator



Chapter 1

Introduction

1.1 Motivation and background

A dynamic progress in the field of high-frequency technology influences the methodology of
construction of microwave, millimeter-wave, and optical-wave devices. In order to improve
the parameters of devices, engineers explore structures of new shapes, filled with atypical
materials. An example of such a tendency is the evolution of the shape of nonreciprocal
microwave ferrite phase shifter. The original structure, proposed in [116] and shown in
Fig. 1.1(a), consisted of two vertical ferrite slabs inserted within a rectangular waveguide.
This construction evolved [49, 78] into a complex structure involving a waveguide with
nonuniform cross-section filled with a ferrite toroid (Fig. 1.1(b)). Another application
of nonuniform structures are integrated optics circuits. An example of application of
new materials of complex anisotropic properties are low-loss resonators [40, 54, 60, 61] or
filters (crystals, e.g. sapphire) or various nonreciprocal or surface-wave structures (ferrites,
chiroferrites) [49, 60, 78].
One of the most fundamental problems associated with the design of passive compo-

nents such as filters, couplers or transitions and in the application of resonant methods for
characterization of the materials used in the microwave and millimeter-wave bands is an
eigenvalue analysis. Solution of an eigenproblem gives the information about the resonant
spectrum of a resonator, the length of a wave in a waveguide and the field patterns for
the corresponding modes. Due to the large constructional complexity of the devices and
complex properties of the materials used in the microwave and higher frequency ranges
analytical methods of analysis cannot be usually applied. In consequence, numerical
methods of analysis of electromagnetic fields have became one of the most intensively
explored research topics for many research groups in the world. This field of research is
being intensively developed, which results in a growing number of publications.
The numerical analysis of resonators and waveguides consists of three steps: analytical

formulation of an operator problem, projection of the problem into a finite dimensional
space, resulting in a matrix problem, and, finally, numerical solution of the matrix prob-
lem. Efficiency of the whole solution procedure requires the selection of a proper approach
for each of the steps.
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Figure 1.1: Cross-sections of a simple rectangular waveguide phase shifter structure pro-
posed in [116] (a) and the structure based on grooved waveguide proposed in [49, 78]
(b).

Various analytical formulations for waveguide and resonator structures can be derived
fromMaxwell’s equations, resulting in canonical or noncanonical (nonstandard) eigenvalue
problems. Among the canonical eigenproblems we can distinguish standard problems, of
the form

Au = λu (1.1)

and generalized problems, of the form

Au = λBu (1.2)

where A, B are linear operators, u is an eigenfunction and λ is the corresponding eigen-
value. An example of nonstandard eigenproblem is a quadratic eigenproblem, i.e.

λ2Au + λBu + Cu = 0 (1.3)

It can be shown [98] that this particular problem can easily be transformed into a gener-
alized one with a number of unknowns doubled. The following operator formula

M(λ)u = 0 (1.4)

describes the most general form of the noncanonical eigenproblem. Since all the above for-
mulations originate from Maxwell’s equations, they are mathematically fully equivalent.
However, from the efficiency point of view they are not. Numerical solution of eigenprob-
lem (1.1) or (1.2) by the standard method of moment (see Sec. 3.1.2) or Rayleigh-Ritz
method (see Sec. 3.1.1) lead to standard or generalized matrix eigenvalue problems, while
the solution of (1.4) usually leads to the linear system which can be solved by searching
zeroes of the operator matrix determinant [79]. Since the latter technique is, in general,
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much less efficient than the former one, canonical eigenproblems are of greater inter-
est. Another aspect affecting the efficiency is the number of unknowns (field components)
involved in the formulation, which determines the size of the operator matrix of the eigen-
problem that has to be solved. In consequence, canonical eigenproblems may be preferred
over the nonstandard quadratic ones which are equivalent to the solution of a double sized
generalized eigenproblem. Another possibility, which can result in considerable time and
memory savings, arises in the solution of homogeneous 3D problems using 2D approach
whenever it is possible (see Sec. 2.3.2).

1.1.1 Classical methods of analysis

As already pointed out, numerical solution of an eigenvalue problem requires the conver-
sion of its analytical form into the matrix one. This process relies on representing of the
infinite dimensional operator eigenproblem in the finite dimensional space and is referred
to as projection. There are two main projection methods, the method of moments and the
Rayleigh-Ritz method. The main difference between various projection techniques based
on these methods is the set of basis functions involved. Among the most frequently used
functions are simple Maxwellian and polynomial ones [48, 59, 80, 81]. Depending on the
physical problem and basis functions, the projection methods result in the eigenproblems
with matrix (matrices) of specific properties. The most considerable features of the ma-
trices, which decide on the efficiency of the numerical methods used to solve the problem,
include small size, symmetry and sparsity. Therefore, the selection of a proper conver-
sion method becomes very important for efficiency. A main drawback of the methods
involving the simple entire domain Maxwellian basis functions is that they can only be
used to the analysis of structures of highly regular shape and hence other, more versatile,
conversion methods become indispensable. The simplest and the most popular of them
are the finite element method (FEM) [2, 3, 7, 19, 21, 23, 24, 30–34, 38, 44, 48, 55, 56, 66–68,
89–92, 107, 114, 117, 120, 121] and the finite difference frequency domain method (FDFD)
[1, 9, 11–14, 18, 25, 37, 40, 46, 52, 53, 64, 77, 82, 84, 94, 101–106, 112, 113, 119, 122–125, 127],
using the polynomial basis functions which are nonzero only locally. Main advantages of
both conversion methods are that they can easily cope with irregularly shaped external
and internal boundaries and they result in sparse matrices. One of the most important
differences between these methods is that the FEM results in a generalized problem, while
the FDFD in a standard one with highly structured matrix. This fact can considerably
influence the efficiency of the solution of the matrix eigenproblem.
Since the memory and time requirements of various numerical solution methods strongly

depend on the matrix size, symmetry and sparsity, the selection of a suitable numerical
algorithm for a given matrix problem should take into consideration these matrix topo-
logical and spectral properties. Moreover, the features of the eigensolver, such as fast
convergence and ability to select particular eigenvalues within the entire spectrum, which
are also important in terms of memory and time savings, should also be considered. Tra-
ditional numerical methods, such as QR or QZ, are very popular in solving problems with



Chapter 1 Introduction 8

small and dense matrices, arising in the Rayleigh-Ritz method and method of moments
involving the entire domain basis functions. However, when FEM or FDFD methods are
used, producing very large and sparse matrices, QR and QZ algorithms require very large
computational effort. It stems from the fact, that these algorithms compute all eigenval-
ues and operate on all matrix elements. In this case the application of iterative meth-
ods, such as the power method, subspace iteration or Arnoldi/Lanczos methods [39, 98],
which can benefit from the sparse character of the matrices and compute only selected
eigenvalues, can substantially improve efficiency of computations. Basic versions of it-
erative algorithms compute the eigenvalues of the largest magnitude, which are usually
out of interest as far as electromagnetic eigenproblems are concerned. In order to obtain
convergence to the required eigenvalues and accelerate the algorithms various spectral
transformations are employed. Typical examples include shift and shift-invert techniques
or polynomial filtering. Another important aspect of efficient numerical calculations by
means of the iterative algorithms is the possibility of utilization of capabilities offered
by modern superscalar and parallel computer systems. Recently, new versatile iterative
algorithms have been released [8,65], which use reverse communication procedure for per-
forming matrix-vector products. In consequence, many system specific properties of the
modern computers can be used to improve efficiency. One such algorithm is the implicitly
restarted Arnoldi method [108].

Spurious solutions. An important aspect of numerical analysis of electromagnetic
fields are nonphysical spurious solutions, occurring as a consequence of chosen formula-
tion and projection method used. They can arise when vector basis functions that satisfy
Maxwell’s curl equations but do not satisfy Maxwell’s divergence equations [24,31,69] are
used in the projection. In consequence, nonphysical solutions that do not fulfill the diver-
gence equations can be obtained and they are called spurious. The best way of avoiding
spurious solutions is to choose a formulation which is not able to generate them. However,
it is not always possible (e.g. in the case of 3D inhomogeneous problems) and then some
methods of their elimination are required. If this is the case, two general approaches have
been reported. The first one is based on the modification of the analytical formulation,
while the second one relies on the application of proper basis and trial functions in the pro-
jection method. An example of the former approach is penalty method, in which so called
penalty term is added to the operator equation provided that the spurious solutions are
shifted into the spectrum region which is out of interest. This technique is often employed
in conjunction with the FEM [48,55,56,90,91] and the FDFD [1,13,84,101–103,125] meth-
ods. An example of application of the second technique are edge elements [7,48,117,121],
which are a kind of the FEM. In this method solution a solution vector is represented as
a series of vector polynomial functions obeying locally Gauss law, thereby ensuring that
the solution vector fulfills the divergence equations.
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1.1.2 Hybrid methods of analysis

In spite of the great versatility of FEM and FDFD methods there are many structures
which are difficult to analyze, e.g. structures filled with anisotropic materials such as
ferrites or chiroferrites. In general, classical analysis of anisotropic structures requires
formulations where additional field components are used. It leads to larger matrix prob-
lems and much longer computational times. As an alternative, hybrid methods, such
as the coupled mode method [5, 43], can be used. They are based on expansion of the
fields into a series of entire domain basis functions. In the case of the coupled mode
method, basis functions are computed as the solutions for the simplified original prob-
lem (e.g. isotropic). The difference between the parameters of the original structure and
the basis one is treated as a perturbation. Another, new class of hybrid algorithms are
eigenfunction expansion algorithms [85–88,95], which, compared to the classical methods,
can dramatically increase efficiency of computation of waveguide dispersion characteris-
tics without deteriorating the accuracy. These algorithms are based on expansion of the
fields into a series of eigenfunctions computed for certain frequency or propagation con-
stant points. The advantage of such choice of basis functions is that they fulfill all inner
and outer boundary conditions. In consequence, the number of the functions taken into
expansion can be substantially reduced leading to the problems of very small size.

1.2 State of the knowledge in the methods improv-
ing efficiency of numerical solution of electromag-
netic eigenvalue problems

1.2.1 Analysis of waveguides and resonators in Cartesian coor-
dinates

The most versatile methods of electromagnetic field analysis include the FEM and FDFD
methods (see Sec. 1.1.1). The selection of publications devoted to the FEM [2, 3, 7,
19, 21, 23, 24, 30–34, 38, 44, 48, 55, 56, 66–68, 89–92, 107, 114, 117, 120, 121] and the FDFD
[1, 9, 11–14, 18, 25, 37, 40, 46, 52, 53, 64, 77, 82, 84, 94, 101–106, 112, 113, 119, 122–125, 127]
numerical analysis methods is very wide. Depending on the analyzed structure type and
properties of the filling media, various analytical formulations and projection methods are
used, resulting in specific matrix problems. Next, appropriate numerical solvers have to
be used depending on characteristic properties of the matrices.
First electromagnetic applications of the FEM [3,107] and the FDFD [11,12,25] meth-

ods concerned analysis of waveguides using scalar formulations in terms of longitudinal
components of electric Ez or magnetic Hz field. These simple formulations could only be
used to the analysis of homogeneous structures. Resulting symmetric eigenproblems were
solved by some less efficient iterative methods, such as successive overrelaxation [11,12,25],
requiring good starting estimation of the eigenvalue of interest and the corresponding
eigenvector.
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In order to analyze inhomogeneous waveguides a vectorial formulation in terms of Ez

and Hz fields were used. It was used in conjunction with the FEM [2, 19, 21] and the
FDFD [18, 46, 106] methods, resulting in symmetric eigenproblem. In the most cases,
numerical solution methods were analogous to the ones used for the scalar case, but
some FDFD codes [18, 106] reported application of bisection method for computing of
eigenvalues and inverse iteration for determination of the corresponding eigenvectors.
This approach was still far from efficient computations.
Since the formulation using only longitudinal field components could not be used for

analysis of general anisotropic structures, other formulations based on full vector electric
�E or/and magnetic �H fields were incorporated. In context of the FEM [7, 55, 56, 89–
91, 117, 120, 121] and the FDFD [1, 9, 13, 84, 101–103, 122, 125] methods they resulted
(except [1]) in symmetric eigenproblems. These problems were solved using standard
bisection [7,122] and QR [1] methods. However, other methods such as subspace iteration
[9,89–91,101–103,117,125] or Lanczos method [120] began to be used also. The subspace
iteration was the first projection method1 used for solution of electromagnetic waveguide
and resonator eigenvalue problems. In contrast to previously used methods, the projection
methods could compute a few eigenvalues/eigenvectors of interest at one run, making
the computations much more efficient. The algorithm of Lanczos was another efficient
projection method, intended for symmetric eigenproblems.
Concurrently to full vector formulations, the ones in terms of transverse electric �Et

and/or magnetic �Ht fields were used for homogeneous structures such as waveguides and
some resonators. These formulations resulted in the eigenproblem that was not symmet-
ric. This fact was the main drawback of the transverse formulations, because nonsym-
metric eigenproblem is much harder to solve, compared to a symmetric one, and initially
there was no efficient nonsymmetric eigensolvers developed. First and even many later
implementations of the FEM [31, 32, 44] and FDFD [14, 104, 105, 123, 124] using trans-
verse formulations, involved standard shifted power [123, 124], inverse iteration [44] or
QR/QZ [14, 31, 32, 104, 105] algorithms. Incorporation of the subspace iteration into the
FEM [30, 33, 34, 66–68] and FDFD [1, 102, 103] codes substantially improved efficiency
of the analysis. Another more efficient iterative algorithm used in conjunction with the
FDFD method [37] was the Arnoldi method — nonsymmetric version of the Lanczos
method.

1.2.2 Analysis of cylindrically symmetric cavities

Many researchers were particularly interested in the analysis of cylindrically symmetric
cavities. All formulations used in FEM [24, 38, 114] and FDFD [40, 64, 82, 94, 113] ap-
proaches took into account rotational symmetry of the structure. Assuming e−jmφ field
dependence (where m is the azimuthal mode index) 3D problems were reduced into the
2D case (in the r-z plane). In [24,114], full vector �H formulations were used in the FEM,

1Projection used in this context is related to the projection of a finite dimensional space onto another
one of smaller dimension. This kind of projection is described in Sec. A.1.4 in Appendix A.
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resulting in generalized eigenproblems with symmetric matrices. Analogous formulation
used in the FDFD [94] gave standard eigenproblem with nonsymmetric matrix. A full vec-
tor formulation [82] was also used for the analysis of the TE and TM modes (of azimuthal
index m = 0), resulting in generalized eigenproblem with symmetric matrices. These
particular modes can also be analyzed using the formulations for azimuthal Hφ or Eφ

component only and some authors [38,40,64,113] involved these more appropriate scalar
formulations. In contrast to full vector formulations [24,94,114], for the analysis of hybrid
modes (with m �= 0), the formulations in terms of the radial r- and axial z-components
were used in [40, 64, 113], resulting in standard eigenproblems with nonsymmetric matri-
ces. Numerical solution of the eigenproblems resulting in the most of the discussed above
approaches [24,38,40,82,113] were performed by means of the subspace iteration method
and the QR method was reported only once [94].

1.2.3 Modern iterative eigenvalue solvers

Current literature shows a great interest in algorithms solving large and sparse matrix
eigenproblems in the more efficient way than the QR/QZ methods. Among them are
various variants of the subspace iteration or the Arnoldi/Lanczos methods. In most cases,
the authors develop their own routines and algorithms, but some of them adapt already
existing codes. In the case of proprietary codes, it is very difficult to compare the efficiency
with other codes. The situation is different when it comes to existing library procedures
such as the ARPACK implementation of the implicitly restarted Arnoldi method. Recent
studies2 [65] have revealed that the efficiency of this algorithm depends on the problem
which is to be solved. In the majority of considered cases the efficiency is higher than
that offered by other numerical methods. However, there are no informations concerning
efficiency of this algorithm with respect to electromagnetic eigenproblems resulting from
particular methods of conversion.

1.2.4 Spectral transformations

Spectral transformations can be used to improve performance of iterative eigensolvers.
They are also required to obtain convergence to the eigenvalues of interest. The simplest
approach employed in many cases is shifting. A disadvantage of such approach is rela-
tively slow convergence (see App. A for discussion). Another technique reported by some
authors [24,30,33,34,44,66–68,102,117] is shift-invert, which is also used for accelerating
convergence of numerical solvers. The main disadvantage is that the shift-invert technique
requires the inversion of the matrix or its decomposition and subsequent solutions of a
linear system. Acceleration methods which does not require matrix conversion are based
on application of polynomial preconditioners such as Chebyshev or digital finite impulse
response (FIR) filters. Incorporation of the Chebyshev preconditioning in the solution
of electromagnetic eigenproblems has been recently reported by some authors using the

2Available via anonymous ftp from ftp://info.mcs.anl.gov/pub/tech reports/reports/P547.ps.Z
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subspace iteration method [37, 40, 101, 102, 113]. To the best our knowledge, FIR filters
have not been used for this purpose yet.

1.2.5 Hybrid methods

Application of the hybrid methods such as coupled mode method is widely described in
the literature [5, 43]. This method allows one to analyze structures filled with complex
materials at the cost not much higher than the cost of computing basis functions. Recently
elaborated methods, based on expansion of fields into a series of eigenfunctions, constitute
a new direction of research. This approach can be viewed as a generalization of the
concept of an electromagnetic basis optimization [51,57,58,81]. Among the eigenfunction
expansion methods one may distinguish a method which uses eigenfunctions evaluated
at the cutoff [95] and a method using the asymptotic waveform evaluation technique
[85], which is based on expanding the fields into the Taylor series. Another kind of
algorithms [86–88], in which fields are expanded into a series of eigenfunctions calculated
for arbitrary frequencies or propagation constants, seems to be particularly attractive.
These algorithms generate matrix eigenproblem of small size in a very simple way. The
time needed to solve such problem can be neglected compared to the time necessary for
calculation of basis functions. In consequence, based on the solutions in a few points,
dispersion characteristics of a waveguide can be evaluated very fast. Application of these
algorithms was so far very limited due to their innovative character.

1.3 Scope and goal of the thesis

The goal of this thesis is to develop the methods, which substantially accelerate numerical
solution of various electromagnetic eigenvalue problems. This is realized by:

• choice of a proper analytical formulation,
• choice of an adequate conversion method resulting in eigenproblem that can be
efficiently solved,

• application of modern iterative algorithms able to solve large sparse matrix eigen-
value problems at low cost (in terms of the memory and time),

• application of various preconditioners (shift-invert, Chebyshev polynomials, FIR
digital filters) for accelerating the convergence of numerical eigensolvers,

• application of hybrid methods to the analysis of structures filled with complex ma-
terials and fast determination of dispersion characteristics of waveguides.

This thesis makes the claim that, the most efficient calculation of the modes in various
classes of electromagnetic problems can be realized by the application of the Krylov
space methods based on iterative computation. This technique makes efficient use of
memory on parallel systems, and can be easily enhanced by the application of spectral
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transformations. Another claim of this thesis is that the hybrid conversion methods can
be very fast and accurate tool for the analysis of anisotropic structures and determination
of dispersion characteristics of inhomogeneously loaded waveguides.
The original contributions of this thesis are the following:

• implementation of the Arnoldi method to the solution of dense matrix eigenvalue
problems resulting from classical conversion methods such as Galerkin method, FEM
and FDFD and performance comparison with other numerical solvers such as QR
and subspace iteration,

• analysis of the performance of Chebyshev preconditioning implemented in the Arnoldi
method applied to the solution of the eigenproblem arising in the FDFD analysis of
microwave resonators,

• application of the finite impulse response (FIR) digital filters as preconditioners in
electromagnetic eigenproblems where the eigenvalues from the middle of the spec-
trum are of interest,

• application of the coupled mode method to the efficient analysis of a waveguide
partially filled with a ferrite,

• application of the novel eigenfunction expansion technique to fast determination of
dispersion characteristics of dielectric and ferrite guides.

1.4 Chapter outline

In order to obtain a framework for the development of effective solution methods of mi-
crowave waveguide and resonator eigenproblems, classification of possible formulations in
terms of the number of the involved field components and potential possibility of gener-
ation of spurious solutions is presented in Chapter 2. Next, various classical and hybrid
methods of conversion of the operator problems into the matrix one are described in Chap-
ter 3. Chapter 4 summarizes the most important methods of the eigenproblem solution,
such as QR, QZ, subspace iteration or Arnoldi/Lanczos methods. Some typical examples
of the analysis, involving various classical (Galerkin method, FEM, FDFD) and hybrid
(coupled mode, eigenfunction expansion) conversion methods and various direct (QR) and
iterative (subspace iteration, Arnoldi method) numerical solvers, showing the efficiency
of the particular methods of analysis are discussed in Chapter 5. The tests include the
application of various preconditioners (shift-invert, Chebyshev polynomials, digital FIR
filters), applied in order to accelerate the convergence of the numerical methods. The
results presenting the most effective numerical methods for the analysis of the microwave
waveguides and resonators are summarized at the conclusions stage in Chapter 6. Due
to lack of a comprehensive comparison of modern eigensolvers in the electromagnetic
literature a short review of the numerical methods is presented in the Appendix A. Ad-
ditionally, an experimental verification of the analysis results of a complex nonreciprocal
ferrite phase shifter structure is described in Appendix B.



Chapter 2

Classification of electromagnetic
eigenvalue problems

2.1 Definitions and assumptions

Electromagnetic problems can be divided into two main classes: open problems and closed
problems. The former category concerns the analysis of electromagnetic waves excited and
propagated in a free space, while the latter involves the problems related to analysis of
electromagnetic waves in enclosed structures, very often bounded by perfect electric con-
ductor (PEC) screens and perfect magnetic conductor (PMC) screens. The predominant
approach to the solution of open problems is via an integral equation. For closed struc-
tures either differential or integral formulations are used. The differential formulation
is more versatile when it comes to inhomogeneous media. Therefore in the analysis of
waveguides and resonators we concentrate on differential formulations.
Depending on presence or absence of electric and/or magnetic sources in an analyzed

region, we can distinguish two types of problems: deterministic and eigenvalue ones. The
former problems rely on computation of electromagnetic fields being a response to some
excitation, while the latter group is related to problems of electromagnetic field determi-
nation in a source-free regions. In spite of the fact that any physical electromagnetic field
has deterministic nature, the synthesis and design of microwave components (e.g. tran-
sitions, filters, couplers, phase shifters, resonators, etc.) can be realized by solving the
eigenvalue problem. We confine our succeeding discussion to this type of problems.
Formulations for waveguide and resonator structures can also be classified according

to the type of functions describing electromagnetic field. Two main classes of the formu-
lations are those based on field components and the ones involving appropriately chosen
scalar and/or vector potential functions. These functions are constructed so that they can
describe all fields in a particular coordinate system. Both classes of formulations men-
tioned above are fully equivalent and only the former one, i.e. involving fields rather than
potentials, will be further discussed. It should be noted, however, that in some particular
cases (pointed out in the text), potential formulations can be advantageous and lead to
simpler problems.

14
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A majority of resonator and waveguide structures used in practice conform well to the
Cartesian or cylindrical coordinates. Accordingly, we limit the details of the discussion
to these two coordinate systems. Moreover, we assume that all considered structures
are bounded by PEC or PMC walls. The structures where the media parameters are
not functions of position are called homogeneous. There are many practical structures
that are homogeneous only in one particular direction (see Fig. 2.1). The directions
perpendicular to this direction are called transverse. We will consider only the waveguide
structures that are homogeneous in the propagation direction (called also longitudinal).
It is moreover assumed that the wave in the guide propagates always along the z-axis. In
the steady state, variation of the fields in any homogeneous direction can be described
using propagation constant β or azimuthal mode index m. This fact is used to reduce the
order of many formulations, as shown later on in this chapter.

(a) (b)

Figure 2.1: Examples of homogeneous structures: (a) in the z-direction in the Cartesian
coordinate system (a waveguide) and (b) in the φ-direction in the cylindrical coordinate
system (a rotationally symmetric resonator).

The formulations will be called symmetric or self adjoint when the operators that are
involved in them are symmetric with respect to the standard inner product1 defined in a
Hilbert space. For any operator A, the symmetry implies that(

Au, v
)

=
(

u, Av
)

(2.1)

Some vectorial resonator and waveguide formulations can generate numerical solutions
which do not fulfill all Maxwell’s equations (in particular the divergence ones). These

1We define the standard inner product as
(
u, v
)

=
∫
Ω uv

∗ dΩ
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solutions are called spurious or nonphysical, while the formulations which are able to
generate them we will call potentially spurious. The formulations which are not potentially
spurious will be called spurious-free.
We are interested in the simplest and the most effective approaches so we do not

take into account formulations leading to nonstandard eigenproblems. Only the simplest
resonator and waveguide formulations, i.e. standard and generalized, will be presented
below preceded by an introduction covering basic electromagnetic concepts.

2.2 Electromagnetic background

Two assumptions are essential for eigenvalue problems. The first one is the absence of
electromagnetic sources, while the second one is the steady state of electromagnetic fields.
This latter feature implies the time harmonic ejωt dependence of the fields, where ω is
angular frequency. The following Maxwell’s equations describe the stationary fields in a
source-free homogeneous region

∇× �E = −jω �B (2.2)

∇× �H = jω �D (2.3)

∇ · �D = 0 (2.4)

∇ · �B = 0 (2.5)

where �E and �H denote respectively the electric and magnetic field intensities, while �D

and �B are electric and magnetic flux densities. Equations (2.2) and (2.3) are usually
called curl equations while (2.4) and (2.5) are divergence equations.
The relations between flux densities and field intensities are referred to as material

equations (2.6) and (2.7)

�D = ε · �E (2.6)
�B = µ · �H (2.7)

where ε and µ denote tensors of electric permittivity and magnetic permeability. In the
most general form, the tensors are expressed by

ε =


 ε11 ε12 ε13

ε21 ε22 ε23
ε31 ε32 ε33


 , µ =


 µ11 µ12 µ13

µ21 µ22 µ23
µ31 µ32 µ33


 (2.8)

where subscripts {1, 2, 3} correspond to the coordinates in a particular coordinate sys-
tem (e.g. {x, y, z} in the Cartesian one or {r, φ, z} in the cylindrical one). The tensors
describing lossless materials are Hermitian [79], i.e.

ε = εH , µ = µH (2.9)
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On the boundary between different media, the following equations for continuity of
the fields can be derived [6] from equations (2.2–2.5)

n̂ × ( �E2 − �E1) = 0 (2.10)

n̂ × ( �H2 − �H1) = 0 (2.11)

n̂ · ( �D2 − �D1) = 0 (2.12)

n̂ · ( �B2 − �B1) = 0 (2.13)

where n̂ is a unit vector normal to the boundary. Equations (2.10) and (2.11) express
continuity of the tangential components of �E and �H , while (2.12) and (2.13) express
continuity of the normal components of �D and �B.
In the vicinity of PEC screen, the boundary conditions take the form [79]

∇ · (ε · �E)

n̂ × �E or n̂ × ε −1 · ∇ × �H

n̂ · (µ · �H)


 = 0 (2.14)

while the conditions for PMC boundary are

∇ · (µ · �H)

n̂ × �H or n̂ × µ −1 · ∇ × �E

n̂ · (ε · �E)


 = 0 (2.15)

2.3 Resonator problems

The problem of resonator analysis consists in calculating a set of frequencies ω and corre-
sponding electromagnetic fields, satisfying Maxwell’s equations and boundary conditions
for a given resonator structure. Depending on the resonator shape and media proper-
ties various three-dimensional (3D) formulations derived from Maxwell’s equations are
possible. In the case of homogeneous structure, a 3D problem can be transformed into
an equivalent two-dimensional (2D) or even one-dimensional (scalar) problem. All these
classes of formulations are discussed in the following sections.

2.3.1 Full vector formulations

The most straightforward full vector formulation can be derived directly from (2.2) and
(2.3) by respectively multiplying them with j and −j. It results in the following standard
eigenproblem with ω being the eigenvalue[

0 −j∇×
j∇× 0

][
ε −1 0
0 µ −1

] [
�D
�B

]
= ω

[
�D
�B

]
(2.16)

Using the methodology described in [79], it can easily be shown that this formulation is
not symmetric, because the operator on the left side is not symmetric (with respect to
the standard inner product defined by (2.1)).
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In order to obtain a symmetric formulation, two solutions are possible. The first one
is to express (2.16) in terms of �E and �H fields, what results in the following generalized
eigenproblem [

0 −j∇×
j∇× 0

] [
�E
�H

]
= ω

[
ε 0
0 µ

] [
�E
�H

]
(2.17)

It can easily be shown, that this problem is symmetric for lossless structures bounded by
any combination of PEC and PMC screens, because both operators, on the left and on
the right side, are symmetric.
The second solution is to multiply both sides of (2.16) with matrix M, defined as

M =

[
0 −ẑ×

ẑ× 0

]
(2.18)

This leads to another generalized eigenproblem in the form of[ −jẑ ×∇× 0
0 −jẑ ×∇×

][
ε −1 0
0 µ −1

] [
�D
�B

]
= ω

[
0 −ẑ×

ẑ× 0

] [
�D
�B

]
(2.19)

It was shown in [79], that under the same conditions as above eigenproblem (2.19) is
symmetric.
The main disadvantage of formulations (2.16), (2.17), and (2.19) is that they result in

the problems with complex operators involving six field components and therefore their
numerical solution may be very costly. In order to alleviate these drawbacks we can
eliminate �H or �E from Maxwell’s equations getting the formulations for �D or �B fluxes
only

∇× µ −1 · ∇ × ε −1 · �D = ω2 �D (2.20)

∇× ε −1 · ∇ × µ −1 · �B = ω2 �B (2.21)

Formulations (2.20) and (2.21) are called vector wave equations or curl-curl equations and
involve only three field components. They can result in real eigenproblems (for real ε and
µ ). However, they are not symmetric if written in this form.

Symmetry can be obtained after rewriting (2.20) and (2.21) in terms of �E and �H fields,
as generalized eigenproblems

∇× µ −1 · ∇ × �E = ω2ε · �E (2.22)

∇× ε −1 · ∇ × �H = ω2µ · �H (2.23)

These problems become symmetric for lossless structures [48].
All full vector formulations presented in this section are very general and applicable

to either anisotropic or inhomogeneous structures. However, they are potentially spuri-
ous, because their derivation does not incorporate the divergence equations. In order to
alleviate this problem the penalty method [1, 13, 48, 55, 56, 84, 90, 91, 101–103, 125] can be
applied.
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2.3.2 Homogeneous resonators

If the structure is isotropic and homogeneous then vector wave equations, derived in the
previous section, can be decoupled, leading to scalar wave equation of the Helmholtz
type [6]

∇2Φ = −k2Φ (2.24)

where k2 = ω2εµ and Φ is some scalar function. In the Cartesian coordinates, Φ can be
associated with any component of �E, �H, �D or �B, while in the cylindrical coordinates,
such a formulation is possible only for z-components of these fields. It should be noted,
that in the spherical coordinate system, scalar formulation (2.24) is possible only for
appropriately chosen scalar potential function Φ (see [6] for the detailed discussion).
Formulations of type (2.24) are very desirable because they can be solved at relatively

low cost (only one component is involved and the eigenproblem is real and symmetric
for lossless media). In practice, the structures homogeneous only in the particular direc-
tion are much more common. In this case, the corresponding eigenproblems can also be
substantially simplified. Consider a few the most practical cases.

2.3.2.1 z-direction homogeneity

For the resonator homogeneous in the z-direction, variation of electromagnetic fields along
the z-axis is given by the e−jβz factor. Propagation constant β along the z-axis is expressed
by

β =
pπ

c
(2.25)

where c is the length of the resonator along the z-axis and p = 0, 1, 2, . . . is the mode
index in the z-direction. Therefore, for any particular value of β the analysis of the 3D
resonator can be simplified to the form of a 2D problem, provided that any waveguide
ω-formulation described in Sec. 2.4 can be used.

2.3.2.2 x- or y-direction homogeneity (Cartesian coordinates)

In the case of homogeneity in the x- or y-direction in the Cartesian coordinate system, the
formulations for the z-direction homogeneity can be used after a simple transformation
of coordinates.
An alternative approach is to derive analogous formulations to the ones described in

Sec. 2.4 for the x or y being longitudinal direction.

2.3.2.3 Cylindrical symmetry

In the structure with cylindrical symmetry, i.e. homogeneous in the azimuthal φ-direction,
the field dependence is described by the term e−jmφ, where m ∈ {0,±1,±2, . . .} is the
azimuthal mode index. Any field �A can be decomposed into the transverse �At and the
azimuthal Aφ parts as follows

�A = �At + φ̂Aφ , �At = r̂Ar + ẑAz (2.26)
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The gradient operator ∇(·) can also be split so that

∇ = ∇t − j
m

r
φ̂ , ∇t = r̂

∂

∂r
+ ẑ

∂

∂z
(2.27)

Similarly, the divergence operator ∇ · (·) splits up in the following way

∇ · �A = ∇t · �At − j
m

r
Aφ , ∇t · �At =

1

r

∂

∂r
(rAr) +

∂

∂z
Az (2.28)

The rotation operator ∇× (·) can also be decomposed as follows
∇× �A = ∇t × �A − j

m

r
φ̂ × �A , ∇t × �A = ∇× �A

∣∣∣
∂

∂φ
�A=0

= ∇× �A
∣∣∣
m=0

(2.29)

Writing it in the matrix format we get

∇× �A =

[ −jm
r

φ̂× ∇t × φ̂

φ̂∇t× 0

] [
�At

Aφ

]

=

[ −jm
r

φ̂ × (·) −φ̂ × 1
r
∇t(r(·))

−r∇t · 1r φ̂ × (·) 0

] [
�At

Aφ

]
(2.30)

Assuming that material tensors ε and µ have the form

ε =

[
ε tt 0
0 εφφ

]
, µ =

[
µ tt 0

0 µφφ

]
(2.31)

one can formulate the eigenproblem in terms of the transverse fields only. The derivation
is based on the decompositions (2.26), (2.30) and (2.31) applied to eigenproblem (2.20),
which results in[ −jm

r
φ̂×∇t × φ̂

φ̂∇t× 0

][
µ −1
tt 0

0 µ−1
φφ

] [ −jm
r

φ̂×∇t × φ̂

φ̂∇t× 0

] [
ε −1
tt 0

0 ε−1φφ

] [
�Dt

Dφ

]

= ω2
[

�Dt

Dφ

]
(2.32)

The equation describing transverse part is then

−m2

r2
φ̂ × µ −1

tt · φ̂ × ε −1
tt · �Dt + ∇t × µ−1

φφ∇t × ε −1
tt · �Dt

−j
m

r
φ̂ × µ −1

tt · ∇t × φ̂ε−1φφDφ = ω2 �Dt (2.33)

Using (2.28), divergence equation (2.4) can take the form

Dφ = −j
r

m
∇t · �Dt (2.34)

Substituting (2.34) into (2.33) we eliminate Dφ and get the final formulation for transverse
electric flux density[

−m2

r2
φ̂ × µ −1

tt · φ̂ × ε −1
tt · (·) + ∇t × µ−1

φφ∇t × ε −1
tt · (·)

−1

r
φ̂ × µ −1

tt · ∇t × φ̂ε−1φφr∇t · (·)
]

�Dt = ω2 �Dt (2.35)
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Starting from eigenproblem (2.21) and using divergence equation (2.5) similar eigen-
problem for transverse magnetic flux density �Bt can be derived[

−m2

r2
φ̂ × ε −1

tt · φ̂ × µ −1
tt · (·) + ∇t × ε−1φφ∇t × µ −1

tt · (·)

−1

r
φ̂ × ε −1

tt · ∇t × φ̂µ−1
φφr∇t · (·)

]
�Bt = ω2 �Bt (2.36)

For azimuthally invariant modes (m = 0) eigenproblems (2.35) and (2.36) can be
substantially simplified. However, in this special case, alternative scalar formulations are
also possible. They can be derived starting from Maxwell’s equations (2.2) and (2.3),
which can be split using (2.30) into the following equations

∇t × φ̂ε−1φφDφ = −jω �Bt (2.37)

φ̂∇t × ε −1
tt · �Dt = −jωBφ (2.38)

and

∇t × φ̂µ−1
φφBφ = jω �Dt (2.39)

φ̂∇t × µ −1
tt · �Bt = jωDφ (2.40)

Isolating �Bt from (2.37) and substituting it into (2.40) we get the following standard scalar
eigenproblem for Dφ (TE modes)

φ̂∇t × µ −1
tt · ∇t × φ̂ε−1φφDφ = ω2Dφ (2.41)

Analogously, separating �Dt from (2.39) and replacing it in (2.38) we get a standard scalar
eigenproblem for Bφ (TM modes)

φ̂∇t × ε −1
tt · ∇t × φ̂µ−1

φφBφ = ω2Bφ (2.42)

It is worth noting, that formulations (2.35) and (2.36) are spurious-free because the
divergence equation was used in their derivation, while formulations (2.41) and (2.42) are
spurious-free because they are scalar.

2.4 Waveguide problems

Analysis of waveguides consists in computing a set of pairs {ω, β} and corresponding
electromagnetic fields, which satisfy Maxwell’s equations and boundary conditions for
an analyzed structure. Two classes of formulations can be distinguished, β-formulations
and ω-formulations [79]. In the former case, the eigenvalue is a function of propagation
constant β and angular frequency ω is a parameter. In the latter case, a function of ω is
the eigenvalue, while β is the parameter.
As has been assumed, the waveguide is uniform in the longitudinal direction z and

thus the directions perpendicular to z are transverse directions. The wave propagating
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in the +z direction is governed by the factor e−jβz. Any field �A can now be decomposed
into the transverse �At and the longitudinal Az parts, so that

�A = �At + ẑAz (2.43)

where
�At = x̂Ax + ŷAy or �At = r̂Ar + φ̂Aφ (2.44)

in the Cartesian or cylindrical coordinates respectively. The nabla operator ∇ can be
split so that

∇ = ∇t − jβẑ (2.45)

where
∇t = x̂

∂

∂x
+ ŷ

∂

∂y
or ∇t = r̂

∂

∂r
+ φ̂

1

r

∂

∂φ
(2.46)

in the case of Cartesian or cylindrical coordinates respectively. The divergence operator
∇ · (·) is then

∇ · �A = ∇t · �At − jβAz (2.47)

where
∇t · �At =

∂

∂x
Ax +

∂

∂y
Ay or ∇t · �At =

1

r

∂

∂r
(rAr) +

1

r

∂

∂φ
Aφ (2.48)

in the Cartesian or cylindrical coordinate system. Similarly, the rotation operator ∇× (·)
can be written as

∇× �A = ∇t × �A − jβẑ × �A , ∇t × �A = ∇× �A
∣∣∣

∂
∂z

�A=0
= ∇× �A

∣∣∣
β=0

(2.49)

and writing it in the matrix format we get

∇× �A =

[ −jβẑ× ∇t × ẑ
ẑ∇t× 0

] [
�At

Az

]

=

[ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
�At

Az

]
(2.50)

Material tensors ε and µ are decomposed as follows

ε =

[
ε tt ε tz
ε zt εzz

]
, µ =

[
µ tt µ tz

µ zt µzz

]
(2.51)

To simplify further notations, the following symbols are additionally defined

κ
∆
= ε −1 =

[
κ tt κ tz

κ zt κzz

]
, ν

∆
= µ −1 =

[
ν tt ν tz

ν zt νzz

]
(2.52)
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2.4.1 Full vector formulations

Applying decomposition (2.50) to Maxwell’s curl equations one obtains

∇t × �E − jβẑ × �E = −jωµ · �H (2.53)

∇t × �H − jβẑ × �H = jωε · �E (2.54)

Multiplying (2.53) and (2.54) by −j and j and rearranging the terms, the following
generalized β-eigenvalue problem can be derived[

ωε j∇t×
−j∇t× ωµ

][
�E
�H

]
= β

[
0 −ẑ×

ẑ× 0

] [
�E
�H

]
(2.55)

It was shown in [79], that this problem is symmetric for lossless structures. It can be trans-
formed into a nonsymmetric standard eigenproblem if both sides of (2.55) are multiplied
by the operator M defined with (2.18).
A corresponding ω-formulations can be written after the operator decomposition (2.50)

applied to (2.16), (2.17), and (2.19). We obtain then

[
0 −j∇t × (·) − βẑ × (·)

j∇t × (·) + βẑ × (·) 0

][
ε −1 0
0 µ −1

] [
�D
�B

]
= ω

[
�D
�B

]
(2.56)

[
0 −j∇t × (·) − βẑ × (·)

j∇t × (·) + βẑ × (·) 0

] [
�E
�H

]
= ω

[
ε 0
0 µ

] [
�E
�H

]
(2.57)

and [ −jẑ ×∇t × (·) − βẑ × ẑ × (·) 0
0 −jẑ ×∇t × (·) − βẑ × ẑ × (·)

]
·[

ε −1 0
0 µ −1

] [
�D
�B

]
= ω

[
0 −ẑ×

ẑ× 0

] [
�D
�B

]
(2.58)

For lossless structures and real β formulations (2.57) and (2.58) are both symmetric [79].
All formulations given above involve six field components and result in complex eigen-

problems. The reduced size formulations, involving only one full vector field can be derived
using (2.20) and (2.21). Splitting the fields and operators into the transverse and longitu-
dinal parts (with equations (2.43), (2.50) and (2.52)) we get the following nonsymmetric
standard eigenvalue problems with ω2 being an eigenvalue. For �D field we have[ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
ν tt ν tz

ν zt νzz

] [ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
κ tt κ tz

κ zt κzz

] [
�Dt

Dz

]

= ω2
[

�Dt

Dz

]
(2.59)
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and for �B field[ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
κ tt κ tz

κ zt κzz

] [ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
ν tt ν tz

ν zt νzz

] [
�Bt

Bz

]

= ω2
[

�Bt

Bz

]
(2.60)

Analogous symmetric formulations (for lossless media and real β) can be derived from
(2.22) and (2.23).
The main disadvantage of all full vector waveguide formulations discussed in this

section is that they result in eigenproblems with complex operators involving three or six
fields components, provided that their numerical solution can be expensive. Moreover,
analogously to the full vector resonator formulations discussed in Sec. 2.3.1, the waveguide
ones are also potentially spurious.

2.4.2 Transverse component formulations

Applying decomposition (2.43) to equations (2.53) and (2.54) and extracting the trans-
verse and longitudinal parts one can eliminate z-component of the fields. In consequence,
the following β-formulation for transverse fields �Et and �Ht is obtained in the form of a
complex generalized eigenproblem[

ATee ATeh

AThe AThh

] [
�Et

�Ht

]
= β

[
0 −ẑ×

ẑ× 0

] [
�Et

�Ht

]
(2.61)

where

ATee = ωε tt · (·) − 1

ω
∇t × µ−1

zz ∇t × (·) − ωε tz · ε ztε
−1
zz (·)

ATeh = −jε tz · ε−1zz ∇t × (·) − j∇t × µ−1
zz ẑ · µ zt · (·)

AThe = jµ tz · µ−1
zz ∇t × (·) + j∇t × ε−1zz ẑ · ε zt · (·)

AThh = ωµ tt · (·) − 1

ω
∇t × ε−1zz ∇t × (·) − ωµ tz · µ ztµ

−1
zz (·) (2.62)

The details of the derivation can be found in [79]. Eigenproblem (2.61) can easily be
transformed to the standard one when multiplied by the operator M.
A corresponding ω-formulation, for �Et and �Ht fields, can also be derived [79]. However,

it results in a quadratic generalized eigenvalue problem.
Further simplifications of (2.61) are possible for strictly bidirectional guides [79]. For

this type of structures ε tz = ε zt = 0 and µ tz = µ zt = 0 and therefore

ε =

[
ε tt 0
0 εzz

]
, µ =

[
µ tt 0

0 µzz

]
(2.63)

Moreover

κ =

[
κ tt 0
0 κzz

]
, ν =

[
ν tt 0
0 νzz

]
(2.64)
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where

κ tt = ε −1
tt , κzz = ε−1zz

ν tt = µ −1
tt , νzz = µ−1

zz (2.65)

In consequence, formulation (2.61) for transverse fields �Et and �Ht obtains a simpler form[
ATee 0

0 AThh

] [
�Et

�Ht

]
= β

[
0 −ẑ×

ẑ× 0

] [
�Et

�Ht

]
(2.66)

where

ATee = ωε tt · (·) − 1

ω
∇t × ν−1

zz ∇t × (·)

AThh = ωµ tt · (·) − 1

ω
∇t × κ−1

zz ∇t × (·) (2.67)

The symmetry of (2.66) was proven in [79] for lossless case.
The corresponding ω-formulation for transverse components is derived in [79][

BTdd 0
0 BTbb

] [
�Dt

�Bt

]
= ω

[
0 −ẑ×

ẑ× 0

] [
�Dt

�Bt

]
(2.68)

where

BTdd = βκ tt · (·) − 1

β
∇tκzz∇t · (·)

BTbb = βν tt · (·) − 1

β
∇tνzz∇t · (·) (2.69)

It can be shown [79] that (2.68) is symmetric for lossless media and real β.
It should be noted, that eigenproblems (2.66) and (2.68) become real for real tensors ε

and µ and they can be transformed to nonsymmetric standard problems if premultiplied
by M.
In the case of strictly bidirectional guides, electric �Et and magnetic �Ht transverse fields

can be decoupled. One of the possibilities is to eliminate �Et or �Ht field from one of the
equations in (2.66) using another one. This results in the following equivalent differential
equations

ẑ × AThhẑ ×ATee
�Et = −β2 �Et (2.70)

ẑ × ATeeẑ ×AThh
�Ht = −β2 �Ht (2.71)

An analogous ω-formulation is based on (2.68)

ẑ × BTbbẑ × BTdd
�Dt = −ω2 �Dt (2.72)

ẑ ×BTddẑ × BTbb
�Bt = −ω2 �Bt (2.73)

One of the main disadvantages of formulations (2.70–2.73) is that they involve differential
operators of fourth order, which can cause difficulties in some methods of conversion into
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the numerical problem (due to requirement for continuity of the differentiated functions)
[93]. Another disadvantage is that these formulations are possibly potentially spurious
because their derivation has not involved the divergence equations.
Another way of eliminating transverse fields is to start from equations (2.59) or (2.60)

for bidirectional guide. The equation for �D field has the form[ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
µ −1
tt 0

0 µ−1
zz

] [ −jβẑ× −ẑ ×∇t

−∇t · ẑ× 0

] [
ε −1
tt 0
0 ε−1zz

] [
�Dt

Dz

]

= ω2
[

�Dt

Dz

]
(2.74)

It is easy to find out that the transverse part of the above equation involves the term
depending on the longitudinal field component. This term can be eliminated by applying
divergence equation (2.4) in the decomposed form

Dz =
1

jβ
∇t · �Dt (2.75)

derived using (2.47). This approach leads to the following generalized ω-formulations for
�Dt field (see [79] or [86] for the details of the derivation)[

β2µ −1
tt · ẑ × ε −1

tt · (·) + ∇tµ
−1
zz ẑ∇t × ε −1

tt · (·) + µ −1
tt · ∇t × ẑε−1zz ∇t · (·)

]
�Dt

= ω2ẑ × �Dt (2.76)

An analogous approach can be used for �Bt field, leading to[
β2ε −1

tt · ẑ × µ −1
tt · (·) + ∇tε

−1
zz ẑ∇t × µ −1

tt · (·) + ε −1
tt · ∇t × ẑµ−1

zz ∇t · (·)
]

�Bt

= ω2ẑ × �Bt (2.77)

Premultiplying the above equations respectively by −µ tt ·(·) and −ε tt ·(·) and rearranging
the terms we can obtain equivalent β-formulations for �Et and �Ht fields[

ω2µ tt · ẑ × ε tt · (·) − µ tt · ∇tµ
−1
zz ẑ∇t × (·) −∇t × ẑε−1zz ∇t · ε tt · (·)

]
�Et

= β2ẑ × �Et (2.78)[
ω2ε tt · ẑ × µ tt · (·) − ε tt · ∇tε

−1
zz ẑ∇t × (·) −∇t × ẑµ−1

zz ∇t · µ tt · (·)
]

�Ht

= β2ẑ × �Ht (2.79)

The last four eigenproblems are not symmetric, but it can be shown [79, 86], that trans-
position of eigenproblem (2.76) results in eigenproblem of form (2.77) and transposition
of (2.78) gives (2.79).
Generalized eigenproblems (2.76–2.79) can be also transformed into the standard ones

by multiplying them with −ẑ × (·).
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2.4.3 Longitudinal component formulations

For isotropic structures a formulation in terms of Ez and Hz fields is also possible. The
derivation can be found in [118]. It results in a pair of equations in the form of nonstandard
eigenvalue problems

∇2
t Ez + k2t Ez + ε−1∇tε · ∇tEz − ω2

k2t
∇t(εµ) ·

(
∇tEz − β

ωε
ẑ ×∇tHz

)
= 0

∇2
t Hz + k2tHz + µ−1∇tµ · ∇tHz − ω2

k2t
∇t(εµ) ·

(
∇tHz +

β

ωµ
ẑ ×∇tEz

)
= 0 (2.80)

where k2t = ω2εµ − β2.
Another formulation can be found in [48], resulting in the following pair of equations,

equivalent to (2.80)

βω∇t · 1

k2t
ẑ ×∇tHz − ω2∇t · ε

k2t
∇tEz − ω2εEz = 0

−βω∇t · 1

k2t
ẑ ×∇tEz − ω2∇t · µ

k2t
∇tHz − ω2µHz = 0 (2.81)

This set of equations can be rearranged in order to get generalized ω-eigenproblem[ −∇t · ε
µε−δ2∇t δ∇t · 1

µε−δ2 ẑ ×∇t

−δ∇t · 1
µε−δ2 ẑ ×∇t −∇t · µ

µε−δ2∇t

] [
Ez

Hz

]
= ω2

[
ε 0
0 µ

] [
Ez

Hz

]
(2.82)

where δ = β/ω. This problem is symmetric in case of lossless media and real β (and
ω) [48].
The main drawback of formulation (2.82) is that it is based on wave equations only and

its derivation does not involve the divergence equations. In consequence, this formulation
is potentially spurious. Moreover, it is not defined for δ =

√
µε, thus this case should be

avoided.
It should be noted, that in the cutoff δ = 0 and formulation (2.82) splits off into two

scalar equations (2.87) and (2.88).

2.4.4 Scalar formulations

At critical points (β = 0 or ω = 0), Maxwell’s equations (2.2–2.5) can be simplified. In
the case of bidirectional guides, scalar eigenproblems can be formulated in terms of TE-
and TM-type modes (with respect to the z-axis).
At cutoff (β = 0), Maxwell’s equations (2.2) and (2.3) can be split into two pairs of

equations

∇t × ẑEz = −jω �Bt (2.83)

ẑ∇t × ε −1
tt · �Dt = −jωµzzHz (2.84)

and

∇t × ẑHz = jω �Dt (2.85)

ẑ∇t × µ −1
tt · �Bt = jωεzzEz (2.86)
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Isolating �Dt from (2.85) and substituting it into (2.84) we get the following scalar eigen-
problem for Hz (TE modes)

ẑ∇t × ε −1
tt · ∇t × ẑHz = ω2µzzHz (2.87)

Analogously, separating �Bt from (2.83) and replacing it in (2.86) we get a scalar eigen-
problem for Ez (TM modes)

ẑ∇t × µ −1
tt · ∇t × ẑEz = ω2εzzEz (2.88)

In the case of static solution (ω = 0), the transverse parts of Maxwell equations (2.2)
and (2.3) fulfill the following equations

−jβẑ × �Et − ẑ ×∇tEz = 0 (2.89)

−jβẑ × �Ht − ẑ ×∇tHz = 0 (2.90)

Divergence equations (2.4) and (2.5) can be written in the following form

∇t · ε tt · �Et − jβεzzEz = 0 (2.91)

∇t · µ tt · �Ht − jβµzzHz = 0 (2.92)

Computing �Et from (2.89) and substituting the result into (2.91) one can get the following
scalar eigenproblem for Ez (TE modes)

∇t · ε tt · ∇tEz = β2εzzEz (2.93)

while taking �Ht from (2.90) and replacing it in (2.92) we obtain a scalar eigenproblem for
Hz (TM modes)

∇t · µ tt · ∇tHz = β2µzzHz (2.94)

Eigenproblems (2.87–2.88) and (2.93–2.94) are symmetric for lossless media.

2.4.5 Homogeneous waveguides

Consider a homogeneous strictly bidirectional waveguide filled with the material of special
type of anisotropy (e.g. gyrotropic medium magnetized in z-direction), defined by the
following tensors

ε =


 ε jεa 0

−jεa ε 0
0 0 εzz


 , µ =


 µ jµa 0

−jµa µ 0
0 0 µzz


 (2.95)

Starting from wave equations (2.20) and (2.21) in the decomposed form and using the
divergence equations, the formulation in terms of longitudinal Ez and Hz components
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can be derived [41]. It results in a pair of equations in the form of nonstandard complex
eigenvalue problems

∇2
t Ez − β2

εzz
ε

Ez + ω2εzzµeffEz − jωβµzz

(
εa
ε

+
µa

µ

)
Hz = 0

∇2
t Hz − β2

µzz

µ
Hz + ω2µzzεeffHz + jωβεzz

(
εa
ε

+
µa

µ

)
Ez = 0 (2.96)

where

εeff = ε − ε2a
ε

, µeff = µ − µ2a
µ

(2.97)

Dividing equations (2.96) by ω2 and rearranging the terms we get the following gen-
eralized complex ω-eigenproblem for longitudinal field components
 µeff(·) − δ2 1

ε
(·) −jδ

(
εa
ε

+ µa

µ

)
(·)

jδ
(
εa
ε

+ µa

µ

)
(·) εeff(·) − δ2 1

µ
(·)


[ Dz

Bz

]
= − 1

ω2

[
κzz 0
0 νzz

]
∇2
t

[
Dz

Bz

]
(2.98)

where δ = β/ω. A similar generalized complex β-eigenproblem for longitudinal field
components can be obtained by dividing equations (2.96) with β2
 1

δ2
µeff(·) − 1

ε
(·) −j 1

δ

(
εa
ε

+ µa

µ

)
(·)

j 1
δ

(
εa
ε

+ µa

µ

)
(·) 1

δ2
εeff(·) − 1

µ
(·)


[ Dz

Bz

]
= − 1

β2

[
κzz 0
0 νzz

]
∇2
t

[
Dz

Bz

]
(2.99)

Due to incorporation of the divergence equations in the derivation process of formula-
tions (2.96), (2.98) and (2.99) they do not generate spurious solutions. Moreover, it can
be easily shown that for lossless media an real β (and ω) (2.98) and (2.99) are symmetric.
It is worth noting that in the case of isotropic materials εzz = ε, µzz = µ and εa =

µa = 0. Therefore equations (2.96) split into the two independent scalar equations of type
(2.24).

2.4.5.1 x- or y-direction homogeneity (Cartesian coordinates)

Consider a waveguide homogeneous in the y- and z-directions or x- and z-directions and
call them transverse directions. If lossless bidirectional media with tensors ε and µ of
form analogous to (2.63) are taken into account, then a simplified formulation for the
components in the distinguished direction can be derived.
For the waveguide homogeneous in y- and z-directions the tensors should have the

form

ε =


 εxx 0 0

0 ε jεa
0 −jεa ε


 , µ =


 µxx 0 0

0 µ jµa

0 −jµa µ


 (2.100)

and for the waveguide homogeneous in the x- and z-directions the following

ε =


 ε 0 −jεa

0 εyy 0
jεa 0 ε


 , µ =


 µ 0 −jµa

0 µyy 0
jµa 0 µ


 (2.101)
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The examples of the materials possessing such properties are gyrotropic media respectively
magnetized in the x- and y-direction.
First, consider the case of the structure homogeneous in y- and z-directions. Decom-

pose the fields and the nabla operator ∇ in the following way
�A = x̂Ax + �At , �At = ŷAy + ẑAz (2.102)

∇ = x̂
∂

∂x
+ ∇t , ∇t = ŷ

∂

∂y
+ ẑ

∂

∂z
(2.103)

Starting from the decomposed form of wave equations (2.20) and (2.21) and using the
divergence equations the following eigenproblem for Dx and Bx can be derived
 ∂

∂x
ε−1 ∂

∂x
(·) + ω2µeff(·) ω

(
µa

µ
∂
∂x

+ ∂
∂x

εa
ε

)
(·)

−ω
(
εa
ε

∂
∂x

+ ∂
∂x

µa

µ

)
(·) ∂

∂x
µ−1 ∂

∂x
(·) + ω2εeff(·)


[ Dx

Bx

]
= k2t

[
κxx 0
0 νxx

] [
Dx

Bx

]

(2.104)
where k2t = −∇2

t and for a rectangular waveguide

k2t = k2y + β2 (2.105)

The details of the derivation along with the proof of symmetry (in the lossless case) can
be found in [79].
For the structure homogeneous in x- and z-directions and the material tensors defined

by (2.100) an analogous approach can be found for Dy and By fields
 ∂

∂y
ε−1 ∂

∂y
(·) + ω2µeff(·) ω

(
µa

µ
∂
∂y

+ ∂
∂y

εa
ε

)
(·)

−ω
(
εa
ε

∂
∂y

+ ∂
∂y

µa

µ

)
(·) ∂

∂y
µ−1 ∂

∂y
(·) + ω2εeff(·)


[ Dy

By

]
= k2t

[
κyy 0
0 νyy

] [
Dy

By

]

(2.106)
where k2t = −∇2

t and for a rectangular waveguide

k2t = k2x + β2 (2.107)

Symmetry of this formulation can be deduced by analogy to (2.104).
It should be noted that formulations (2.96), (2.98) and (2.99) can easily be obtained

from (2.104) or (2.106) if we assume that the structure is homogeneous in all directions.
Formulations (2.104) and (2.106) do not generate spurious solutions because their

derivation involves the divergence equations.

2.5 Choice of formulation

Numerical analysis of resonator and waveguide structures relies on a conversion (projec-
tion) method applied to an analytical formulation and numerical solution of the resulting
matrix eigenproblem. Efficiency of any numerical eigensolver substantially depends on
the properties of the matrix operators. Since these properties are implied by the type
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of the conversion method used and the analytical formulation involved, a choice of the
formulation can indirectly influence the efficiency of the overall analysis.
The most important factors which depend on analytical formulation and influence the

efficiency are: the number of field components involved, the operator symmetry and the
ability of the formulation to generate spurious solutions. The first factor is crucial for the
numerical efficiency due to the fact that for almost all conversion methods discussed in
the next chapter, the size of the resulting matrix is directly proportional to the number
of components in the formulation. The symmetry of the formulation is also important,
because many conversion (projection) methods can preserve this feature and result in
a symmetric matrix eigenproblem, which in many cases can be solved faster than the
nonsymmetric one. The last factor influences efficiency because coping with spurious
solutions in formulations that are potentially spurious can require additional effort. Simple
identification of spurious solutions generated by the corresponding matrix eigenproblem
requires additional computations, while the elimination of the solutions using the method
based on the modifications of the analytical formulation (such as penalty method [1,
13, 48, 55, 56, 84, 90, 91, 101–103, 125]) can strongly deteriorate the efficiency of iterative
eigensolvers due to worsening of the convergence rate. Moreover, the modification of
the original operator (as in the penalty method) can also influence the quality of the
solution by increasing its numerical error. In contrast to both methods discussed above,
the elimination of spurious solutions via selection of proper basis and testing functions in
the projection may not require an additional computational effort. This is the case when
entire subdomain expansion of the functions (see Chapter 3) is used in the projection
(e.g. edge elements used in FEM [7, 48, 117, 121]). However, when the entire domain
expansion method (see Chapter 3) is used, the determination of the proper functions
defined over the entire domain is, in general, difficult and expensive. It should be noted
that, incorporation of a spurious-free formulation completely removes the problem of
spurious solutions. Based on these observations let us consider a few particular structure
types and suggest the appropriate formulations.
The most unsuitable situation is in the case of the most general inhomogeneous res-

onator structures, where all corresponding six-component (2.16, 2.17, 2.19) and three-
component (2.20–2.23) formulations are able to generate spurious eigenvalues. Since the
six- and three-component formulations are fully equivalent the latter ones are preferred,
because they lead to smaller matrix problems. If the resonator has cylindrical symmetry
and is filled with an isotropic or strictly bidirectional medium the resonator problem can
be reduced to a waveguide-type problem or to a scalar one. As a result, appropriate two-
or one-component spurious-free formulations can be used.
When alternative (equivalent) dual formulations are possible (e.g. (2.20) and (2.21) or

(2.22) and (2.23)) the choice between them can be governed by the continuity of particular
field components. This is due to the fact that the functions representing fields or fluxes
in the conversion methods such as the Rayleigh-Ritz method, Galerkin method, FEM or
FDFD have to be continuous in order to apply differential operators to. In consequence,
in the analysis of the structures filled with, for example, non-magnetic materials the
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formulations for magnetic field or flux components may be preferred over the formulations
for the electric components.
In the analysis of waveguides, all full vector formulations can be regarded as not com-

petitive to transverse component formulations because they involve more components
and/or can generate spurious solutions. For the most general media, the spurious-free for-
mulation (2.61), involving four transverse components can be used. However, for strictly
bidirectional media, more efficient two-component formulations (2.76–2.79) are prefer-
able. Moreover, scalar formulations (2.87) and (2.88) or scalar formulations (2.93) and
(2.94) can be yet more efficient for cutoff and static cases, respectively. For the structures
filled with isotropic medium, longitudinal component formulation (2.82), alternative to
(2.76–2.79), is not competitive because it is not spurious-free.
In the case of homogeneous and strictly bidirectional waveguides (but not isotropic),

reduced spurious-free two-component formulations (2.98–2.99), (2.104) and (2.106) can
also be used. For isotropic structures these formulations are obviously reducible to the
scalar ones.



Chapter 3

Conversion to matrix eigenvalue
problems

Numerical techniques of solving partial differential equations described in the previous
chapter are mostly based on conversion of the operator equations into matrix eigenvalue
problems. All the methods of conversion rely on projection of an infinite dimensional
analytical problem into a finite dimensional space. The differences between the projection
methods concern two aspects: the projection technique and choice of the projection space
i.e. basis functions.
The methods of conversion can be divided into two general classes: classical and

hybrid methods. The former methods involve simple Maxwellian or polynomial basis
functions [59] which are usually evaluated analytically. The methods of this kind are
capable of analyzing efficiently structures of relatively simple geometries or filled with
isotropic materials. In the hybrid methods the solution is obtained in two steps. The first
step involves solution of a simpler eigenproblem, usually by means of any classical method.
The resulting eigenvectors are then used in the second step as composite Maxwellian
basis functions [59] in order to approximate the field of the problem at hand. The hybrid
methods are specially intended for analysis of the structures with complex shape and
media parameters.
The most popular classical and hybrid conversion methods will be described in the

following sections.

3.1 Classical methods

A general form of the operator eigenproblems obtained in the previous chapter is

Av = λBv (3.1)

The most popular methods for conversion operator problems of form (3.1) into the matrix
eigenvalue problems are the Rayleigh-Ritz method and the method of moments. Basis
functions used in both methods can be defined over the entire domain (entire domain
expansion) or over particular parts of the domain (entire subdomain expansion). Since

33
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simple entire domain expansion functions cannot well approximate fields on an irreg-
ular boundary the classical conversion methods using the entire domain expansion are
restricted to the structures of simple shape (conforming to the coordinates). In order
to analyze structures with irregular boundaries, the methods using the entire subdomain
expansion, where basis functions are locally defined over the subdomains can be used.
An example of such a versatile entire subdomain expansion method is the finite element
method. Another universal technique of this kind is the finite difference frequency do-
main method, which is based on the discretization of the differential operators. All these
classical methods are briefly described in the succeeding sections.

3.1.1 Rayleigh-Ritz method

Rayleigh-Ritz (RR) method is closely related to variational techniques [81, 100], which
are based on minimizing variation of a functional, which takes up different form depend-
ing on the symmetry of the problem. The variation of functional should vanish in the
stationary point. Finding this point is equivalent to finding the solution of the problem.
RR method relies on the application of Rayleigh-Ritz procedure (compare section A.1.4)
to the stationarity criterion. RR procedure performs a projection of an operator onto a
finite dimensional space. This results in a matrix eigenvalue problem.

3.1.1.1 Symmetric eigenproblem

Let us consider the case where operators involved in problem (3.1) are symmetric.
The functional appropriate for the symmetric problem has the following form

F =
(
Av, v

)
− λ
(
Bv, v

)
(3.2)

The first variation of F about the exact solution v, caused by a small perturbation dv,
can be found as

dF =
(
Av, dv

)
− λ
(
Bv, dv

)
+
(
A dv, v

)
− λ
(
B dv, v

)
(3.3)

Equating (3.3) to zero leads to the stationarity criterion, which, using the symmetry
properties of eigenproblem (3.1), can be transformed to the following form [79]

dF = 2
(
Av − λBv, dv

)
= 0 (3.4)

Since the stationarity criterion (3.4) is known, the RR procedure can be applied. The
solution vector v is expanded into a series of admissible (satisfying boundary conditions)
basis functions (or trial functions) {ui}i=1,...,n

v =
n∑
i=1

αiui (3.5)
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Therefore, the perturbation dv can be written as

dv =

n∑
j=1

dαj uj (3.6)

Substituting (3.5) and (3.6) into (3.4) and using the symmetry properties one can get

n∑
j=1

[
dαj

n∑
i=1

αi

(
Aui − λBui, uj

)]
= 0 (3.7)

This equation is satisfied if and only if

∀j=1,...,n
n∑
i=1

αi

(
Aui − λBui, uj

)
= 0 (3.8)

This results in the following symmetric generalized matrix eigenproblem

A v = λB v (3.9)

where v = [α1, . . . , αn]T and elements of matrices A and B are defined as

Aji =
(
Aui, uj

)
, Bji =

(
Bui, uj

)
(3.10)

The matrices A and B are dense when the entire domain basis functions {ui}i=1,...,n are
used.
It should be noted, that for B-orthonormal1 set of the basis functions matrix B = I

and eigenproblem (3.9) becomes a standard one.
Having solved eigenproblem (3.9) for the vector of expansion coefficients v , the ap-

proximate solution v can be found from (3.5).

3.1.1.2 Nonsymmetric eigenproblem

Classical variational approach to nonsymmetric eigenproblems requires definition of the
problem transposed to (3.1)

tAṽ = λ∗tBṽ (3.11)

where tA and tB are the adjoint operators A and B, respectively.
A suitable variational functional for problem (3.1) can be found as

F =
(
Av, ṽ

)
− λ
(
Bv, ṽ

)
(3.12)

The first variation of F, caused by small perturbations dv and dṽ, can be found as

dF =
(
Av, dṽ

)
− λ
(
Bv, dṽ

)
+
(
A dṽ, v

)
− λ
(
B dṽ, v

)
(3.13)

1B-orthonormality of functions {ui}i=1,...,n implies that they are normalized and orthogonal with

respect to the B-dot product, i.e. ∀i=j

(
Bui, uj

)
= 1 and ∀i�=j

(
Bui, uj

)
= 0
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It can be transformed into the form of a stationarity criterion

dF =
(
Av − λBv, dṽ

)
+
(

dv, tAṽ − λ∗tBṽ
)

= 0 (3.14)

Application of the RR procedure involves the expansion of both v and ṽ. Functions v

and dv are expanded using (3.5) and (3.6), while ṽ and dṽ as

ṽ =

n∑
i=1

α̃iũi (3.15)

dṽ =

n∑
j=1

dα̃j ũj (3.16)

Substituting (3.5), (3.6), (3.15) and (3.16) into (3.14) one gets
n∑
j=1

[
dα̃j

n∑
i=1

αi

(
Aui − λBui, ũj

)
+ dαj

n∑
i=1

α̃i

(
uj,

tAũi − λ∗tBũi

)]
= 0 (3.17)

This is valid if the following equations are simultaneously satisfied

∀j=1,...,n
∑n

i=1 αi

(
Aui − λBui, ũj

)
= 0 (3.18)

∀j=1,...,n
∑n

i=1 α̃i

(
uj,

tAũi − λ∗tBũi

)
= 0 (3.19)

These result in a pair of generalized dense matrix eigenproblems. The eigenproblem
arising from (3.18) is

A v = λB v (3.20)

where matrices A and B are, in general, nonsymmetric and their elements are defined as

Aji =
(
Aui, ũj

)
, Bji =

(
Bui, ũj

)
(3.21)

The second equivalent nonsymmetric eigenproblem, arising from (3.19), is

C ṽ = λ∗D ṽ (3.22)

where ṽ = [α̃1, . . . , α̃n]T and elements of matrices C and D are defined as

Cji =
(

uj,
tAũi

)
, Dji =

(
uj,

tBũi

)
(3.23)

As in the symmetric case, generalized eigenproblems (3.20) and (3.22) become standard
ones if functions {ui}i=1,...,n and {ũj}j=1,...,n are biorthonormal2 with respect to the B-dot
product.
The approximate solution v can be computed using (3.5), once the solution v of

eigenproblem (3.20) is found.
The approach described above can sometimes be difficult to implement due to the need

for determination of expansion functions ũi for the adjoint problem. The adjoint fields
are not always easily computable because they should satisfy boundary conditions for
the transposed problem, which are generally different from the conditions for the original
problem [33,79]. This inconvenience can be avoided when using the local potential method.

2Biorthonormality of the two sets of functions {ui}i=1,...,n and {vj}j=1,...,n implies that they are

normalized and orthogonal, i.e. ∀i=j

(
ui, ũj

)
= 1 and ∀i�=j

(
ui, ũj

)
= 0
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Local potential method. This technique is also called generalized entropy [100]. It re-
lies on constructing a variational functional for nonsymmetric problem using the method-
ology of symmetric problems. In order to find the stationary state, it is temporarily
assumed that the part of the functional related to the non-self-adjoint operator remains
unchanged under the perturbation.
Consider the case when operator B in (3.1) is symmetric, while A is nonsymmetric.

Decompose A into the symmetric As and nonsymmetric An parts

A = As + An (3.24)

Assuming that the component of the functional related to the non-self-adjoint part of
the operator is kept constant under the perturbation, the functional for the self-adjoint
problem can be written as [33]

F =
(
Asv, v

)
− λ
(
Bv, v

)
+ 2
(

n, v
)

(3.25)

where
n = Anv|v=v0 = const (3.26)

Functional F is called the local potential and the corresponding variational expression can
be found as [33]

dF = 2
(
Asv + n − λBv, dv

)
= 0 (3.27)

One can see, that releasing now constraint (3.26) we obtain exactly (3.4).
Application of the RR procedure results in the eigenproblem analogous to (3.9) with

the difference that matrix A is nonsymmetric.

3.1.2 Method of moments

The method of moments [42,80] is similar to the RR procedure in the sense of expanding
an unknown function into a series of basis functions. Taking the inner product of an
eigenproblem with a set of testing functions or weighting functions results in a set of
equations, which can be written in the form of a matrix eigenproblem.
Consider eigenproblem (3.1) and expand an unknown function v into a series of basis

functions {ui}i=1,...,n
v =

n∑
i=1

αiui (3.28)

where {ui}i=1,...,n form a complete set in the domain of the problem. Consider also a set
of testing functions {wj}j=1,...,n spanning the range of A.
Taking the inner products of eigenproblem (3.1) with the testing functions we get the

following set of equations

∀j=1,...,n
n∑
i=1

αi

(
Aui, uj

)
= λ

n∑
i=1

αi

(
Bui, uj

)
(3.29)
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This can be written in the form of generalized eigenproblem

A v = λB v (3.30)

where matrices elements are defined as

Aji =
(
Aui, wj

)
, Bji =

(
Bui, wj

)
(3.31)

and v = [α1, . . . , αn]T . The matrices A and B are dense when the basis and testing
functions defined over the entire domain are involved. Eigenproblem (3.30) is, in general,
nonsymmetric. However, it can become symmetric for self-adjoint operators and ade-
quately chosen basis and testing functions. Moreover, this generalized eigenproblem can
become a standard one, if the basis and testing functions are biorthonormal with respect
to the B-dot product.
Different types of method of moments can be distinguished, depending on the testing

functions selected. These of main interest are: the Galerkin method, least squares method
and point matching method.

3.1.2.1 Galerkin method

In the Galerkin method (GM) testing functions are selected so that they are equal to the
basis functions, i.e.

∀i=1,...,n wi = ui (3.32)

In consequence, the elements of matrices A and B from eigenproblem (3.30) are defined
as

Aji =
(
Aui, uj

)
, Bji =

(
Bui, uj

)
(3.33)

Therefore, the matrix eigenproblem becomes symmetric if the operators A and B are
symmetric as well. This generalized problem can become a standard one, if functions
{ui}i=1,...,n are B-orthonormal.
It should be noted, that the eigenproblems resulting from the Galerkin method are

identical to the eigenproblems resulting from the standard Rayleigh-Ritz procedure in the
symmetric case (Sec. 3.1.1.1) and from the local potential method in the nonsymmetric
case (Sec. 3.1.1.2). In this sense, the GM and RR methods are fully equivalent.

3.1.2.2 Least squares method

In the least squares method (LS) testing functions are selected so that

∀i=1,...,n wi = Aui (3.34)

It implies that the elements of matrices A and B are defined as

Aji =
(
Aui, Auj

)
, Bji =

(
Bui, Auj

)
(3.35)

In consequence, A is symmetric and positive definite, while B is nonsymmetric.
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3.1.2.3 Point matching method

In the point matching method, called also the collocation technique, testing functions are
selected so that

∀i=1,...,n wi = δ(r − ri) (3.36)

where δ(r−ri) is the Dirac delta function at point i, located in the domain at coordinates
ri. In this case, the dot products defining elements of matrices A and B correspond to
the values of basis functions at specific sampling points {rj}j=1,...,n, i.e.

Aji = Aui(rj) , Bji = Bui(rj) (3.37)

A main disadvantage of this method is that the condition number of the resulting
matrix strongly depends on the choice of sampling points. Therefore, other choices of
testing functions are preferred.

3.1.3 Finite element method

The finite element method (FEM) [2,3,7,19,21,23,24,30–34,38,44,48,55,56,66–68,89–92,
107,114,117,120,121] is an entire subdomain expansion method exploiting the concepts of
the Rayleigh-Ritz or the Galerkin methods for specific type of locally defined basis (and
testing) functions.
The FEM is based on a discretization of the domain, say Ω. The domain is divided

into m disjoint small subdomains Ωi (called finite elements), in a way that their union is
the entire domain Ω, i.e.

∀i�=j Ωi ∩ Ωj = ∅ and

m⋃
i=1

Ωi = Ω (3.38)

In the most popular finite element approach, (called nodal finite elements) the problem
is formulated in terms of the unknown function v at nodal points, located on the boundaries
or inside the elements. In the simplest case, shown in Fig. 3.1, nodes are located at the
vertices of the elements.
The solution v of the problem is constructed as a superposition of functions vi, locally

defined over each element i

v =
m⋃
i=1

vi (3.39)

where each function vi is defined only inside the element i.
The local solution vi is approximated by a linear combination of interpolation functions

(or shape functions) N i
j

vi =
ni∑
j=1

αi
jN

i
j (3.40)

where ni is the number of nodes within the element i.
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(a) (b)

(c)

Figure 3.1: Basic finite elements: one-dimensional (a), two-dimensional (b), and three-
dimensional (c).
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Figure 3.2: One-dimensional interpolation functions: (a) linear, (b) quadratic.
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Figure 3.3: Two-dimensional linear interpolation functions for triangular element.
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The interpolation functions {N i
j}j=1,...,ni are constructed so that they vanish outside

the element i, and within this element they are polynomials satisfying the following prop-
erty

N i
j(r

i
k) = δjk =

{
1, for j = k
0, for j �= k

(3.41)

where rik denotes coordinates of k-th node in the element i. Examples of one- and two-
dimensional interpolation functions are shown in Figs. 3.2 and 3.3.
Due to property (3.41), the solution v (3.39) at the k-th nodal point of the element i

(of coordinates rik) can be evaluated as the following union

v(rik) =
m⋃
i=1

ni∑
j=1

αi
jN

i
j(r

i
k) = αi

k (3.42)

It means, that the expansion coefficient corresponding to the interpolation function asso-
ciated to the node k of element i is precisely the value of the function v at this point.
In order to apply Galerkin or RR method, the function v should be written in the

form of global functions expansion. Substituting (3.40) into (3.39) and using some global
numbering scheme [33] we get

v =
m⋃
i=1

ni∑
j=1

αi
jN

i
j =

n∑
k=1

αkuk (3.43)

where n is the total number of nodes within the domain Ω, αk is the expansion coefficient
corresponding to the k-th node (in the global numbering scheme) and uk is the basis
function, which is the union of all interpolation functions associated with the k-th node.
Examples of such one- and two-dimensional basis functions are shown in Fig. 3.4.
Application of either the GM or RR approach to an operator problem of form (3.1)

and using basis functions described by (3.43) leads to a matrix eigenvalue problem in the
form of (3.9) (or (3.30)). Since the computation of matrix elements involves calculation
of inner products with the functions being only locally nonzero, the matrices A and B

are sparse.
It should be noted, that the calculation of each inner product is equivalent to a sum of

inner products in the form of
(
AN i

j , Nk
l

)
and

(
BN i

j , Nk
l

)
. Therefore, the incorporation

of low order basis functions for formulations with higher order differential operators may
result in distribution functions. In order to avoid problems with computing integrals,
the order of used basis functions cannot be lower than the order of differential operators
involved.
Finite element method can also be formulated in terms of a vector basis defined over

the edges of elements rather than the scalar basis defined over the nodal points. Such
formulation is called edge elements [7, 48, 117, 121]. It has the advantage that it a-priori
eliminates spurious solutions caused by the violation of divergence equation.
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Figure 3.4: Linear basis functions, corresponding to node k, for (a) one-dimensional
elements, and (b) two-dimensional triangular elements.

3.1.4 Finite difference frequency domain method

The finite difference frequency domain (FDFD) method is based on discretization of the
domain and differential operators. The operators are approximated by a set of algebraic
equations relating the value of an unknown field at a discrete point in the domain to
the values at some neighboring points. Many different versions of FDFD method were
described in the literature [1,9,11–14,18,25,37,40,46,52,53,64,77,82,84,94,101–106,112,
113, 119, 122–125, 127]. They differ mainly in the way of approximating the fields and
their derivatives, and in the form of operator being discretized.

3.1.4.1 Finite difference approximation

In the FDFD, the domain is discretized using a set of grid points, defining a grid space.
This is similar to the discretization used in the FEM method, in a sense that the grid
points can be nodal points defining elements in the FEM. One of the factors influencing the
process of approximation is the type of grid used. Typical nonuniform (graded) grids are
presented in Fig. 3.5. The main advantage of such grids is simplicity of implementation
of finite differences and conservation of symmetry property of the operators after the
conversion to the matrix problem.
In general, the domain can be discretized using elements of various shapes and sizes

forming unconstrained (irregular) or nested meshes, shown in Fig. 3.6. Such grids can
better conform to complex geometries at the cost of more difficult implementation and/or
loss of matrix symmetry in symmetric problems. Another aspect of symmetry will be
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Figure 3.5: Typical (a) one-dimensional, and (b) two-dimensional nonuniform (graded)
grids in the Cartesian coordinates.
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Figure 3.6: Examples of two-dimensional (a) unconstrained (irregular) and (b) nested
grid.
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Figure 3.7: Two-dimensional nonuniform rectangular grid in the vicinity of point m.
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discussed in Sec. 3.1.4.2.
Consider the simplest two-dimensional case with a nonuniform rectangular grid in the

vicinity of an arbitrary point m. This situation is shown in Fig. 3.7. At point m, finite
difference approximations of derivatives of an unknown function v can be derived using
the values of v at the neighboring points. Expanding v in the points r, u, l, and d into
Taylor series about the point m we get [77]

vr = vm + srh

(
∂v

∂x

)
m

+
s2rh

2

2

(
∂2v

∂x2

)
m

+ O(h3) (3.44)

vu = vm + suh

(
∂v

∂y

)
m

+
s2uh2

2

(
∂2v

∂y2

)
m

+ O(h3) (3.45)

vl = vm − slh

(
∂v

∂x

)
m

+
s2l h

2

2

(
∂2v

∂x2

)
m

+ O(h3) (3.46)

vd = vm − sdh

(
∂v

∂y

)
m

+
s2dh

2

2

(
∂2v

∂y2

)
m

+ O(h3) (3.47)

Eliminating ∂2v/∂x2 and ∂2v/∂y2 between (3.44), (3.46) and (3.45), (3.47) we first obtain
partial derivatives of v in the form of(

∂v

∂x

)
m

=
1

h

vr − vl
sr + sl

+ O(h) (3.48)(
∂v

∂y

)
m

=
1

h

vu − vd
su + sd

+ O(h) (3.49)

and, analogously, eliminating ∂v/∂x and ∂v/∂y we get the following second partial deriva-
tives of v (

∂2v

∂x2

)
m

=
2

h2

(
vr

sr(sr + sl)
− vm

srsl
+

vl
sl(sr + sl)

)
+ O(h) (3.50)(

∂2v

∂y2

)
m

=
2

h2

(
vu

su(su + sd)
− vm

susd
+

vd
sd(su + sd)

)
+ O(h) (3.51)

Mixed derivatives can be derived in the same manner.
Considerable simplifications arise for uniform grid, i.e. sr = sl = sx and su = sd = sy.

In this case, first and second derivatives can be found as(
∂v

∂x

)
m

=
vr − vl
2sxh

+ O(h2) (3.52)(
∂v

∂y

)
m

=
vu − vd
2syh

+ O(h2) (3.53)

and (
∂2v

∂x2

)
m

=
vr − 2vm + vl

s2xh
2

+ O(h2) (3.54)(
∂2v

∂y2

)
m

=
vu − 2vm + vd

s2yh
2

+ O(h2) (3.55)
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Note, that the error of approximations (3.52), (3.53) (3.54), and (3.55) is reduced by one
order. Such type of approximations is called second order central differences and, for
regular grid, it offers the lower order of error compared to other types of approximations
such as forward or backward differences [99,119]. Higher order approximations, i.e. fourth,
can also be used [99,119]. They result in higher accuracy at the cost of much more complex
implementation of boundary conditions.
In electromagnetic problems involving vector fields, finite differences can be imple-

mented in two ways. One approach is to use a single collocated mesh for electric and
magnetic fields, while the second approach uses a dual grid system. Below, we briefly
discuss both techniques.
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Figure 3.8: Examples of three-dimensional (a) single and (b) dual grid.

Single grid approach. In this approach, a single collocated mesh, shown in Fig. 3.8(a),
is used for all field components. All electric and magnetic fields of interest are defined in
the same points of the domain. This approach is sometimes called condensed node [1].
Main disadvantages of the single grid approach is that application of unconstrained

grids may lead to the loss of matrix symmetry and that it may cause difficulties in dealing
with discontinuities.

Dual grid approach. This approach is based on dual Yee’s mesh [127]. It uses dual
grid system, shown in Fig. 3.8(b), defined so that electric and magnetic cells are shifted
half a cell one with respect to the other. In consequence, the electric and magnetic fields
are defined along the edges of electric and magnetic cells at the points where the cell edges
intersect with dual magnetic or electric cell walls, respectively.
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The advantage of this approach is that even unconstrained meshes used may lead to
the symmetric operator matrices. Additionally, discontinuities are easier to deal with.

3.1.4.2 Formulation of operator problem

Depending on the final form of operator equation, two main approaches can be distin-
guished in finite difference techniques. The first one is based on the Rayleigh-Ritz method
and variational formulation of the operator equation, while the second one relies on direct
discretization of the operator problem. Both formulations can lead to standard eigen-
problems of form (3.1) with highly diagonally structured matrix. However, the higher the
order of approximations used, the greater the number of diagonals.

RR/Galerkin approach. This approach [77,119] is based on the RR method applied
for an adequate variational functional, which results in the matrix eigenproblem of form
(3.9) or (3.30). The elements of matrices A and B are then expressed by inner products
(3.10) or (3.33), involving differential operators. In the case of rectangular grid, field
derivatives can be approximated by central differences. It should be noted that this
approach is analogous to the Galerkin method applied for operator problem with piecewise
linear basis and testing functions.
Application of the RR/Galerkin procedure shifts the FDFD method very close to the

FEM method. In the case when the same rectangular grid is used for both methods,
the only difference relies on the type of the approximation of the field and corresponding
derivatives used [69]. Application of the RR/Galerkin variational approach has been
reported in [18,106] in context of the formulation for longitudinal Ez and Hz components
and in [84] in context of a full vector �H formulation. In all the reported cases a single
grid was involved.
Very important advantage of this approach is that it preserves the symmetry of the

operator equation, even for nested grids and curved boundaries [119].

Direct discretization. This approach [77, 119] relies on direct discretization of oper-
ators in the eigenproblem, so that the derivatives are approximated by finite differences.
In this approach a standard matrix eigenvalue problem is usually obtained.
In order to preserve the symmetry of the operators, boundary conditions should be ad-

equately implemented, e.g. the Neumann boundary condition using the concept of fictious
grid points [77]. In order to preserve the symmetry for the case of curved boundaries be-
tween different media, a concept of effective permittivity/permeability [13,16,50,64,122–
124] should be incorporated. It allows one to use constrained meshes even in the case of
boundaries which do not conform to the grid.
The direct discretization is the most frequently used method. Various implementations

of this method used single and dual grids. The single grid approach was implemented
in various scalar [11, 12, 25, 40, 113], longitudinal [46], transverse [1, 14, 37, 104, 105], and
full vector formulations [1]. The dual grid approach was used in various scalar [64],
transverse [64, 123, 124], and full vector formulations [9, 13, 101–103, 122, 125].
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It should be noted that for nested meshes, such as shown in Fig. 3.6(b), direct dis-
cretization method always leads to a nonsymmetric problem. Another important observa-
tion is that application of the direct discretization method for grids defined in cylindrical
coordinates leads to nonsymmetric eigenproblems [40, 64, 113, 119].

3.2 Hybrid methods

Hybrid methods are based on the Rayleigh-Ritz procedure or method of moments, in
which trial functions are the solutions for simplified structures or the solutions for specific
(ω, β) points. These trial solutions, used in the expansion of the unknown field, can be
evaluated analytically or by means of any standard method. This concept can be viewed
as a generalization of the concept of an electromagnetic basis described in [51, 57, 58, 81],
where entire domain basis functions were optimized in order to reduce the number of
the functions required for certain accuracy of approximation of the field in an analyzed
structure.
It should be noted, that application of specific entire domain basis functions in the

expansion can also lead to considerable simplification of relations describing final operator
matrix elements.

3.2.1 Coupled mode method

The coupled mode method [5, 43] is a kind of entire domain expansion method, which is
based on RR procedure applied to an adequate functional (perturbation formula). The
fields are expanded into a series of basis fields, which are usually computed for a basis
structure of the same geometry, filled with isotropic materials. It leads to elimination of
differential operators from the final eigenproblem.
This method is very useful when the medium within the structure has complex param-

eters (i.e. is anisotropic, gyrotropic, lossy, etc.) and the analysis involving any classical
approach leads to computationally intensive problems.
Due to perturbational character of the coupled mode method, it can be efficiently used

only for the structures of parameters that are relatively weakly perturbed in relation to
the basis structure.

3.2.1.1 Resonator problems

In the case of resonator analysis, formulation (2.22) is usually used as a starting point.
Assuming that the structure is lossless, this formulation is symmetric and adequate func-
tional can be found using (3.2) in the form of(

∇× µ −1 · ∇ × �E, �E
)

= ω2
(

ε · �E, �E
)

(3.56)
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Using vector identities and properties of �E field on PEC or PMC screens (3.56) can be
written as [43] ∫

V

µ −1 · (∇× �E∗) · (∇× �E) dv = ω2
∫
V

�E∗ · ε · �E dv (3.57)

The application of RR procedure involves the expansion

�E =
n∑
i=1

αi�ei (3.58)

where basis functions �ei obey the wave equation (2.22), i.e.

∇× µ −1
i · ∇ × �ei = ω2i ε i · �ei (3.59)

where ε i and µ i are assumed to be those for lossless media (in the basis guide).
The resulting generalized eigenproblem is of form (3.9) with elements defined by

Aij =

∫
V

µ −1
j · (∇× �e ∗

i ) · (∇× �ej) dv = ω2j

∫
V

�e ∗
i · ε j · �ej dv

Bij =

∫
V

�e ∗
i · ε · �ej dv (3.60)

It can be seen, that if we consider basis functions computed for the same basis structure
(ε i = ε j = ε b), they are orthogonal with respect to B-inner product (weighted with ε b),
i.e. (

�ej, �ei

)
B

=

∫
V

�e ∗
i · ε b · �ej dv (3.61)

and matrix B becomes diagonal. Such a problem is easy transformable to a standard
one.
The analogous dual formulation, for �H field, can be derived, starting from (2.23).

3.2.1.2 Waveguide problems

In the case of waveguide analysis, the following perturbation formula can be derived from
symmetric (for lossless media and real ω) formulation (2.61)(

ωε · �E + j∇t × �H, �E
)

+
(

ωµ · �H − j∇t × �E, �H
)

= β
[(

− ẑ × �H, �E
)

+
(

ẑ × �E, �H
)]

(3.62)

Using the definition of inner product (3.62) can be written in the following form [43]∫
S

[
�E∗ · (ωε · �E + j∇t × �H) + �H∗ · (ωµ · �H − j∇t × �E)

]
ds

= β

∫
S

ẑ · ( �E × �H∗ + �E∗ × �H) ds (3.63)
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In the RR procedure the following expansion is used[
�E
�H

]
=

n∑
i=1

αi

[
�e
�h

]
i

=

n∑
i=1

αi

[
�ei
�hi

]
(3.64)

where basis functions �ei and �hi fulfill adequate equations derived from (2.61)

ωε i · �ei + j∇t ×�hi = −βiẑ ×�hi (3.65)

ωµ i · �hi − j∇t × �ei = βiẑ × �ei (3.66)

where ε i and µ i characterize lossless media.
The resulting generalized eigenproblem is of form (3.9) with elements defined by [5,43]

Aij = βjBij + ω

∫
S

[�e ∗
i · (ε − ε j) · �ej + �h ∗

i · (µ − µ j) · �hj] ds

Bij =

∫
S

ẑ · (�e ∗
i ×�hj + �ej ×�h ∗

i ) ds (3.67)

This problem can be reduced into a standard one, if we take the set of basis functions
[�ei,�hi]

T computed for the same lossless basis structure (and the same real ω). Since
eigenproblem (2.61) is symmetric for lossless media, the basis functions are orthogonal
with respect to the B-inner product, defined by

([ �ej
�hj

]
,

[
�ei
�hi

])
B

=
(
− ẑ ×�hj , �ei

)
+
(

ẑ × �ej ,�hi

)

=

∫
S

ẑ · (�e ∗
i ×�hj + �ej ×�h ∗

i ) ds (3.68)

Therefore matrix B becomes diagonal.

3.2.2 Eigenfunction expansion methods

This family of methods is especially useful for fast evaluation of dispersion characteristics
of waveguide structures. Eigenfunction expansion (EE) methods are based on applica-
tion of the method of moments to any waveguide eigenproblem with basis and testing
functions chosen in a special way. The entire domain basis functions are the solutions
of the eigenproblem for particular frequencies or propagation constants, while the testing
functions are corresponding solutions of the transposed problem. In contrast to stan-
dard method of moments involving usual harmonic basis functions, expansion functions
involved in EE methods fulfill all interior boundary conditions and may be regarded as
a perfect electrodynamic basis [51, 57, 58, 81]. As a result, the number of trial functions,
which should be taken to obtain a required accuracy, is relatively small. It leads to very
small matrix problem for each desired frequency or propagation constant point. It should
be noted, that basis functions can also be computed at critical points (ω = 0 or β = 0),
where the solution is less expensive. Therefore the whole EE method can be yet more
efficient.
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In fact, three specific techniques incorporating eigenfunction expansion have been pro-
posed recently. The first one [95], uses basis (and testing) functions which are evaluated for
the cutoff case. The second approach [85], incorporates a technique called the asymptotic
waveform evaluation, which uses the Taylor series or Padé approximation to interpolate
particular modes over a frequency band around a selected frequency point. The most gen-
eral EE approach, which can employ the eigenfunctions computed at arbitrary points on
the dispersion diagram has been developed with author’s participation and was reported
in texts [86–88]. Derivation of the algorithms obtained by means of this latter method is
shortly summarized below.

3.2.2.1 Formulation of matrix eigenproblem

Consider the problem of analysis of a lossless and (strictly) bidirectional waveguide with
permittivity and permeability tensors given by (2.63). The wave propagation in such a
guide may be described by any of the equations (2.76–2.79).
Express problems (2.76) and (2.78) in the following operator form

Lu + ω2Gu − β2Su = 0 (3.69)

where u denotes �Et or �Dt, L represents differential part of the operators and S, G are
operators that either involve the media parameters (e.g. S for �Dt or G for �Et) or are
simple ẑ× operators.
Basis functions are the solutions of the above problem at n discrete points so that we

know triads {ω2i , β2i , ui(ωi, βi)}i=1,...,n, which satisfy equation
Lui = −ω2iGui + β2i Sui (3.70)

within domains determined by the boundary conditions.
Since equations (2.77) and (2.79) are respectively transpositions of (2.76) and (2.78),

corresponding solutions of the first two of the above equations (i.e. �Ht or �Bt) are taken
as testing functions w. In fact, these problems need not to be solved explicitly because
the i-th testing function (�hti or �bti) can be evaluated with Maxwell equations applied for
the i-th basis function (�eti or �dti).
The application of the method of moments with the expansion into a series of basis

functions

u(ω, β) =

n∑
i=1

αi(ω, β)ui (3.71)

and corresponding testing functions wi leads to the following matrix equation

G (ω2I − Ω 2)a = S (β2 − Z 2)a (3.72)

where Ω = diag[ω2i ], Z 2 = diag[β2i ], a = [α1, α2, . . . , αn]T and the elements of matrices
G and S are given by

Gki =
(
Gui, vk

)
=

∫
S

ẑ · (�dti ×�btk) ds (3.73)

Ski =
(
Sui, vk

)
=

∫
S

ẑ · (�eti ×�htk) ds (3.74)
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where S denotes the cross-section of the guide. It should be noted, that this algorithm
requires the calculation of integrals involving only the z-components of electromagnetic
momenta (3.73) and Poynting vectors (3.74). Equation (3.72) can easily be transformed in
order to obtain a generalized matrix eigenproblem with either ω2 or β2 being an eigenvalue.
In general, the points for calculating the basis, i.e. ωi and the corresponding βi can

be arbitrary selected from the points of dispersion diagram. Consider a few particular
choices. Suppose all expansion functions are calculated for the same β0. Points B, F, G in
Fig. 5.18 on page 94 are an example of the points where such modal fields are calculated
for β0 = 0. Using the biorthogonality property of the basis and testing functions it is easy
to show that matrix G becomes diagonal. Moreover, Z 2 = β20I and generalized problem
(3.72) can easily be transformed to the the following standard β-eigenproblem

A a =
1

β2 − β20
a (3.75)

where the elements of matrix A are given by an extremely simple formula

Aki =
1

ω2 − ω2k
ski (3.76)

with

ski =

∫
S

ẑ · (�eti ×�htk) ds∫
S

ẑ · (�dtk ×�btk) ds
(3.77)

Alternatively, one may transform (3.72) to the standard ω-eigenproblem

B a = ω2a (3.78)

with
Bki = (β2 − β20)ski + ω2kδki (3.79)

where δik is the Kronecker symbol.
Another pair of algorithms can be obtained, if eigensolutions of (3.70), used as basis

functions, are evaluated for ω = ω0. Points C, H, I in Fig. 5.18 from page 94 are an example
of the points where such modal fields are calculated for ω0 = 2π10Grad/s. Such a choice
of basis functions leads to the diagonalization of matrix S and yields two algorithms given
by the standard matrix eigenproblems

C a =
1

ω2 − ω20
a (3.80)

D a = β2a (3.81)

with the elements of matrices C and D given by

Cki =
1

β2 − β2k
gki (3.82)

Dik = (ω2 − ω2k)gki + β2kδki (3.83)
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Table 3.1: Classification of eigenfunction expansion algorithms.

Algorithm Unknown Basis Eigenvalue Eqn.
β-GS β(ω) {ui, ωi, βi} β2 (3.72)
ω-GS ω(β) {ui, ωi, βi} ω2 (3.72)
β-S β(ω) {ui, ωi, β0} (β2 − β20)−1 (3.75)
ω-S ω(β) {ui, ωi, β0} ω2 (3.78)
ω-G ω(β) {ui, ω0, βi} (ω2 − ω20)

−1 (3.80)
β-G β(ω) {ui, ω0, βi} β2 (3.81)

with gki defined as

gki =

∫
S

ẑ · (�dti ×�btk) ds∫
S

ẑ · (�etk ×�htk) ds
(3.84)

Equations (3.72), (3.75), (3.78), (3.80), and (3.81) describe six algorithms which differ
one from another by the choice of basis functions and the selection of an unknown and
a parameter. For convenience all algorithms are summarized in Table 3.1. The following
convention is used to designate the algorithms. The first letter denotes the type of dis-
persion characteristics generated by the algorithm while one or two letters following the
dash indicate the quantity (S for Poynting vectors and G for electromagnetic momenta)
required to evaluate the matrix elements.

Note, that the procedures described above can be adopted to other formulations than
(2.76) or (2.78), forming new families of algorithms differing one from another by the
choice of the basis functions.

3.2.2.2 Speedup of eigenfunction expansion algorithms

To show the advantages of using a hybrid approach let us discuss the speedup that can
be expected in the eigenfunction expansion algorithm.
In the most general case (algorithms β-GS and ω-GS) the calculation of the matri-

ces elements involve computation of the coupling between electromagnetic field of basis
modes, in the form of momenta or Poynting vectors. The evaluation of the matrices can
be further simplified by a special choice of the basis and testing functions and the ap-
plication of orthogonality relations. Moreover, it can be shown [86] that in the practical
implementation of the algorithms the momenta or/and Poynting vector matrices are eval-
uated only once before the ω- or β-sweep. Therefore, this cost can be neglected and the
total computational effort of the algorithms is determined by the cost of the evaluation of
the basis functions and solution of a small dense matrix eigenvalue problem in as many
points as required.
The basis can be evaluated with an arbitrary numerical or analytical technique. Since

it is calculated at a few frequency or propagation constant points, at the most, even a
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time consuming method may be used to this end. If the computational effort for solving
the small dense eigenfunction expansion problem is lower than the computation workload
in a standard algorithm, the new approach gives a speedup of

SEE =
nts

mtsb + ntee
(3.85)

where n is a number of computation points, ts is the time of a single solution in a standard
approach, m is a number of the points where the basis fields are evaluated, tsb is the
solution time at the single basis point, and tee is the solution time of the small dense
problem at one point. If the basis is determined using the standard method (tsb = ts) and
ts � tee expression (3.85) tends to

SEE ≈ n

m
(3.86)

It is evident that the time savings may be significant, especially when the number of
points n is large.



Chapter 4

Solution of matrix eigenvalue
problems

In general, two kinds of matrix eigenvalue problems arise from the techniques described
in the previous chapter: standard eigenproblems of the form

A v = λv (4.1)

and generalized eigenproblems of the form

A v = λB v (4.2)

A number of numerical techniques can be applied to each given particular problem (4.1)
or (4.2). A detailed description of several the most frequently used solution methods
can be found in Appendix A. Here we only discuss the most important features of these
methods. We can distinct two general classes of algorithms, i.e. the ones based on matrix
transformations and the iterative ones. The algorithms representing the former class
include: QR, bisection and Jacobi methods that are intended for standard eigenproblems,
and QZ method that is a generalization of the QR method for generalized eigenproblems.
A common idea of these algorithms is that they apply various matrix transformations to
operator matrices in order to obtain canonical forms such as Schur or diagonal ones [39,98].
Once they are found, the solution of the eigenproblem can easily be determined. A severe
drawback of these methods is that performing matrix transformations requires that the
matrix must be stored explicitly in a dense format, even if it has a sparse character.
It should also be noted that for the solution of nonsymmetric problems only QR (QZ)
method can be applied and this method always computes all eigenvalues, even though
only a few ones are usually required for a particular purpose.
The class of iterative algorithms is represented by subspace iteration, Arnoldi, Lanc-

zos and nonsymmetric Lanczos methods that are intended for standard as well as for
generalized eigenproblems. These algorithms are based on a projection of the operator
matrix of size N into a subspace of a small size l (l � N). This subspace is constructed
in such a way that it contains only a few eigenvalues. Computation of a basis for this
subspace is performed iteratively and involves products of the matrix operator and some

54
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vectors. In contrast to the methods based on matrix transformations the operator ma-
trix can be stored in a sparse format and the advantages of sparse matrix computations
leading to considerable time and memory savings can be fully utilized. Since the basic
versions of iterative methods compute the eigenvalues of the largest magnitude (which are
usually out of interest) various spectral transformations should be performed in order to
obtain convergence to the required eigenvalues (see Sec. A.1.2 in App. A). The advantage
of applying the spectral transformations lies in the fact that they can also be used for
accelerating the algorithms by increasing their convergence rate. This process is called
preconditioning and typical examples are shift and shift-invert techniques or polynomial
filtering using e.g. Chebyshev or digital finite impulse response (FIR) filters (polynomial
preconditioners).
Solution of generalized eigenproblems of form (4.2) is much more complex. General

methodology of the solution depends on the size and symmetry of the problem. Small
eigenproblems can be solved with QR-like methods. In the nonsymmetric case (A or
B nonsymmetric), QZ method is usually used, which can be viewed as a generalization
of the QR method that performs implicit QR iteration on A B −1 matrix. However, for
the symmetric case (A , B symmetric and A or B definite) another approach is usually
adopted. The generalized eigenproblem is transformed into a standard one with using
Cholesky decomposition and then the QR algorithm is directly applied (see Appendix A
for details).
Similarly to the standard eigenproblems, the large generalized ones are usually solved

by means of iterative methods, such as the subspace iteration or the Arnoldi/Lanczos
methods. In order to apply these methods the eigenproblems are initially transformed
into standard ones. Depending on the symmetry, different factorizations are used for that
purpose: LU, for nonsymmetric case, and Cholesky, for symmetric case. The cost of the
factorizations can be relatively low when the matrices are structured and sparse.

4.1 Numerical implementations of matrix eigensolvers

Some of the numerical methods described above are available in the form of public domain
software. In particular, these are implementations of QR, subspace iteration and Arnoldi
methods.

4.1.1 QR method

One of the first public domain libraries containing implementations of QR and QZ meth-
ods was EISPACK (1976). In 1992 it was superseded by LAPACK (Linear Algebra
PACKage) library. LAPACK routines are written so that as much as possible of the
computation is performed by calls to highly efficient BLAS library (Basic Linear Alge-
bra Subprograms). Fortran codes of all these libraries are accessible via Internet from
http://www.netlib.org or by anonymous ftp from ftp://ftp.netlib.org in directo-
ries eispack, lapack and blas, respectively. However, many high-performance computer
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manufacturers, such as SUN, SGI, IBM et al., offer specially coded and optimized for a
given machine versions of LAPACK and BLAS libraries. Usually, they give much better
performance than their model Fortran implementations from Netlib.
The implementations of QR and QZ methods from LAPACK library are also optimized

for performance for various kinds of dense matrix eigenproblems: standard or generalized,
symmetric or nonsymmetric, real or complex, full, band or tridiagonal. These algorithms
are easy to use and straightforward in parameter selection. The specific LAPACK routine,
which is intended for solving nonsymmetric standard real and full dense eigenproblems,
is called DGEEV.

4.1.2 Subspace iteration and Arnoldi method

Many implementations of subspace iteration and Arnoldi methods have been written so
far. However, only four codes, listed in Table 4.1, are available in public domain and
have a sufficient quality level. An extensive comparison of these codes was performed
by Lehoucq and Scott in [65]1. This comparison showed that the performance of all
considered codes depends on the eigenproblem solved and on user-defined parameters of
computational routines. In many cases, the best results could be obtained with ARPACK
that implements the implicitly restarted Arnoldi method (see App. A).

Table 4.1: Public domain library-quality implementations of subspace iteration (SI) and
Arnoldi method (ERA — explicitly restarted and IRA — implicitly restarted).

Code Method Year Availability

LOPSI SI 1981
ftp://ftp.netlib.org/toms/570 or
http://www.netlib.org/toms/570

SRRIT SI 1993
ftp://ftp.netlib.org/toms/776 or
http://www.netlib.org/toms/776

ARNCHEB ERA 1993
ftp://ftp.cerfacs.fr
in directory pub/algo/software/Qualcomp/Arncheb

ARPACK IRA 1995
ftp://ftp.netlib.org/scalapack/arpack96.tgz or
http://www.netlib.org/scalapack/arpack96.tgz

The ARPACK package is the collection of particularly versatile routines, incorporating
reverse communication scheme, which allows one to perform certain operations outside
the subroutine. The ARPACK routines require the program to provide product of the
operator matrix and a vector indicated by the procedure. The matrix is not passed to the
routine, what leaves to the user the decisions on the manner in which the matrix is stored
and the matrix-vector product is realized. It allows the application of fast and efficiently
optimized mathematical subroutines intended for a particular format of the matrix. Great

1Available via anonymous ftp from ftp://info.mcs.anl.gov/pub/tech reports/reports/P547.ps.Z
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versatility of the ARPACK routines relies also on the possibility of choosing an end of the
spectrum where the eigenvalues are to be found.
The implementation of the real version of the implicitly restarted Arnoldi algorithm

(see App. A) from the ARPACK is called DNAUPD. This routine requires many formal
parameters to be selected. Their detailed description can be found in extensive docu-
mentation of the ARPACK. Those of the parameters which are responsible for definition
of the problem, such as problem size N , problem type (standard or generalized) BMAT,
number of eigenvalues to compute k (denoted by NEV in the code) or the spectrum end
of interest WHICH, are obvious. However, the parameters responsible for efficiency and
accuracy are not straightforward in selection. The most important for efficiency is Krylov
subspace2 size l (denoted by NCV in the code), which should be chosen in dependence
on N , k (NEV) and the properties of the matrix resulting from the particular projection
method. In order to properly select l (NCV) some tests are usually required. The most
important for accuracy of computed eigenvalues is TOL parameter, which is related to Ritz
estimates rj (see Sec. A.4).

2see Appendix A for the definition of Krylov subspace
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Examples of analysis

In the preceding chapters we developed out a set of tools that are required for analysis
of microwave waveguide and resonator structures. Our aim was to select approaches that
could lead to the most effective analysis methods.
In Chapter 2, we found analytical formulations possessing features important for effi-

ciency of the numerical solution, i.e. small number of components involved, suppression of
generation of spurious solutions (spurious-free property), symmetry of the operators. We
found out that from this point of view the most effective approach to the analysis of the
most general waveguides was offered by spurious-free formulations involving four trans-
verse components. If the waveguides are strictly bidirectional spurious-free formulations
involving two transverse components can be used instead. Application of scalar formula-
tions is always the most effective approach due to small size of the resulting eigenproblem
and the fact that they do not generate spurious solutions. However, scalar waveguide
formulations are only possible in the case of fully homogeneous and isotropic structures
and in the solution of static and cutoff problems. The most efficient analysis of resonators
with rotational symmetry relies on using appropriate spurious-free waveguide formula-
tions. Unfortunately, analysis of general inhomogeneous resonators requires application
of full vector six- or three-component formulations, which are potentially spurious.
In Chapter 3, we discussed various classical and hybrid conversion methods of the

analytical eigenproblem to a matrix one from the point of view of their versatility and
topological properties of the resulting problems, such as the type, size and symmetry.
We found out that classical conversion methods such as the Rayleigh-Ritz method or
the method of moments involving basis (and testing) functions defined over the entire
domain can only be applied to the analysis of the structures of relatively simple geome-
tries. These methods result in problems with medium size and dense matrices. The
finite element method, which can be viewed as a kind of the Rayleigh-Ritz or Galerkin
methods involving locally defined basis functions, is much more versatile and produces
eigenproblems with large and sparse matrices. Another classical method, the finite dif-
ference frequency domain, is also well suited for analysis of structures with complex ge-
ometries. The matrices resulting from this method are very large and highly diagonally
structured (i.e. sparse). It was also found out that hybrid methods, such as the coupled
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: The structures analyzed during the tests: (a) parallel plate guide, (b) image
line, (c) circular waveguide, (d) grooved waveguide with toroidal inlay, (e) rotationally
symmetric resonator, (f) rotationally symmetric open resonator.

mode method and eigenfunction expansion methods, produce problems with small and
dense matrices because they involve basis (and testing) functions that are “optimized”
in the sense of obeying internal and external boundary conditions. It seemed that the
coupled mode method could be well suited for analysis of structures containing media
of complex properties, while eigenfunction expansion methods could be advantageous in
computation of dispersion characteristics of waveguides.
In Chapter 4 (and Appendix A), we presented the potential of various numerical

methods for solving matrix eigenproblems. We were specially interested in the methods
available in the form of public domain software. We found that among the methods based
on matrix transformations, only the QR method could be applied to symmetric as well as
nonsymmetric problems and had robust and stable implementations. Due to the fact that
the QR method computes all eigenvalues and keep entire matrix in the memory, solution
of large problems is very expensive. Another kind of methods, the iterative ones, much
better conforms to the problems with large and sparse matrices. The most mature codes
were available for implementations of the Arnoldi and the subspace iteration methods.
These methods compute only selected eigenvalues and can easily incorporate spectral
transformation techniques for accelerating the convergence.
To illustrate the application of different methods discussed in Chapters 2–4, compare

performance, accuracy and efficiency we analyzed several waveguide and resonator struc-
tures shown in Fig. 5.1 using appropriate formulations for each given structure, various
conversion methods and appropriate matrix eigenproblem solution methods. The results
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of the tests, shown in the following sections, were grouped according to the classical
and hybrid conversion methods used. The examples of the classical methods include the
Galerkin method, finite element method and finite difference frequency domain method,
while the examples of hybrid methods include the coupled mode method and eigenfunction
expansion method.
There were several purposes of the selected tests. The first of them was to show ef-

ficiency of the Galerkin method in the analysis of the structures of simple geometry but
filled with the medium of complex properties, such as chiroferrite. In order to show high
efficiency of the iterative methods based on projection onto the Krylov space, such as the
Arnoldi method, a set of tests concerning the analysis of an image line was performed.
The tests included three classical conversion methods such as the Galerkin method, finite
element method and finite difference frequency domain method. The aim of two next
tests concerning the analysis of rotationally symmetric closed and open resonators was
to show additional speedups that can be obtained in consequence of using various spec-
tral transformations with iterative solvers. To show high efficiency of hybrid conversion
methods in the analysis of anisotropic structures and fast determination of dispersion
characteristics of waveguides the tests of the coupled mode method and an eigenfunction
expansion method were respectively made. The former method was used to the analysis
of a grooved waveguide filled with toroidal magnetized ferrite, while the latter one was
applied to the analysis of an image line and a circular waveguide loaded with anisotropic
magnetic medium.

5.1 Galerkin method

To show that the Galerkin method can be very effective in the analysis of the structures
of a simple shape, containing material of complex properties, it is applied to the analysis
of a homogeneous parallel plate chiroferrite waveguide.

5.1.1 Parallel plate chiroferrite waveguide

Problem and structure. In this example we will show the application of the Galerkin
method to the investigation of the properties of the parallel plate waveguide shown in
Fig. 5.2, containing a composite medium having both chiral and gyrotropy properties.
The chiroferrite medium is weakly magnetized in the z-direction thus the permeability
tensor µ is given by (2.95), where µ = µzz = µ0 and µa = µ0γMs/f (gyromagnetic
constant γ = 2.8 [MHz/Oe], saturation magnetization Ms = 1000Gauss). The remaining
parameters of the structure are: d = 10mm, ε = ε0, ξc = 0.001�. We concentrate on the
determination of the dispersion characteristic for the fundamental mode.
We can distinguish two groups of modes appearing in the investigated structure,

namely the even and the odd [70] ones. They can be computed independently, by selecting
adequate basis functions into expansion. The proper selection of the basis functions is
discussed in the paragraph devoted to the conversion to a matrix problem.
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z

dµ ξc,ε ,

Figure 5.2: Dimensions of the parallel plate waveguide structure.

Formulation. In Chapter 2, only anisotropic media were considered. In the case of
chiral media, it is necessary to develop a separate formulation, because the relations
between flux densities and field intensities involve additional couplings between the electric
and magnetic components.
For chiral media, material equations (2.6) and (2.7) take the form

�D = ε · �E + jξc �B

= (ε + ξ2cµ ) · �E + jξcµ · �H (5.1)

�B = µ · �H − jξcµ · �E

= µ · ( �H − jξc �E) (5.2)

where ξc is the chirality admittance. Therefore, steady state Maxwell’s equations (2.2)
and (2.3) can be expanded to the form

∇× �E = −jω �B

= −jωµ · �H + ωξcµ · �E (5.3)

∇× �H = jω �D

= jω(ε + ξ2cµ ) · �E + ωξcµ · �H (5.4)

To derive the eigenproblem we use the formulation for transverse electric and magnetic
fields, analogous to (2.66). In the derivation we assume that permittivity and permeability
tensors are described by (2.63). Applying the decomposition (2.50) to equations (5.3)
and (5.4) and isolating the transverse and longitudinal parts one can eliminate the z-
component of the fields. In consequence, the following β-formulation for transverse �Et

and �Ht fields is obtained in the form of a complex generalized eigenproblem[
ATee ATeh

AThe AThh

] [
�Et

�Ht

]
= β

[
0 −ẑ×

ẑ× 0

] [
�Et

�Ht

]
(5.5)



Chapter 5 Examples of analysis 62

where

ATee = ω(ε tt + ξ2cµ tt) · (·) − 1

ω
∇t × εzz + ξ2cµzz

µzzεzz
∇t × (·)

ATeh = jωξcµ tt · (·) + j
1

ω
∇t × ξc

εzz
∇t × (·)

AThe = −jωξcµ tt · (·) − j
1

ω
∇t × ξc

εzz
∇t × (·)

AThh = ωµ tt · (·) − 1

ω
∇t × 1

εzz
∇t × (·) (5.6)

Taking into account the homogeneity of the structure and the form of the material
tensors, problem (5.5) can be transformed into the following standard eigenproblem

[
Aee Aeh

Ahe Ahh

] [
�Et

�Ht

]
= β

[
�Et

�Ht

]
(5.7)

where

Aee = jξcẑ ×
[
ωµ tt · (·) +

1

ωε
∇t ×∇t × (·)

]

Aeh = −ẑ ×
[
ωµ tt · (·) − 1

ωε
∇t ×∇t × (·)

]

Ahe = ẑ ×
[
ω(ε + ξ2cµ tt) · (·) − ε + ξ2cµ

ωµε
∇t ×∇t × (·)

]

Ahh = jξcẑ ×
[
ωµ tt · (·) +

1

ωε
∇t ×∇t × (·)

]
(5.8)

Conversion to matrix problem. We now apply the Galerkin method using indepen-
dent expansion of �Et and �Ht fields

�Et =

Ne∑
i=1

ai�eti

�Ht =

Nh∑
i=1

bi�hti (5.9)

where the basis functions �eti and �hti are selected to be the modes existing in non-chiral
(ξc = 0) and non-gyrotropic (µ = µ) structure, obeying the following equations derived
from (5.7) and (5.8)

−ẑ ×
(

ωµ(·) − 1

ωε
∇t ×∇t × (·)

)
�hti = βi�eti

ẑ ×
(

ωε(·) − 1

ωµ
∇t ×∇t × (·)

)
�eti = βi�hti

(5.10)
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The solutions of (5.10) are TEM, TE and TM modes which, when normalized, are given
by

�eTEMt =

{
ex = 0

ey =
√

1
d

, �hTEMt =

{
hx = −

√
1
d

hy = 0
(5.11)

�eTEti =

{
ex =

√
2
d

sin(kyiy)

ey = 0
, �hTEti =

{
hx = 0

hy =
√

2
d

sin(kyiy)
(5.12)

�eTMti =

{
ex = 0

ey =
√

2
d

cos(kyiy)
, �hTMti =

{
hx = −

√
2
d

cos(kyiy)

hy = 0
(5.13)

where kyi = iπ/d. Note that ẑ × �eti = �hti and the basis functions are normalized so that∫
S

ẑ · (�eti ×�h∗
ti) ds =

∫
S

�eti · �e∗ti ds =

∫
S

�h∗
ti · �hti ds = 1 (5.14)

forming a complete set of orthonormal functions on the transverse plane S of the basis
guide.
It can be shown that for the wave propagating in the z-direction the basis functions

also fulfill the following conditions

∇t ×∇t × �eti =

{
1TE

0TM

}
k2yi�eti

∇t ×∇t ×�hti =

{
0TE

1TM

}
k2yi

�hti (5.15)

The mode of interest (the dominant one) is an even mode. The even modes are
computed when only the TEM, even TM2k and odd TE2k−1 basis functions are taken into
expansion. The odd modes are computed when only the odd TM2k−1 and even TE2k basis
functions are considered [70]. Since {�eti}i=1,...,Ne∪{�hti}i=1,...,Nh

form an orthonormal set of
functions, application of the Galerkin method leads to the following standard eigenvalue
problem of size N = Ne + Nh

A h = λh (5.16)

where λ = β, h = [a1, . . . , aNe , b1, . . . , bNh
]T and elements of A are defined with appropri-

ate inner products which using (5.10) and (5.15) can be expressed as

Aj,i =
(
Aeeeti, etj

)
=

∫
S

�e ∗
tj ·Aee�eti ds

= −ωµaξcδji + jωµξc

[
1 +

{
1TE

0TM

}(
kyi
k

)2]∫
S

�e ∗
tj · �hti ds

Aj,Ne+i =
(
Aehhti, etj

)
=

∫
S

�e ∗
tj ·Aeh

�hti ds

= βiδji − jωµa

∫
S

�e ∗
tj · �hti ds
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ANe+j,i =
(
Aheeti, htj

)
=

∫
S

�h ∗
tj ·Ahe�eti ds

=

(
1 + µ

ξ2c
ε

)
βiδji + jωµaξ

2
c

∫
S

�h ∗
tj · �eti ds

ANe+j,Ne+i =
(
Ahhhti, htj

)
=

∫
S

�h ∗
tj ·Ahh

�hti ds

= −ωµaξcδji − jωµξc

[
1 +

{
0TE

1TM

}(
kyi
k

)2]∫
S

�h ∗
tj · �eti ds (5.17)

where δij is the Kronecker symbol and k = ω
√

µε. The matrix A is dense, nonsymmetric
and complex.
It should be noted that exactly the same eigenproblem can be obtained using a coupled

mode formalism [70].

Solution of matrix eigenproblem. For the solution of eigenproblem (5.16) we use
EISPACK numerical implementation of the QR method (see Sec. 4.1.1), intended for com-
plex and nonsymmetric matrices. The computations were performed on a PC computer.
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Figure 5.3: Dispersion characteristics of the fundamental mode in the parallel plate waveg-
uide filled with chiroferrite and chiral medium.

Results. The dispersion characteristic of the dominant even mode calculated for N = 40

(Ne = Nh = 20) is shown in Fig. 5.3. The results for chiral structure (Ms = 0 ⇒ µa = 0)
are also presented for comparison. The nonreciprocal character of the dominant mode
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can be observed, which is in contrast to the gyrotropic or chiral structures having equal
propagation constants for two opposite directions of propagation. It can be also seen
that when the gyrotropy properties are neglected the fundamental mode appears without
cutoff frequency.

In the test described above we have shown that the Galerkin method can be very
powerful in the analysis of structures containing materials of complex properties. The
elements of the resulting matrix can easily be determined if the structure has a simple
geometry and the basis (and testing) functions can be determined analytically. If high
accuracy is not required the number of basis functions taken into expansion can be low.
Then the size of the matrix is small the QR method can be used for determination of
the eigenvalues and the corresponding eigenvectors. However, when high accuracies are
demanded, large matrices are obtained and very much time and memory consuming QR
method can be superseded by an iterative method such as Arnoldi. A comparison of
performance of these two eigensolvers is made in the next test concerning the analysis of
an image line.

5.1.2 Inhomogeneous rectangular waveguide loaded with a di-
electric slab

Problem and structure. For a given frequency f = 12GHz, we look for propagation
constants β of four dominant even modes in the structure of dimensions: a = 15.8mm,
b = 7.9mm, w = 6.9mm, h = 3.2mm, and relative permittivity of the slab εr = 9. Since
this structure is symmetric in x-direction we can independently compute even (for PEC
symmetry plane) or odd modes (for PMC symmetry plane). This requires only even or
odd basis functions to be taken into expansion. Initially, we investigate a complex problem
of parameter selection of an Arnoldi method iterative solver in context of computation
efficiency. A performance of a QR and the Arnoldi solvers is also compared. Moreover,
we test the advantages of on-line matrix-vector computations using the iterative Arnoldi
solver.

b
ε

w

h

o

a

ε r

Figure 5.4: Dimensions of the image line structure.
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Formulation. Analysis is based on formulation (2.79) for transverse magnetic fields,
which do not generate spurious solutions. Since the waveguide is loaded with non-magnetic
isotropic materials then µ tt = µzz = µ0 and ε tt = εzz = ε(x, y). Using vector identities
(2.79) can be transformed into the following form[

∇2
t (·) + ω2µ0ε(·) +

1

ε
∇tε ×∇t × (·)

]
�Ht = β2 �Ht (5.18)

Decomposing fields and operators in (5.18) we get[
Axx Axy

Ayx Ayy

] [
Hx

Hy

]
= β2

[
Hx

Hy

]
(5.19)

where

Axx = ∇2
t (·) + ω2µ0ε(·) − 1

ε

∂

∂y
ε

∂

∂y
(·)

Axy =
1

ε

∂

∂y
ε

∂

∂x
(·)

Ayx =
1

ε

∂

∂x
ε

∂

∂y
(·)

Ayy = ∇2
t (·) + ω2µ0ε(·) − 1

ε

∂

∂x
ε

∂

∂x
(·) (5.20)

Conversion to matrix problem. In the Galerkin method involved in the previous
example, vector fields are expanded using vector basis (and testing) functions (see (5.9)).
In order to improve accuracy of the solution, each component (Hx and Hy) of the vector
field �Ht can be expanded into series separately, as follows

Hx =
Nx∑
i=1

aihxi

Hy =

Ny∑
i=1

bihyi (5.21)

where ai, bi are the expansion coefficients and

hxi =
2√
ab

sin
mxπx

a
cos

myπy

b
; mx = 1, 2, . . . , my = 0, 1, . . .

hyi =
2√
ab

cos
nxπx

a
sin

nyπy

b
; nx = 0, 1, . . . , ny = 1, 2, . . . (5.22)

The even modes can be found by taking only even basis functions (mx, nx even) into the
expansion. Since {hxi}i=1,...,Nx∪{hyi}i=1,...,Ny are chosen so that they form an orthonormal
set of functions on transverse plane S of the basis guide, application of the Galerkin
method leads to the standard eigenvalue problem

A h = λh (5.23)
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where λ = β2, h = [a1, . . . , aNx , b1, . . . , bNy ]T and elements of A are defined with

Aj,i =
(
Axxhxi, hxj

)
=

∫
S

�h ∗
xj ·Axx

�hxi ds

Aj,Nx+i =
(
Axyhyi, hxj

)
=

∫
S

�h ∗
xj ·Axy

�hyi ds

ANx+j,i =
(
Ayxhxi, hyj

)
=

∫
S

�h ∗
yj ·Ayx

�hxi ds

ANx+j,Nx+i =
(
Ayyhyi, hyj

)
=

∫
S

�h ∗
yj ·Ayy

�hyi ds (5.24)

The resulting matrix A is dense and nonsymmetric. Its size N = Nx + Ny is usually
moderate.

Solution of matrix eigenproblem. For the solution of dense matrix problems the
QR method is usually used. To show how the application of the iterative methods can
improve efficiency of the solution we test two computer implementations of the QR and
the Arnoldi methods described in Chapter 4. For the solution of eigenproblem (5.23) we
use the routines DGEEV and DNAUPD from LAPACK and ARPACK packages. No spec-
tral transformations are applied to the matrix. Matrix-vector computations, required
by DNAUPD, are performed using DGEMV routine from BLAS. The eigenvalues of interest
(λ = β2) are those of the largest real part [26, 29] (this information is passed to DNAUPD
routine).
The computations are performed on a super-scalar SGI Power Challenge XL computer

with four R8000 processors, each equipped with 1MB of fast cache memory.

Results. During the tests we computed four dominant even modes whose normalized
propagation constants β, calculated for N = 1800 (Nx = Ny = 900), are shown in
Table 5.1.

Table 5.1: Four dominant normalized propagation constants β/k0 (k0 is the wavenumber
for a plane wave in the free space) of even modes of image line shown in Fig. 5.4, computed
using Galerkin method. Parameters of the structure are: a = 15.8mm, b = 7.9mm,
w = 6.9mm, h = 3.2mm, εr = 9, and f = 12GHz.

Eigenvalue no. GM (N = 1800, even basis funct.)
1 1.0274 + j0.0000
2 0.3647 + j1.2937
3 0.3647 − j1.2937
4 0.0000 + j1.6822

We realized that for a given problem size N the computation time of DNAUPD rou-
tine was highly dependent on the size of the Krylov subspace l and TOL parameter (see
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Sec. 4.1.2). A number of tests [26] were made, where l and TOL were tuned in order to
efficiently apply the routine. It was found that for this type of eigenproblem the time-
optimum subspace size l should fulfill the following condition

4 <
l − k

4
√

N
< 12 (5.25)

The value of l in the middle of the range was therefore

l0 = k + 8
4
√

N (5.26)

In our case (k = 4) the time-optimum subspace size l0 was in the range 25 < l0 < 56 for
50 < N < 1800.
Numerical tests [26] also revealed that the selection of a too small value of TOL resulted

only in a growth of computation time. For example, setting TOL = 10−6 led to the
accuracy of the 1-st eigenvalue equal to 10−14 (which was very close to the maximum
available accuracy) and was 10−10 for the next three eigenvalues. However, calculation of
all eigenvalues with the accuracy of 10−14 required setting TOL = 10−11, which enlarged
total computation time by 50%, while setting TOL = 10−16 doubled the time offering no
improvement in accuracy.
In the remaining tests performed by the group with author’s participation [26–29]

we used l = l0 and TOL = 10−6. The QR and the Arnoldi methods were ran on one
to four R8000 processors. The computation times for the one processor case are shown
in Fig. 5.5(a). These results were computed using complib.sgimath optimized library,
which included all LAPACK and BLAS routines (DGEEV and DGEMV among others). It can
be seen, that the Arnoldi method offers solution faster than the QR method, for N > 70.
Moreover, for N > 450 the time spent in matrix-vector operations dominates the total
Arnoldi computation time. Therefore, for large values of N , efficiency of the Arnoldi
method is governed mainly by the efficiency of the matrix-vector product. In Fig. 5.5(b)
we can see a speedup of the Arnoldi method over the QR. Large speedup (≈ 23) for
N = 600 is caused by very efficient utilization of cache memory by DGEMV routine from
complib.sgimath library, while deterioration of the speedup for larger values of N is
caused by out-of-cache effect [26–29]. When the amount of required memory approaches
size of the cache much slower conventional memory is used. Since memory usage in the
Arnoldi method is smaller than in the QR algorithm the cache can be effectively used for
larger values of N . However, for N > 600 both algorithms definitely works outside the
cache. This effect can be used to optimize efficiency of the Arnoldi solver on multiprocessor
computers.
Other interesting aspects of parallel computations are comprehensively described in

[26–29]. One of the tests verified that, in contrast to DGEEV, DGEMV can be very effectively
parallelized. It means that efficiency of the QR method is almost independent on the
number of processors used, while the Arnoldi method proves to be very well scalable.
Accurate computations require the solution of large problems. They demand large

amount of memory (O(N2)) if matrix A is explicitly stored. This amount cannot be
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Figure 5.5: Computation times for QR and Arnoldi methods ran on one R8000 processor
(a). The corresponding speedup of the Arnoldi method over the QR (b).
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reduced if QR method is used. However, when an iterative method, such as Arnoldi,
is applied a matrix-vector product in inner products (5.24) can be computed on-line,
i.e. anytime when matrix A is required it can be computed using lookup tables containing
transcendental functions (integrals of sine and cosine functions) instead of being recalled
directly from memory. Since the size of the lookup tables is about

√
N/2 ×√N/2 and

six of them are required for full description of the problem then the number of double
elements stored is therefore reduced by the factor of 2N/3. However, this leads to much
longer time spent in matrix-vector operations [26].
This example showed that for efficient application of the implicitly restarted Arnoldi

method its parameters should be selected with care. Once they are properly chosen, the
Arnoldi method offers significant speedup over the QR method. Additional speedup can
be gained when the computer architecture aspects, such as the size of cache memory, are
taken into account. It was also shown that in the case when computer memory is critical,
the matrix can be computed on-line but the computational cost is much higher.
The conclusions of the discussion are also applicable to other waveguide structures

analyzed by means of the Galerkin method and all types of computed modes (even, odd
or both).

5.2 Finite element method

To compare computational aspects of the solution of eigenproblems resulting from various
methods of conversion we apply the finite element method (FEM) to the analysis of the
image line structure analyzed previously by means of the Galerkin method (in Sec. 5.1.2).
The FEM is a technique generating generalized eigenproblem with sparse matrices. Thus,
comparison of performance of two sparse matrix eigensolvers, i.e. the subspace iteration
and the Arnoldi method, can also be made. Moreover, great efficiency of spectral trans-
formation in the case of a generalized eigenproblem solution will be demonstrated.

5.2.1 Inhomogeneous rectangular waveguide loaded with a di-
electric slab

Problem and structure. In this test we compute propagation constants of four dom-
inant even modes of the image line shown in Fig. 5.4, using a FEM code developed at
UCL London [33]. Symmetry of the structure is taken into account and only a half of
it is analyzed, resulting in possibility of computation of even and odd modes separately.
In order to compare efficiency of a subspace iteration solver versus an Arnoldi one we
replaced the original UCL eigensolver based on the subspace iteration method with the
one involving the implicitly restarted Arnoldi method.

Formulation. As the starting point, the spurious-free formulation (2.79) for transverse
magnetic fields Ht is used. For non-magnetic materials (µ tt = µzz = µ0) premultiplication



Chapter 5 Examples of analysis 71

of (2.79) by ẑ × ε −1
tt · (·) leads to the following nonsymmetric generalized eigenproblem

[−ω2µ0(·) − ẑ ×∇tκzzẑ∇t × (·) − ẑ × κ tt · ∇t × ẑ∇t · (·)] �Ht = β2ẑ × κ tt · ẑ × �Ht (5.27)

where κ tt and κzz are given by (2.65).

Conversion to matrix problem. In the UCL implementation of the FEM method
mixed order triangular elements are used, i.e. elements of the first order are used in
homogeneous regions of the structure, while the second order elements are used on the
boundaries between different media. Rayleigh-Ritz method with local potential and equiv-
alent Galerkin method (see Sec. 3.1) applied to (5.27) result in the generalized matrix
eigenproblem of the form [33]

A h = λB h (5.28)

where λ = −β2 and

A =

[
A xx A xy

A yx A yy

]
, B =

[
B xx B xy

B yx B yy

]
, h =

[
h x

h y

]
(5.29)

Symbols h x, h y denote vectors of expansion coefficients for x and y magnetic field com-
ponents, respectively. The definitions of elements of all A ’s and B ’s submatrices and
details of the derivation can be found in [33].
Matrices A and B , shown in Fig. 5.6, are sparse and, in general, nonsymmetric and

complex. However, for lossless media B becomes symmetric and A is also symmetric,
when the structure is additionally homogeneous.
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Figure 5.6: Sparsity patterns for matrices A and B resulting from FEM.
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Solution of matrix eigenproblem. Since the matrices are large and sparse we test
two sparse matrix iterative solvers, i.e. the subspace iteration solver [33], originally imple-
mented in the UCL code, and the alternative implicitly restarted Arnoldi method solver,
DNAUPD from ARPACK.
We decided to apply a very efficient shift-invert preconditioner, which can be used

with a generalized problem without any additional cost (see Sec. A.1.2.2 for discussion).
The shift-invert strategy can be implemented as in Alg. 17 from page 136. It relies on
implicit solution of standard eigenproblem

(A − σB )−1B h =
1

λ − σ
h (5.30)

where σ is the shift. In the modified eigenproblem (5.30), the matrix operator is the
product of the inverse of matrix (A −σB ) and matrix B . The inversion is not computed
directly. Instead, a sparse LU decomposition of the matrix is performed once before the
iteration and when the product y = (A − σB )−1B x is required, a linear system of
equations (A − σB )y = B x is solved.
The convergence rate in the shift-invert mode strongly depends on the shift σ (see Sec.

A.1.2.2 for discussion). In the analysis of waveguides it is convenient to choose the shift so
that σ > k20εmax where k0 is the wavenumber for a plain wave in vacuum and εmax is the
maximal permittivity of the materials within the structure. In this case, the dominant
modes correspond to the eigenvalues of (5.30) possessing the largest magnitude.
Our computations are performed on the same super-scalar SGI Power Challenge XL

computer as mentioned in Sec. 5.1, using one R8000 processor.

Results. During the tests we computed four dominant even modes whose normalized
propagation constants β, calculated for N = 2046, are shown in Table 5.2.

Table 5.2: Four dominant normalized propagation constants β/k0 (k0 is the wavenumber
for a plane wave in the free space) of even modes of image line shown in Fig. 5.4, computed
using FEM method. Parameters of the structure are: a = 15.8mm, b = 7.9mm, w =
6.9mm, h = 3.2mm, εr = 9, and f = 12GHz.

Eigenvalue no. FEM (N = 2046, half the struct.)
1 1.0192 + j0.0000
2 0.3264 + j1.2862
3 0.3264 − j1.2862
4 0.0000 + j1.6839

Parameters of the Arnoldi and subspace iteration solvers are selected so that the same
shift σ is applied, the size of the subspace is fixed at l = 8 in each of the solvers and the
relative accuracy of computed eigenvalues is 10−6. Due to convergence problems of the
subspace iteration we have to set σ as high as 12k20 in the case of even modes.
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Figure 5.7: Calculation times of four dominant even modes, computed by means of sub-
space iteration and Arnoldi methods (a) and speedup of the Arnoldi method over the
subspace iteration (b).
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Calculation times for both solvers are presented in Fig. 5.7(a). The Arnoldi algorithm
is much faster than the subspace iteration one. Speedup of the Arnoldi method over
subspace iteration, presented in Fig. 5.7(b), is greater than 12 for almost all problem
sizes. Very similar observations can be made for calculation of odd modes. In this case,
the shift was set to σ = 16k20 and corresponding speedup was approximately 8 [73, 74].
Better performance of the implicitly restarted Arnoldi method comes from two factors.

One reason is a faster convergence rate, which results in fewer iterations before the con-
vergence criteria are satisfied, i.e. 9 iterations versus ≈ 45. The second reason is that the
Arnoldi iterations involve fewer products of the operator matrix and a vector demanding
very costly solutions of the linear system (A − σB )y = B x (they dominate the solution
time of both iterative methods). The Arnoldi method requires the system to be solved
≈ 30 times, while the 45 iterations in the subspace iteration method is associated with
360 solutions. Comparison of the number of solution steps gives the figure of 12 which is
in agreement with the data in Fig. 5.7(b).
It should be noted, that the results shown in Fig. 5.7(a) and (b) do not take into

account the time spent initially in the LU decomposition of the matrix. This time for
N > 400 becomes greater than the Arnoldi time and for N > 1800 it is almost 10 times
larger (e.g. for N = 1856 the LU time is approximately 5s, compared to 0.6s of the Arnoldi
time). Additional factor influencing total computational time of the eigensolvers is partial
loss of the sparsity of the operator matrix that is stored in the form of the decomposition
matrices L and U (see Sec. A.5.2). Therefore, additionalO(N) of memory is also required.
The results for the case of computation of four dominant odd modes are similar. The

detailed description can be found in [73, 74].

It was shown that in the solution of generalized eigenproblems generated in the anal-
ysis of waveguides by means of the FEM method the Arnoldi method is much faster than
the subspace iteration method. Compared to a standard eigenproblem, iterative solution
of a generalized one requires additional effort (the time and memory) of computing the
matrix decomposition and subsequent solution of a linear system. However, due to ap-
plication of the shift-invert preconditioner a convergence rate of the solver is improved.
In consequence, the total time used by the Arnoldi solver (including the LU decomposi-
tion time) in the case of sparse matrix FEM eigenproblem is much smaller than the time
needed by the solver applied to the dense matrix problem of the same size, obtained by
means of the Galerkin method. A comparison of both solution times for N ≈ 1800 is
presented in Table 5.4 on page 79.

5.3 Finite difference frequency domain method

Another technique which results in eigenproblems with sparse matrices is the finite differ-
ence frequency domain method (FDFD). However, in contrast to the FEM the eigenprob-
lems produced by the FDFD are standard rather than generalized ones and the matrices
are additionally highly diagonally structured (see Fig. 5.9). In Sec. 5.3.1, we apply the
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FDFD method to the analysis of the image line structure previously analyzed by means
of the Galerkin (Sec. 5.1.2) and FEM (Sec. 5.2.1) methods. This offers the possibility
to compare computational aspects of the solution of the eigenproblems resulting from
various methods of conversion.

5.3.1 Inhomogeneous rectangular waveguide loaded with a di-
electric slab

Problem and structure. We are interested in propagation constants β of eight dom-
inant modes of the image line shown in Fig. 5.4. Symmetry of the structure is not taken
into account, because all (even and odd) modes are of interest. To compare the perfor-
mance of the Arnoldi solver operating on highly sparse matrices with the performance of
the QR method and with the Arnoldi solver applied to the matrices resulting from the
other conversion methods, the time-optimum parameters of the Arnoldi solver are first
found.

Formulation. In our analysis, we involve the spurious-free formulation (2.78) for trans-
verse electric fields. It is premultiplied by −ẑ×(·) before the conversion to matrix problem,
resulting in the standard eigenproblem of form[

−ω2ẑ × µ tt · ẑ × ε tt · (·) + ẑ × µ tt · ∇tµ
−1
zz ẑ∇t × (·) + ∇tẑε−1zz ∇t · ε tt · (·)

]
�Et

= β2 �Et (5.31)

Conversion to matrix problem. Computational domain is discretized using con-
strained Nx × Ny Yee’s grid shown in Fig. 5.8, where Nx and Ny respectively denote the
number of grid points in the x- and y-direction. The grid is nonuniform (graded) and
chosen so that the edges of electric cells conform to the boundaries of the slab.
Direct discretization method is applied to equation (5.31). Each of the differential

operators is estimated using the second order (3.52–3.53) or the first order (3.48–3.49)
approximations of derivatives, accordingly to the homogeneity of the grid in the discretized
regions. Effective permittivity concept [13,122–124] is used for estimation of the permit-
tivity in the points on the dielectric boundary. Since the structure is filled with isotropic
medium the operators corresponding to the effective permittivity and permeability are
diagonal.
The developed code performs a discretization of equation (5.31), which leads to the

standard eigenproblem in the form of [72]

A e = λe (5.32)

where λ = β2 and

A =

[
A xx A xy

A yx A yy

]
, e =

[
e x

e y

]
(5.33)
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Figure 5.8: An example of nonuniform (graded) 6×4 Yee’s grid applied to the cross-section
of an image line.

 NX = 20, NY = 20, N = 760, NZ = 3744

Figure 5.9: Sparsity pattern for matrix A resulting from FDFD.
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Symbols e x, e y denote vectors of Ex and Ey field intensities in the discretization points.
The resulting matrix A , shown in Fig. 5.9, is highly diagonally structured, sparse and
nonsymmetric. Its size N ≈ 2NxNy is usually very large.

Solution of matrix eigenproblem. Problem (5.32) is solved using DNAUPD implemen-
tation of the Arnoldi method. Eight largest real part eigenvalues (k = 8) are investigated.
No spectral transformations are applied to the matrix. Efficient realization of matrix-
vector multiplication for sparse matrices is realized by AMUX subroutine from SPARSKIT
package1.
Computations are performed on the same super-scalar SGI Power Challenge XL com-

puter as mentioned in Sections 5.1.2 and 5.2.1, on one R8000 processor.

Results. Normalized propagation constants β of eight dominant modes computed dur-
ing the tests, calculated for N = 1740 (Nx = Ny = 30), are shown in Table 5.3.

Table 5.3: Eight dominant normalized propagation constants β/k0 (k0 is the wavenumber
for a plane wave in the free space) of even modes of image line shown in Fig. 5.4, computed
using the FDFD method. Parameters of the structure are: a = 15.8mm, b = 7.9mm,
w = 6.9mm, h = 3.2mm, εr = 9, and f = 12GHz.

Eigenvalue no. FDFD (N = 1740, whole struct.)
1 1.9762 + 0.0000
2 1.0264 + 0.0000
3 0.5583 + 0.0000
4 0.0000 + 1.2665
5 0.3710 + 1.2985
6 0.3710 − 1.2985
7 0.0000 + 1.6789
8 0.0000 + 1.8735

For the number of grid lines Nx and Ny varying from 10 to 30, the time-optimum size
l of the Krylov subspace was experimentally selected to be [72]

l = k + 2
4
√

N (5.34)

where N is the problem size and k = 8 is the number of eigenvalues to be calculated.
Computation times of the DNAUPD subroutine for l defined by (5.34) and TOL = 10−6

are presented in Fig. 5.10(a). Comparison of the computation times of the Arnoldi pro-
cedure versus the QR method is shown in Fig. 5.10(b). We can see dramatic performance
improvement when DNAUPD is used. It stems from the fact that for sparse matrices the
dependence of calculation time on problem size N is nearly linear, in contrast to O(N3)

1Available via anonymous ftp from ftp://ftp.cs.umn.edu/dept/sparse/SPARSKIT2.tar.gz or as
a link from Yousef Saad home page http://www.cs.umn.edu/~saad.
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Figure 5.10: Computation times of Arnoldi DNAUPD subroutine (a) and speedup over QR
DGEEV eigensolver (b).
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dependence observed for the QR method where the matrices have to be converted into a
dense format.

5.3.2 Comparison of classical conversion methods

Various approaches discussed in previous sections are compared in Table 5.4. In contrast
to the Galerkin and FEM methods, the time spent in the product of a very sparse matrix
resulting from the FDFD and a vector is small compared to the total computational
time of the FDFD. In effect, the strategy incorporating the FDFD and Arnoldi methods
is the fastest from all strategies summarized in Table 5.4. The approach solving the
generalized eigenproblem generated by the FEM is 2 times more expensive (due to the
large computation time of the LU decomposition). In fact, this speedup is even greater,
because the time for the FDFD/Arnoldi method corresponds to the computation of 8
eigenvalues, while for the FEM/Arnoldi method only to the 4 ones. Additionally, the
application of the LU decomposition requires O(N) more memory for storing the matrix
in the decomposed form. Other strategies are much slower, e.g. the Galerkin method with
the Arnoldi solver is for the same size of the problem is 40 times slower, while this figure
is as high as 500 or 600 when the QR eigensolver is used.

Table 5.4: Approximate solution times of eigenproblems of size N ≈ 1800 arising in the
analysis of an image line by means of the Galerkin method (GM), FEM and FDFD.

Conversion
method

GM FDFD GM FEM FEM FDFD

Matrix dense sparse dense sparse sparse sparse
Eigensolver QR QR Arnoldi LU+ SI LU+Arnoldi Arnoldi
Spectral
transformation

none none none shift-invert shift- invert none

Eigenvalues
computed

N N 4 4 4 8

Time [s] 1500 1250 100 5 + 8 5 + 0.6 2.5
Acceleration 600 500 40 5 2 1

It was shown in this test that computational complexity of the Arnoldi algorithm is
O(N) for sparse matrices, in contrast to O(N3) dependence reported for the QR method.
The amount of memory required by the Arnoldi algorithm (memory usage) is O(N) for
sparse matrices and O(N2) for dense ones, while in order to apply the QR method O(N3)

of the memory is needed. A comparison of time and memory requirements of all tested
solvers is shown in Table 5.5 along with the computational complexity and memory usage
for other eigensolvers discussed in App. A.
It can be seen that, in general, the memory used by the methods based on matrix

transformations to store the matrix is O(N2). This is due to the fact that in order to
perform the transformations the matrices must be stored explicitly in a dense format. In
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Table 5.5: Comparison of computational complexity and memory usage of various numer-
ical algorithms computing eigenvalues and corresponding eigenvectors in dependence on
matrix format. Symbols “−” denote, that the case is not applicable.

Computational Memory usage
complexity Algorithm Matrix

Numerical methods

de
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e

sp
ar
se

de
ns
e

on
-l
in
e

sp
ar
se

de
ns
e

on
-l
in
e

sp
ar
se

M
at
ri
x
tr
an
s-

fo
rm
at
io
n

QR (QZ) O(N3) − − O(N2) − − O(N2) − −
bisection O(N2) − − O(N2) − − O(N) − −
Jacobi O(N3) − − O(N2) − − O(N2) − −

It
er
at
iv
e subspace iteration

Arnoldi/Lanczos
nonsymmetric Lanczos

O(N2) O(N) O(N) O(N2) O(N)

the bisection method, the requirements for the memory are lower, because the method is
only applicable to tridiagonal matrices. Computational complexity of this method is also
smaller, because this algorithm is able to compute only selected eigenvalues. A common
constraint of bisection and Jacobi algorithms is that they can be applied only to symmetric
problems. It should be noted, that when accurate engineering calculations are required
bisection and Jacobi algorithms are less effective than the QR method (see App. A for
discussion).
In the iterative algorithms the information about the matrix is acquired in the form

of matrix-vector product. In this case the matrix has not to be stored in a dense format,
but in an appropriate sparse format or even it may not to be explicitly stored at all
if on-line matrix-vector computations are performed. In this last case, the elements of
the matrix can be computed using, for instance, lookup tables (see Sec. 5.1.2). If the
matrix is sparse or on-line matrix computations are performed the memory required for
the storage of the matrix elements (or lookup tables) is only O(N). Since the iterative
algorithms compute only selected eigenvalues (and corresponding eigenvectors), the extra
memory used by the algorithm is also O(N). Computational complexity of the iterative
algorithms is O(N) if sparse matrix problems are solved, and especially, if the matrix is
highly diagonally structured (as for the FDFD method). For dense matrices and on-line
matrix computations this complexity is O(N2). Among iterative algorithms included in
Table 5.5, the nonsymmetric Lanczos algorithm requires the least memory. However,
compared to the subspace iteration and Arnoldi methods, it is not so stable (see App. A
for details).
We can also see that the application of the QR method always requires the largest
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computer resources, while the smallest requirements for the time and the memory can
be expected when an iterative eigensolver is applied to sparse matrices. If the iterative
solver is used the matrix can also be computed on-line. Application of this strategy can
be very advantageous when the memory is critical and eigenproblems with dense matrices
(e.g. resulting from the Galerkin method) are solved. In this case the requirements for
the memory are much smaller, i.e. O(N) rather than O(N2).

The next two tests, discussed in Sections 5.3.3 and 5.3.4, concern acceleration of the
iterative eigensolvers incorporated in the analysis of rotationally symmetric resonators by
means of the FDFD method. The acceleration can be obtained when advanced spectral
transformations involving Chebyshev polynomials and finite impulse response (FIR) dig-
ital filters are applied, which both improve the convergence of the solver to the required
eigenvalues.

5.3.3 Rotationally symmetric dielectric resonator

In this test we show how the application of the preconditioning technique based on Cheby-
shev polynomials can speed up the solution of the eigenproblem arising in the analysis of
inhomogeneous resonators. An advantage of this technique over the shift-invert one is that
it does not require computation of the matrix inverse or decomposition (see Sec. A.1.2).
In this test we also compare performance of the preconditioned Arnoldi solver with the
performance of a subspace iteration solver, reported in the literature. Moreover, the
accuracy of the developed FDFD code incorporating dual Yee’s grid is compared with
the accuracy of a FDFD code described in the literature [113] that used the single grid
approach.

Problem and structure. We are interested in accuracy of computing of the smallest
resonant frequencies f of the rotationally symmetric resonator shown in Fig. 5.11(a), char-
acterized by the following parameters: D = 0.68 in= 172.72mm, H = 0.3 in= 76.2mm,
b = 1.02 in= 259.08mm, l = 0.6 in= 152.4mm, ε1 = ε2 = 1, ε = 35.74. Since this
structure is symmetric in the z-direction we can analyze only one half and compute inde-
pendently even (with PEC symmetry plane) or odd (with PMC symmetry plane) modes.

Formulation. Depending on the modes of interest (hybrid, TE or TM), the analysis is
based on three different spurious-free formulations. If hybrid modes (m > 0) are to be
found we apply formulation (2.35) for transverse electric flux, while if TE or TM modes
(m = 0) are of interest scalar formulations (2.41) for Dφ and (2.42) for Bφ are used,
respectively. Moreover, we use the nomenclature in which even hybrid and odd hybrid
modes are distinguished and denoted with HE or EH symbols.

Conversion to matrix problem. One half of the φ = const plane of the resonator
is discretized using regular Nr × Nz Yee’s grid, shown in Fig.5.11(b), where Nr and Nz
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(a) (b)

Figure 5.11: Dimensions of the rotationally symmetric dielectric resonator structure (a)
and an example of uniform 3 × 2 grid applied to a half of the φ = const plane of the
resonator (b).

denote the number of grid points in the r- and z-direction, respectively. The size of the
grid is chosen so that all dielectric boundaries coincide with the edges of electric cells.
Differential operators in each of the eigenproblems (2.35), (2.41) or (2.42) are directly

discretized, using the second order approximations. The concept of effective permittivity
[64] is applied on dielectric boundaries.
This leads to the eigenproblems in the form

A v = λv (5.35)

It should be stressed that matrix eigenproblem (5.35) is a standard one and λ = ω2 =

4π2f 2. For eigenproblem (2.35)

A =

[
LD

rr LD
rz

LD
zr LD

zz

]
, v =

[
d r

d z

]
(5.36)

while

A = LD
φφ , v = d φ (5.37)

A = L B
φφ , v = b φ (5.38)

for eigenproblems (2.41) and (2.42), respectively. Symbols d ∗ and b ∗ denote vectors of D∗
and B∗ flux densities in the discretization points. Matrix A is sparse and nonsymmetric.
Its size N ≈ 2NrNz in the case (5.36) and N ≈ NrNz in the case (5.37) or (5.38).

Solution of matrix eigenproblem. Resulting eigenvalue problems are solved using
DNAUPD implementation of the Arnoldi method. Two approaches are used in our tests.
The first one is to use no preconditioning and investigate the eigenvalues of the smallest
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magnitude (or equivalently of the smallest real part). In this case, each Arnoldi iteration
requires calculation of a matrix-vector product l−k times at the most (except for the first
one which needs l products), where k is the number of eigenvalues to find (NEV) and l is
the size of the Krylov subspace (NCV). Internally, each iteration of the Arnoldi algorithm
requires the solution of a l × l eigenproblem by means of the QR method. External
calculation of the matrix-vector product and internal solution of the l × l eigenproblem
dominate the total time of the Arnoldi algorithm.
The second approach is to apply Chebyshev preconditioner (see Sec. A.1.2.3) and

compute the eigenvalues of the largest magnitude (after the transformation the smallest
real part eigenvalues become the largest magnitude ones). Chebyshev polynomial of
order q is applied to an operator matrix via a recurrence formula (see Alg. 6 in App. A).
Therefore, each time when the product of the operator matrix and the vector is required,
q matrix-vector products are calculated. Since the eigenvalues of the operator matrix
are known, corresponding eigenvalues of A are computed using the Rayleigh quotient
(compare Alg. 5 in App. A).

Results. Using appropriate PEC or PMC conditions in the central section of the struc-
ture, we compute resonant frequencies f for each type of modes independently. In con-
sequence, an equidistant 51 × 30 grid is applied to one half of the structure. The size
of the resulting eigenproblem is N ≈ 3000 for hybrid modes, while N ≈ 1500 for TE0m
and TM0n modes. Calculated resonant frequencies are presented in Table 5.6 along with
the results for the FDFD method based on a single grid [113] and the mode matching
method [128]. The FDFD with Yee’s grid appears to be more accurate (except for TE01
and TM01 modes) than the single grid formulation and the maximum difference relative
to the mode matching method is 0.22%.

Table 5.6: Comparison of resonant frequencies [GHz] for the resonator loaded with a
dielectric rod, shown in Fig. 5.11(a). Parameters of the structure are: D = 0.68 in,
H = 0.3 in, b = 1.02 in, l = 0.6 in, ε1 = 1, ε2 = 1, ε = 35.74.

Mode TE01 EH11 HE11 TM01 HE21 EH21
Present FDFD 3.433 4.229 4.318 4.541 5.000 5.323
FD-SIC [113] 3.429 4.205 4.310 4.542 4.992 5.311

Mode matching [128] 3.428 4.224 4.326 4.551 5.00 5.33
Difference rel. to [128] −0.15% −0.12% 0.18% 0.22% 0.00% 0.13%

An analogous comparison of resonant frequencies for two anisotropic dielectric res-
onator structures can be found in [76] and [75]. The conclusions concerning the accuracy
of our approach are similar and the maximum difference relative to the mode matching
method does not exceed 0.25%.
To test the efficiency of the Arnoldi solver and compare it with the SI we compute two

dominant (k = 2) TE0 odd modes for the structure described above, with accuracy to
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the third decimal. The results are presented in Table 5.7. For unaccelerated case we can
observe that as the size of subspace l increases, the number of iterations decreases and so
does the number of matrix-vector products. Nevertheless, for larger values of l the total
computation time increases due to more costly internal l × l eigenproblem solutions. On
the other hand, when l decreases, the number of required matrix-vector products rapidly
grows up and the total time also increases.

Table 5.7: Computational cost of analysis of the isotropic dielectric resonator in unaccel-
erated case and calculation times for the optimal order q of acceleration polynomial for
the problem of size N ≈ 1500.

l 4 5 10 15 20 25 30 35 40 45 50
iterations 5343 1483 155 84 52 37 28 30 20 20 17
mat-vec 10688 4443 1228 1083 933 850 782 987 760 860 816
time [s] 106.6 43.2 12.6 12.7 12.8 13.3 13.4 17.9 15.3 18.7 19.1

acc. time [s] 3.9 3.2 2.9 3.1 3.1 3.1 3.5 2.9 3.3 3.8 4.3
(qopt) (60) (20) (10) (20) (20) (10) (30) (20) (20) (20) (20)

These trade-offs can easily be mitigated when the Arnoldi method is combined with the
Chebyshev acceleration technique. Implementation of this technique requires definition of
c and e parameters in accordance with equations (A.27). For comparison purposes, these
parameters are selected in the manner described in [113]. Application of the preconditioner
causes that the number of iterations taken is significantly reduced. For example, for
10 ≤ p ≤ 20 the decrease is by the factor of ≈ 15 for q = 10 and ≈ 30 for q = 20. This
causes that the total calculation time is dominated by the time spent in matrix-vector
operations. The number of computed products is shown in Fig. 5.12 for a few different
values of Chebyshev polynomial order q. We see that there are many cases where we
need only 700 products to get convergence, especially for 10 ≤ p ≤ 35 and q = 10. This
result is 30% better than the one reported in [113], where the subspace iteration solver
needed 1000 products. For large values of q the Arnoldi algorithm makes only 1 iteration,
resulting in pq matrix-vector products. Thus, if l in not sufficiently small the calculations
are inefficient.
As can be seen in Table 5.7, the optimal total calculation time for the unaccelerated

case was 12.6 s for l = 10 on our SGI Power Challenge computer used. The shortest times
are observed for l and q offering the smallest number of matrix-vector products i.e. 2.9 s
for q = 10 and l the same as above, which gives the speedup factor > 4. All the points
located in Fig. 5.12 below a thick dotted line indicate the total calculation times smaller
than 4 s. In all these points the speedups are greater than 4. Much more impressive
speedups are offered for small memory calculations (l = 4) causing that for 50 ≤ q ≤ 90

the computation times are at most 40% longer than the optimal one. General observations
for other mode types (TM, HE, EH) are similar.
It was shown in this test that the performance of the Arnoldi solver with Chebyshev
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Figure 5.12: The number of matrix-vector products taken in the analysis of the isotropic
dielectric resonator for different values of l and q.

preconditioning strongly depends on the choice of the subspace size l and the polynomial
order q. Once they are properly chosen, the implicitly restarted Arnoldi method can
offer considerable memory and time savings and can be more efficient than the subspace
iteration in the FDFD analysis of rotationally symmetric resonator structures. It was also
found that the FDFD resonator formulation based on Yee’s dual grid is more accurate in
implementing boundary conditions than the one based on single grid.

5.3.4 Rotationally symmetric open resonator

In this test we show application of another powerful preconditioning technique, based on
finite impulse response (FIR) digital filters, to the solution of the eigenproblem arising in
the analysis of high order modes of a rotationally symmetric inhomogeneously filled open
resonator. An alternative approach that is capable of computing the resonant frequencies
of the high order modes is the shift-invert. However, it requires computation of the
matrix inverse or decomposition, what is not possible in practice if the matrix has a very
large size. The FIR filter preconditioning overcomes this difficulty because analogously to
the Chebyshev preconditioning it does not require computation of any matrix inversion
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or decomposition. In this test we also investigate the accuracy of a correction for the
computed resonant frequencies, due to the numerical dispersion.

Problem and structure. We investigate resonant frequency of quasi TEM0,0,20 mode
(in a Gaussian beam notation) of a typical inhomogeneously loaded open resonator, shown
in Fig. 5.13. The bottom and the top covers of this rotationally symmetric resonator are
respectively plane and spherical metallic mirrors. Since the analytical solutions exist for
the structure in Fig. 5.13, the accuracy of the computed resonant frequencies can easily
be verified.

r=40mm

L=
51

.3
m

m

R
=7

6.
2m

m

t=0.5mm =10ε

Figure 5.13: Dimensions of the open resonator structure loaded with a dielectric disc.

Formulation. The investigated quasi TEM0,0,20 mode corresponds to the mode of az-
imuthal mode index m = 1. We use the same formulation for hybrid modes as in the
previous example, i.e. (2.35) for transverse electric flux �Dt.

Conversion to matrix problem. We use the discretization scheme analogous to the
one described in Sec. 5.3.3. The scheme involves constrained dual Yee’s grid. We also
apply the effective permittivity concept on dielectric boundaries, which, in this case, do
not coincide with the edges of electric cells. Moreover, a conformal technique is used to
model curved mirrors [16, 50, 64].
This approach leads again to the standard eigenproblems of form (5.35), where A and

v are described with (5.36).

Solution of matrix eigenproblem. Since the size of the resonator is large compared to
the length of the wave in vacuum λ, large matrix eigenvalue problem has to be solved and
numerical dispersion may introduce large errors into computer simulations. Moreover, the
mode of interest is relatively high, which means that one has to find eigenvalues located
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far from both spectrum ends. To overcome these difficulties polynomial preconditioning,
involving a FIR bandpass digital filter, combined with the Arnoldi method (DNAUPD) was
used. The polynomial preconditioning serves two goals. Firstly, it allows one to select
modes having resonance in a prescribed frequency range and, secondly, it accelerates the
convergence of the solver (see Sec. A.1.2).
To explain the polynomial character of the FIR filter involved we show the details

of the filter construction. Since design procedures for FIR filters are developed in the
normalized ω-domain, a transformation of the problem from the frequency domain f

should precede the design. It can be realized by the following transformation

ω = arccos

(
f − c

e

)
(5.39)

where c is the center frequency of the matrix spectrum and e is the radius of the ma-
trix spectrum. Therefore, the filter is, in fact, designed for a center frequency ω0 =

arccos(f0−c
e

). Frequency response of the linear phase FIR filter of order 2q can be written
in the form

H(ω) =

q∑
n=−q

h(n)e−jωn =

q∑
n=0

bn cos(nω) (5.40)

where bn are coefficients related to the impulse response h(n) of the filter. Thus, using
(5.39) we get

H(f) =

k∑
n=0

bn cos

[
n arccos

(
f − c

e

)]
=

k∑
n=0

bnTn

(
f − c

e

)
(5.41)

where Tn is the Chebyshev polynomial of degree n.
In our case, the linear phase 80-th order FIR filter (q = 40) with a flat monotonically

decreasing pass band and an equiripple stop band, shown in Fig. 5.14, was applied [126].
For a desired mode, the center frequency f0 of the filter is calculated from an approximate
formula (discussed below). The Arnoldi algorithm finds several eigenvalues around the
center frequency f0. The desired one is identified by examination of the corresponding
fields.
It should be noted that the approach with polynomial filtering avoids matrix inver-

sion/decomposition, which are both very ill conditioned tasks. Moreover, in the iterative
method, such as the Arnoldi method, polynomial preconditioning of the matrix can be
realized with a recursive scheme, involving matrix-vector products only.

Results. Numerical dispersion can be reduced by increasing the order of the FDFD
approximation or decreasing the discretization step. However, both approaches lead to
large complication of the code and/or increase of computation time. Instead, we can
compute a correction, based on the results for a homogeneous (empty) structure. In
our case, comparison of the calculated frequency with the one computed from analytical
approach gives the numerical dispersion error ∆f of order −0.183% [126].
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Figure 5.14: Frequency response of a 80-th order FIR filter, designed for the center
frequency f0 = 57.5853391GHz and the ripple in a stop band d = 0.001.

The grid size, which is used for computation of the resonant frequency fFD of quasi
TEM0,0,20 mode for the structure shown in Fig. 5.13, is chosen to be ∆r = ∆z = 0.158mm
(≈ λ/30 for the resonant frequency). The matrix problem to be solved involves 160.000
unknowns! As a preconditioner we use the FIR filter shown in Fig. 5.14, designed for
the center frequency f0 = ftheo + ∆f , where ftheo = 57.6909135GHz is computed from
an analytical formula for a single dielectric layer case. Since the majority of the volume
is air the dispersion error is assumed to be the same as for the homogeneous case. Ac-
cordingly, the computed frequency fFD = 57.5778935GHz is corrected by +0.183%. The
corrected resonant frequency fcorr = 57.6836978GHz is only 0.013% off the value given
by the analytical approach. This validates the use of the dispersion correction also for
the multilayer case. Field plots of the computed TEM0,0,20 mode are shown in Fig. 5.15.
Application of this digital FIR filter preconditioning technique allows us to compute

the eigenvalues located in the middle of the spectrum at a reasonable time, 8hours. One
can consider this time as high, but it should be born in mind that the size of the matrix
resulting from the FDFD is as high as 160.000 and application of another preconditioning
technique, e.g. shift-invert, for this purpose would lead to much higher computational
times and memory requirements and could be not possible in practice.
It was shown in this test that rotationally symmetric inhomogeneous open resonators

can be accurately analyzed using the FDFD method. Numerical dispersion of high quasi
TEM00q modes can be effectively corrected by considering the numerical dispersion in a
homogeneous resonator. It was also verified that resonant frequencies of high order modes
of a rotationally symmetric open resonators can be efficiently computed using the FDFD
method and the Arnoldi method with bandpass FIR filter preconditioning.
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Figure 5.15: Normalized rms [dB] field plots for TEM0,0,20 mode in inhomogeneous res-
onator.

5.4 Coupled mode method

The test described in this section shows the application of the coupled mode method,
a kind of a hybrid method, to the analysis of an inhomogeneous nonuniform waveguide
loaded with a ferrite toroid. This inhomogeneous structure of complex shape, partially
filled with the material characterized by a complex permeability tensor, is very difficult
to analyze by means of classical methods. Any analytical formulation describing this
computational problem involves complex operators for at least three field components,
what leads to large eigenproblems with complex matrices.
In the initial phase of the coupled mode method, basis functions are computed as a

solution for a simplified (basis) structure. The structure is selected so that its analysis
is less expensive than the analysis of the original structure. Since the second stage of
the coupled mode method relies on the solution of an usually small eigenproblem (see
Sec. 3.2.1) the entire method can be much more efficient than any classical approach.

5.4.1 Inhomogeneous nonuniform waveguide loaded with a fer-
rite toroid

Problem and structure. We are interested in finding the propagation constant of the
fundamental mode of the reduced height waveguide shown in Fig. 5.16(a), loaded with a
ferrite toroid. Parameters of the structure are: a = 16.0mm, b = 9.4mm, d = 6.75mm,
h = 15.8mm, w = 0.5mm, hd = 9.4mm, εr = 13, and the frequency range of interest
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Figure 5.16: Cross-section of the phase shifter structure (a) and division of the toroid to
the subregions (b).

ranges from 5 to 6GHz. Magnetization Mr inside the toroid is influenced by the impulses
of electrical current flowing via the wire placed in the central slot of the toroid. Reversing
the direction of the current causes the change of Mr sign. For the ferrite toroid at hand,
the magnetization reaches the value ofMr ≈ 840Gauss. Assuming that the magnetization
vector is normal to the z-direction µ is defined as

µ =


 µ sin2 φ + µ0 cos2 φ (µ0 − µ) sin φ cos φ −jκ sin φ

(µ0 − µ) sin φ cos φ µ cos2 φ + µ0 sin2 φ jκ cos φ
jκ sin φ −jκ cos φ µ


 (5.42)

where µ = µ0, κ = µ0γMr/f (gyromagnetic constant γ = 2.8 [MHz/Oe]) and φ is the
direction of the magnetization vector (see Fig. 5.16(b)).
Since the structure is symmetric only one of its quarters can be considered in the

analysis.
For the purpose of phase shifter application of the analyzed structure (see App. B),

we also investigate nonreciprocal phase shift ∆Θ = β+−β−, where β+ and β− are propa-
gation constants of the dominant modes for two opposite directions of the magnetization,
i.e. +Mr and −Mr respectively.

Basis functions. Basis transverse electric fields are computed using the FDFD method
similar to the one described in Sec. 5.3.1, for the structure filled with dielectric (εr =

13) and non-gyrotropic (µ = µ0) material. Corresponding transverse magnetic fields
are calculated from Maxwell’s equations. Due to the symmetry only one quarter of the
structure (see Fig. 5.16(b)) is analyzed, using 64 × 79 grid chosen so that it conforms to
the dielectric boundaries.
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Formulation of the problem. Taking into consideration only the fundamental mode
coupled mode method formalism (3.67) leads to the following simple perturbation formula
for calculating propagation constant β in the ferrite [71]

β = β1 +
ω
∫
Sf

�h∗
1 · (µ − µ0) · �h1 ds∫

S
ẑ · (�e∗1 ×�h1 + �e1 ×�h∗

1) ds
(5.43)

where ω is the angular frequency, β1 is the propagation constant of the dominant mode
in the basis structure, and �e1, �h1 are the corresponding basis electric and magnetic fields.
Since the direction φ of magnetization vectorMr is a function of position across the ferrite
cross-section Sf , so is permeability µ . In order to account for this fact in the analysis
we can divide Sf into subregions, e.g. I, II, and III shown in Fig. 5.16(b), and define φ in
each of them independently, according to the local direction of Mr.

Results. Field configuration of the fundamental mode in the basis waveguide is similar
to the rectangular waveguide TE10 mode, which has PMC at x = 0 and PEC at y = 0.
The plot of corresponding propagation constant β1, computed using the FDFD method
described above, is shown in Fig. 5.17(a).
In the calculations of propagation constants β+ and β− in the ferrite structure we

assume the following directions of magnetization vector Mr in regions I, II and III

φ1 = π/2 , φ2 = arctan

(
h − hd
w − d

)
, φ3 = π (5.44)

It was shown in [71] that such an approximation of the magnetization field improves ac-
curacy of computed propagation constants. Plots of β+ and β− are shown in Fig. 5.17(a).
Nonreciprocal phase shift ∆Θ calculated for Mr = 840Gauss is shown in Fig. 5.17(b).

A validation of the presented results was performed by measurements of a physical ferrite
phase shifter structure, described in App. B. For comparison, the measured values are
also displayed in Fig. 5.17(b). We can see that computed values of ∆Θ are 6.5 ÷ 10%

higher than the measured ones, but the variation of ∆Θ has similar character.
There are three main reasons for the observed inaccuracy. One is the application of the

coupled mode method, which should only be used when the perturbation of the fields in
the basis structure caused by the introduction of the parameters for the original structure
is sufficiently small. The second reason is that only the fundamental mode was taken into
account (only one term in the expansion). Better accuracy would be expected when using,
for example, the Galerkin method similar to the one described in Sec. 5.1.1, involving the
expansions for a few higher order modes. The third reason for the discrepancy between
the computed and measured results is a very approximate prediction of the magnetization
field inside the ferrite toroid (an accurate prediction could be obtained as the solution of
a magnetostatic problem for this structure).
It was shown in this test that the perturbation method (resulting from the coupled

mode formalism) gives a simple formula for calculating propagation constants of the
toroidal phase shifter structures. Application of the perturbation method involving basis
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Figure 5.17: (a) Propagation constant β1 of the fundamental mode in the basis dielectric
structure and in the ferrite structure (β+ and β−) for two opposite directions of magneti-
zation vector Mr. (b) Comparison of calculated nonreciprocal phase shift ∆Θ [deg/mm]
with measurements.
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functions computed by means of the FDFD, enables one to approximate magnetization
vector Mr inside the toroid much more accurately than other methods used so far.

5.5 Eigenfunction expansion methods

The eigenfunction expansion (EE) algorithms are another class of hybrid methods which
enable one to compute dispersion characteristics of the waveguides, based on the solu-
tions in a few frequency/propagation constant points. In this example, we test the most
general eigenfunction expansion approach, described in Sec. 3.2.2, which can employ the
eigenfunctions computed at arbitrary (ω, β) points from the dispersion diagram [86–88].
We show how large speedup can be gained if the EE is applied to the analysis of the im-
age line investigated in the previous sections by means of various classical methods. We
consider a few particular choices of basis/testing functions and their impact on accuracy
and efficiency of the solution. Moreover, we discuss the performance of the EE in the
analysis of a circular waveguide loaded with an anisotropic magnetic medium.

5.5.1 Inhomogeneous rectangular waveguide loaded with a di-
electric slab

Problem and structure. In the frequency range from 0 to 20GHz, we investigate
dispersion characteristics of the dominant odd modes (with PMC symmetry plane) in
the image line shown in Fig. 5.4. The dimensions of the structure are: a = 15.8mm,
b = 7.9mm, w = 6.32mm, h = 3.16mm, and relative permittivity of the slab εr = 9.
The odd modes can be computed by taking only odd basis functions into expansion. We
concentrate on all β-algorithms discussed in Sec. 3.2.2.1 and summarized in Table 3.1
(i.e. β-GS, β-S, β-G) and compare their properties.

Basis functions and reference characteristics. The application of the β-G algo-
rithm requires computation of basis functions for a given frequency f0. They are computed
using FDFD method similar to the one described in Sec. 5.3.1, involving β-formulation
(5.31) for transverse electric fields �Et and using 40 × 20 uniform grid that conforms to
the boundaries of the slab. For this gird size the FDFD method leads to the sparse ma-
trix eigenproblem of size N = 1540. Reference dispersion curves shown in Fig. 5.18 are
determined with the same FDFD method.
The application of the β-S algorithm requires computation of basis functions for a

given propagation constant β0. They are determined using an analogous FDFD approach,
involving ω-formulation for electric flux �Dt that can be derived from (2.76) premultiplied
with −ẑ × (·).
Basis functions in the β-GS algorithm are evaluated using both, β- and ω-, formula-

tions of the FDFD.
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Figure 5.18: Dispersion characteristics for three odd modes in an image line, calculated
using the FDFD method. Symbols A–I indicate various points at which modal fields
have been calculated and used as a basis in the performed tests. The modes are labelled
according to the scheme used in [79].

Results. In the first test [87, 88] the dispersion characteristics of the dominant mode
are evaluated using β-GS, β-S and β-G algorithms. Each algorithm involves a different
set of eigenfunctions. Several points belonging to three sets, denoted by letters A–I are
shown in Fig. 5.18. In particular, for algorithm β-GS which allows eigenfunctions for an
arbitrary set of pairs {ωi, βi}, two sets of basis points are used. First set consists of four
points corresponding to the same mode, namely A, B, D and E, while the second set
contains only the first two of the points mentioned above. Algorithm β-S is implemented
for the basis calculated at β0 = 0. The first three such points are denoted by B, F, G
in Fig. 5.18. Finally, for algorithm β-G, basis functions were calculated at f0 = 10GHz.
Again, the first three such points are denoted by C, H, I in Fig. 5.18.
The approximated dispersion characteristics are computed at m = 401 points (located

in 50MHz intervals in the 0–20GHz range) and compared to the FDFD reference solution
from Fig. 5.18. According to the relation (3.86) the speedup for β-S and β-G algorithms is
S ≈ 400 and S ≈ 100 or S ≈ 200 for β-GS algorithms involving basis functions computed
at n = 4 or n = 2 points, respectively. The relative error in propagation constant of the
dominant mode for the three algorithms is shown in Fig. 5.19(a). The error is computed
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Figure 5.19: (a) Error in propagation constant for the dominant odd mode (relative to
FDFD computations shown in Fig. 5.18) in three β-algorithms. The results for algorithms
β-G and β-S are plotted for the N = 10 and N = 20 odd basis modes, while for β-GS
algorithm the basis fields are evaluated at points A and B (2 modes) or A, B, D, E
(4 modes). (b) Electric and magnetic field energy error (relative to the FDFD field
computations).
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as

∆β(f) =
βee(f) − βref(f)

βref(f)
· 100% (5.45)

where βee denotes the propagation constant computed by means of the eigenfunction
expansion method, and βref is the one computed using the reference method (in this
example the FDFD method). The results for algorithms β-S and β-G are shown for the
bases consisting of N = 10 or N = 20 odd eigenfunctions (evaluated in n = 1 frequency or
propagation constant point). It is seen that all algorithms are capable of reproducing the
dispersion characteristic with a very good accuracy. In spite of the fact that algorithm
β-GS uses only two or four points in the basis it gives the best results, because all points
(A, B, D, E) used in the basis correspond to the dominant mode. It is seen that even for
the smallest basis consisting of just 2 points this algorithm gives very good results below
cutoff and may be regarded as quite satisfactory also above cutoff (error in propagation
constants below 1%). Adding two more points to the basis pushes the relative error in
propagation constant below 0.05% for all points within the region of interest. Fig. 5.19(b)
shows the energy errors in reconstructing of electric and magnetic fields computed by
β-GS algorithms, relative to the reference FDFD solution. The relative electric energy
error ∆E is computed as the minimization of the following error function

errE =

∫
S
(α �Etee − �Etref) · (α �Dtee − �Dtref)

∗ ds∫
S

�Etref · �D∗
tref ds

(5.46)

where �Etee and �Dtee denote the transverse electric field and flux computed by means of the
eigenfunction expansion method, and �Etref and �Dtref are the field and flux computed using
the reference FDFD method. If scalar α is chosen so that it minimizes the expression on
the right side of (5.46) the error ∆E can be written as [86]

∆E ≡ min
α

errE

= 1 − | ∫
S

�Etee · �D∗
tee ds|2∫

S
�Etee · �D∗

tee ds · ∫
S

�Etref · �D∗
tref ds

(5.47)

The relative magnetic energy error ∆M can be evaluated in the same way. The resulting
expression has the following form

∆M = 1 − | ∫
S

�Htee · �B∗
tee ds|2∫

S
�Htee · �B∗

tee ds · ∫
S

�Htref · �B∗
tref ds

(5.48)

where �Htee and �Btee denote the transverse magnetic field and flux computed by means of
the eigenfunction expansion method, and �Htref and �Btref are the field and flux computed
using the reference method.
When higher order modes are of interest, algorithm β-S should be used. Fig. 5.20(a)

shows the relative error in propagation constant, obtained with this algorithm and basis
size N = 20, for all modes shown in Fig. 5.18. Note, that two modes become degenerate
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Figure 5.20: (a) Error in propagation constant for three odd modes (relative to FDFD
computations shown in Fig. 5.18) in algorithm β-S using the basis constructed form
N = 20 odd modes evaluated at β0 = 0. (b) Electric field energy error for three modes
(relative to the FDFD field computations) in algorithm β-S using the basis constructed
from N = 10 and N = 20 odd modes evaluated at β0 = 0.
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below cutoff and produce a pair of complex waves which exist over a finite frequency
range. Algorithm β-S predicts the propagation constant for this wave with the accuracy
better than 0.2%. (Only the real part is shown but the results for the imaginary part
are similar). Fig. 5.20(b) shows the electric field energy error for three modes evaluated
with algorithm β-S with N = 10 and N = 20. It is seen that fields of all modes are
satisfactorily reproduced. The results for the magnetic field energy error can be found
in [88] and they are ≈ 5dB worse.
Extensive results for the structure at hand for all β- and ω-algorithms summarized in

Table 3.1, including computation of even modes, can be found in [86].

5.5.2 Homogeneous circular waveguide loaded with anisotropic
magnetic medium

Problem and structure. In order to test the ability of the eigenfunction expansion
algorithms to cope with anisotropic media we investigate dispersion characteristics of the
four dominant modes in the circular waveguide shown in Fig. 5.21(a). The structure
is homogeneously loaded with an anisotropic magnetic material of relative permittivity
εr = 9 and permeability tensor given by

µ = µ0


 1 j0.75 0

−j0.75 1 0
0 0 1


 (5.49)

The diameter of the waveguide is d = 60mm and the propagation constant range of
interest is from 0 to 400 [rad/m].
Due to gyrotropic properties of the medium the propagation constants of hybrid modes

EHnm and HEnm depend on the sign of the index m denoting the angular variation. Here
we present the results for modes having the angular dependence m = −1.

Basis functions and reference characteristics. Basis functions and reference disper-
sion characteristics ω(β) shown in Fig. 5.21(a) are found analytically by solving nonlinear
dispersion equation [36]. This equation is solved for frequency ω being an unknown and
propagation constant β being a parameter. For the evaluation of approximated dispersion
curves the ω-S algorithm (see Table 3.1) is used, involving basis functions for a given β0
and resulting in ω(β) characteristics.

Results. Algorithm ω-S is applied with the basis consisting of N = 20 eigenfunctions
evaluated at β0 = 200 [rad/m]. Fig. 5.21(b) shows the error in computation of the fre-
quency of the four dominant modes as a function of β, relative to the reference charac-
teristics shown in Fig. 5.21(b). In this case the relative error in frequency is computed
as

∆f(β) =
fee(β) − fref(β)

fref(β)
· 100% (5.50)
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Figure 5.21: (a) Dispersion characteristics of modes with the azimuthal indexm = −1 in a
circular waveguide homogeneously loaded with an anisotropic magnetic medium. Letters
A–D denote first four points of the basis in ω-S algorithm, evaluated at β0 = 200 [rad/m].
(b) Relative error in frequency for algorithm ω-S using the basis constructed from N = 20
modes with m = −1.
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It is seen that except for two modes near cutoff, the error is at the level of 0.02%. The
largest value of the error, for the HE12, mode occurs at β = 0 and is lower than 0.05%.
The errors for the modes with the azimuthal index m = 1 can be found in [88]. In this

case the results were slightly worse and the maximal relative error in the entire region
0 ≤ β ≤ 400 [rad/m], occurring for HE11 mode, is ≈ 0.25%.

It was shown, that a new class of eigenfunction expansion hybrid algorithms is very
efficient in wideband frequency domain analysis of waveguides. The basis and testing
functions used in the algorithms fulfill all internal and external boundary conditions for
particular points on the dispersion diagram. Numerical tests show that the accurate solu-
tion is obtained even for small number of functions used in the field expansion. It results
in small eigenproblems, which can be solved very fast in each frequency or propagation
constant point.
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Conclusions

A proper selection of an efficient method for the analysis of a given electromagnetic eigen-
problem should take into account many aspects such as choice of an analytical formulation,
choice of the method of conversion of the operator problem to the matrix one, applica-
tion of the hybrid methods, choice of the eigensolver appropriate for a given conversion
method, application of preconditioning techniques.

Choice of analytical formulation and conversion method. Classical conversion
methods such as the Rayleigh-Ritz method (RR), method of moments (MoM), finite
element method (FEM) or finite differences frequency domain method (FDFD) result in
the eigenproblems with matrices whose size is directly proportional to the number of field
components involved in the analytical formulation. Therefore, the formulations leading
to the most efficient approaches are likely to involve as few components as possible.
It was also shown that application of the formulation that is spurious-free guarantees
the absence of spurious solutions in the spectrum without necessity of using any special
approach, such as penalty method or application of the basis/testing functions obeying
all Maxwell’s equations. Such approach can result in faster convergence of the numerical
eigenvalue solver and more accurate solution.
Another aspect of efficiency is related to the choice of the conversion method itself.

Among classical conversion methods, the RR and MoM methods involving entire domain
basis/testing functions are badly suited for the analysis of structures of complex geome-
tries. In contrast to the RR and MoM, the FEM and FDFD are very well suited for
this purpose. However, the disadvantage of both latter methods is that they lead to
computationally expensive eigenvalue problems if the structures at hand are filled with
media of complex properties (e.g. anisotropic medium, ferrite, chiroferrite). In this case,
the coupled mode method (CM) can be applied. This hybrid method leads to a small
eigenproblem, what significantly reduces the cost of the analysis. Another hybrid method
that was proven to be much faster than any classical method is eigenfunction expansion
algorithm (EE). It was used for wideband frequency domain analysis of waveguides. The
hybrid methods can also be applied to the efficient analysis of resonators. A comparison
of various conversion methods concerning their selected properties is shown in Table 6.1.

101
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Table 6.1: Applicability of various conversion methods to the analysis of the structures
with complex geometry and filled with media of complex properties (+ – well suited, ± –
might be used, but the problem becomes computationally expensive, − – badly suited).

Conversion methods Complex geometries Complex properties

C
la
ss
ic
al Rayleigh-Ritz

Method of moments
− +

Finite element method + ±
Finite difference method + ±

H
yb
ri
d Coupled mode

Eigenfunction expansion
+ +

Choice of the eigensolver appropriate for a given conversion method. Efficiency
of all numerical algorithms solving matrix eigenvalue problems depends on topological and
spectral matrix properties, such as the matrix size, elements’ type, symmetry, sparsity
pattern, and spectrum configuration. Since these features are characteristic for any par-
ticular method of conversion of an operator problem to the matrix one, the performance
of the eigensolver is highly dependent on the choice of the conversion method. Suitable
choice of a numerical solution method should also take into account some features of the
algorithm important in terms of memory and time savings, such as fast convergence and
ability to select for computation particular eigenvalues within the entire spectrum. Thus,
the performance of the eigensolvers mostly depends on:

Matrix size and sparsity pattern. The size N of an operator matrix and its
sparsity pattern are the most important factors influencing the total cost of the
solution (in terms of the total computation time and amount of required memory).

In spite of the high computational cost and high memory requirements the methods
based on matrix transformations, such as QR and QZ, can be effectively used for
small problems (N < 300) due to high stability and robustness of their numerous
and easy available implementations. Such a small problems are generated by the
hybrid methods such as the CM or EE.

Since the convergence of the iterative methods highly depends on selection of pa-
rameters of the eigensolver, what is not a straightforward task, the QR (QZ) method
can also be preferred for medium size problems (300 < N < 1000). This kind of
problems is generated by the methods such as the RR or MoM using entire domain
basis/testing functions. However, it should be noted that when parallel computa-
tions are performed and the iterative solver is used, additional speedup due to the
size of the cache memory can be observed and the QR method becomes substantially
slower.

In large scale problems (N > 1000), generated by the FEM or FDFD, the matrices
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are sparse and structured. In this case, the most stable and robust algorithms, such
as the QR and QZ methods, are not suitable because:

• they find entire eigenspectrum and eigenspace of the operator, while in electro-
magnetic problems usually only the eigenvalues located near one of the ends
of the operator spectrum are to be found,

• similarity transformations used in QR method or congruence transformations
used in QZ method can quickly destroy sparsity of the operator matrix,

• due to high numerical complexity (O(N3)) and memory requirements (O(N2))
the size of the problem to be solved can be larger than the maximal admissible
size on a given machine,

• they are extremely difficult to parallelize.
In this case, the iterative methods such as the Arnoldi or subspace iteration are
preferred. In contrast to the QR method, these algorithms compute only selected
eigenvalues and they acquire the information about the matrix from the product
of the matrix operator and a vector. Therefore, they can easily take advantage of
sparsity and structure of the operator matrix. Suitable choice of the matrix storage
format can result in smaller memory requirements (O(N)) and rises the possibility of
solving larger problems, while a proper implementation of the matrix-vector product
can lead to much faster execution (O(N)). If iterative methods are used for dense
matrices their efficiency is degraded, because the cost of the matrix-vector product is
(O(N2)). In spite of this fact, they are much more efficient than the QR method. For
efficient application of the iterative methods, their parameters should be optimized
for each computer architecture. It is also important to note, that the iterative
methods better conform to the multiprocessor super scalar architectures than the
QR algorithm. However, only an experienced user can fully exploit capabilities of the
modern systems (regarding the quality of software tools, algorithms, cache effects,
libraries, parallel computations) to get significant performance improvement. The
suggestions concerning the choice of the eigensolver are summarized in Table 6.2.

Matrix symmetry and elements’ type. The symmetry of the matrix and the
type of the matrix elements are also important for efficiency of computations. The
versions of eigensolvers intended for symmetric and real matrices are much faster
and less memory consuming than the ones intended for complex and nonsymmetric
matrices. However, it should be born in mind, that maintaining of the symmetry of
the formulation at the cost of increasing the number of the involved field components
or conversion of a standard problem into a generalized one is usually inefficient.

Spectrum configuration and application of preconditioning techniques.

Since QR and QZ methods compute all the eigenvalues (and corresponding eigen-
vectors) of a given eigenproblem, the efficiency of computations does not depend
on the eigenvalues of interest and preconditioning techniques cannot be applied.



Chapter 6 Conclusions 104

Table 6.2: Properties of matrices generated with various conversion methods and recom-
mended methods of solution.

Matrix properties Suggested methods
Conversion methods

Size Sparsity pattern of solution

C
la
ss
ic
al

Rayleigh-Ritz
Method of moments

moderate dense
Arnoldi/Lanczos
subspace iteration
QR (QZ)

Finite element method large sparse
Arnoldi/Lanczos
subspace iteration

Finite difference method very large
sparse, structured
diagonally

Arnoldi/Lanczos
subspace iteration

H
yb
ri
d Coupled mode

Eigenfunction expansion
small dense QR (QZ)

The situation is extremely different for iterative methods, such as Arnoldi/Lanczos
or subspace iteration, which compute only selected eigenvalues. Since, in the case
of iterative methods, the convergence strongly depends on spectral properties of
the problem, such as separation of eigenvalues and the spectral radius, the spectral
transformation techniques, such as inverse iteration or polynomial filtering using
e.g. Chebyshev or digital finite impulse response (FIR) filters can be applied to im-
prove the efficiency of the algorithms. Due to the fact that the solution of generalized
problems always requires computation of a matrix decomposition provided that the
shift-invert preconditioner can be applied at no additional cost, this strategy was
proven to be very efficient in the solution of large generalized eigenproblems. In the
standard problems where the eigenvalues of interest are located at the lower end of
the real spectrum the preconditioning with Chebyshev polynomials offers consider-
able memory and time savings. Another preconditioning technique, incorporating
bandpass FIR filters, can be used for the efficient computation of the eigenvalues of a
standard eigenproblem, which are located far from both spectrum ends. In this case
any other alternative technique, such as inverse iteration, cannot be used because
the size of the matrix is very large and computation of the LU decomposition of the
matrix is not possible. The recommendations on using preconditioning techniques
are summarized in Table 6.3.

The most important aspects of this thesis concerned implementation and performance
analysis of modern iterative eigensolvers applied to the problems resulting from various
classical conversion methods. It was shown, that the Arnoldi method combined with the
reverse communication technique was the most efficient in the solution of all considered
electromagnetic eigenproblems. The tests concerning the analysis of an image line by
means of the Galerkin method showed that the Arnoldi method can be 15 times faster
than the QR method in the solution of the eigenproblems involving dense matrices. The
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Table 6.3: Recommended preconditioning techniques for standard and generalized eigen-
problems in dependence on the location of the eigenvalues of interest in the spectrum.

Location of eigenvalues Recommended preconditioner
in the spectrum Standard eigenproblem Generalized eigenproblem

higher end Chebyshev polynomials
or none

none

lower end Chebyshev polynomials inverse iteration
between the ends FIR digital filters shift-invert

results of analysis of the image line by means of the FEM method showed that the Arnoldi
method is 10 times faster than the subspace iteration in the solution of generalized eigen-
problems involving sparse and structured matrices. In this comparison we did not take
into account the relatively long time needed for performing of the LU decomposition. It
is worth noting that the total computational time, including the LU time, of the FEM ap-
proach is twice as high as the time of the solution of the standard problem resulting from
the application of the FDFD method to the same image line structure. Thus, the Arnoldi
method combined with the FDFD, producing highly diagonally structured matrices, re-
vealed to be the most efficient approach from all considered ones. Another tests, related
to the analysis of a rotationally symmetric dielectric resonators by means of the FDFD,
concerned the implementation and performance analysis of various preconditioning tech-
niques incorporating Chebyshev polynomials and FIR digital filters. These techniques
could only be implemented in modern iterative eigensolvers, such as the Arnoldi and
subspace iteration methods. It was shown that the Arnoldi method using Chebyshev pre-
conditioning could be 4 times faster in the computation of the lowest resonant frequencies
of the structure than the method without any preconditioning. Moreover, the Arnoldi
method with preconditioning could be 30% faster than the subspace iteration one using
the same type of preconditioning. The application of advanced preconditioning involving
the FIR filters enabled us to compute the resonant frequencies that are far of both ends
of the spectrum, what would not be possible with any other approach.
Another important aspect of this thesis was the application of the hybrid methods such

as the coupled mode method and the eigenfunction expansion method to the analysis
of waveguide structures. Application of the perturbation method (resulting from the
coupled mode formalism) to the analysis of a nonreciprocal ferrite phase shifter led to a
simple computational formula. The cost of the analysis of such a complex inhomogeneous
structure partially filled with the material of tensor properties by means of any classical
method was significantly reduced. The theoretical solution was verified practically and
proven to be more accurate the solution by means of the methods used so far. Another
new class of hybrid algorithms, i.e. eigenfunction expansion algorithms, was proven to
be very efficient in wideband frequency domain analysis of waveguides. Numerical tests
showed that the accurate solution was obtained even for small number of functions taken
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into the field expansion. It resulted in very small eigenproblems that could be solved
very fast in each frequency or propagation constant point. Due to hybrid character of the
eigenfunction expansion this approach was much more efficient than any of the standard
ones. The maximum available speedup was close to the number of the points swept.
The results of this thesis summarized in previous two paragraphs prove all claims of

the thesis. They can open up new possibilities for microwave engineers. The constraints
(long computational time) on practical application of the FEM and FDFD methods for
effective design of complex devices can be mitigated when the iterative eigensolvers, such
as the implicitly restarted Arnoldi method, are used. Another important new possibility
is the efficient analysis of structures containing complex materials and fast determination
of dispersion characteristics of waveguides.
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Appendix A

Review of numerical methods for
matrix eigenvalue problems

The main part of this review is devoted to algorithms capable of solving standard eigen-
problems of the form

A v = λv (A.1)

where A is a matrix of size n×n, v is an eigenvector and λ is the corresponding eigenvalue.
In the first section we describe some basic algorithms which can act as independent

solvers, but in practice, they are inefficient due to their simplicity. However, they are
often involved in more elaborate algorithms. In the next three sections we concentrate
on the algorithms, such as QR method, subspace iteration, and Arnoldi method, which are
the most general ones, applicable to a broad class of matrix eigenproblems.
It should be mentioned, that many other methods, which are not discussed here,

can be found in the literature [39, 98]. The most popular ones are bisection and Jacobi
algorithm intended only for symmetric matrices, or nonsymmetric Lanczos method, which
is especially intended for large nonsymmetric problems:

Bisection [39] is based on slicing the spectrum of a symmetric matrix. In order to
apply the method one should transform the matrix into its tridiagonal form, which
requires additional effort. The advantage is that the method is able to find only
selected eigenvalues. Computation of eigenvectors requires application of inverse
iteration, resulting in the additional cost of O(n2) per eigenvector. In consequence,
the method is less efficient than the QR method if more than n/4 eigenvalues is to
be computed.

Jacobi algorithm [39] is one of the first algorithms conforming well to modern com-
putational techniques. It is based on Jacobi rotations (which are special case of
Givens rotations) applied to the matrix in order to obtain its diagonal form. An
advantage of this algorithm is the ease of parallelization of the code, which can be
attractive in modern parallel computer systems. However, the serial code is much
slower than the QR method and, due to its simplicity, it can be competitive for very
small problems or when small accuracy is required.
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Nonsymmetric Lanczos method [39, 98] is a kind of Krylov space method, similar
to the Lanczos or Arnoldi methods. It is based on an oblique projection, which
results in smaller than the Arnoldi method memory requirements. However, its
main disadvantage is its potential instability.

A separate, last section is devoted to the methods especially intended for generalized
eigenproblems of the form

A v = λB v (A.2)

where A and B are matrices of size n×n, v is an eigenvector and λ is the corresponding
eigenvalue.

A.1 Basic algorithms

One of the oldest iterative techniques for solving matrix eigenvalue problems is the power
method. The method, in its original form, is intended to find the eigenvalue possessing
the largest magnitude and the corresponding eigenvector. Convergence of the method
strongly depends on spectral properties of the matrix. In some cases it can be slow
or may not happen at all. To overcome these difficulties spectral transformations can
be used. In the simplest case, such a transformation can be a linear shift or inverse
iteration, while, in general, a polynomial (e.g. Chebyshev) or rational function of the
matrix can be used. Spectral transformations can also be used to calculate the eigenvalue
from other ends of matrix spectrum than the largest magnitude one. In particular, a
linear shift can be used to find the largest or the smallest real part eigenvalue, while the
smallest magnitude eigenvalue can be calculated via an inverse iteration. Having the first
eigenvalue-eigenvector pair computed, it is possible to extract the next pair with use of
deflation techniques. All these aspects are discussed in the next few subsections with
reference to the power method. Another algorithm which is useful in approximating the
subspace spanned on eigenvectors of interest is projection and is discussed at the end of
this section.

A.1.1 The power method

The power method is based on the process of generating the sequence of vectors A iv (0),
where v (0) is a nonzero starting vector. This sequence converges to the so-called dominant
eigenvector v 1 corresponding to the eigenvalue possessing the largest magnitude, called
the dominant eigenvalue λ1. Subsequent approximations of λ1 are calculated with the
Rayleigh quotient of v 1

λ =
v HA v

v Hv
(A.3)

The iteration is continued until tolerance τ is reached.
The algorithm with necessary normalizations is as follows:

Algorithm 1 The power method
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Input: A , v (0), τ

Output: {λ, v } : Av = λv

(1) v = v (0)

‖v (0)‖

(2) for i = 1, 2, . . . until ‖Av − λv ‖2 < τ |λ|
(2.1) w = Av

(2.2) λ = v Hw
v Hv

(2.3) v = w
‖w ‖

where τ is a given accuracy. Norm ‖.‖ in Steps (1) and (2.3) can be any of the Hölder
norms

‖x ‖p =

(
n∑
i=1

|x i|p
)1/p

(A.4)

which are also called p-norms. In particular, if p = ∞, then the vector is normalized to
its maximal element. Such normalization has lower numerical cost than the 2-norm one
because it involves comparisons of the vector elements rather than dot product calculation.
On the other hand, if the 2-norm normalization is used, eigenvalue λ can be calculated
in Step (2.2) using simplified formulae λ = v Hw . Note, that calculations in this step
are equivalent to Rayleigh quotient calculation (A.3) with the difference that they do not
involve any additional matrix-vector product. In order to speed up the algorithm, λ need
not to be computed in each iteration.

Convergence and efficiency. Let us assume that the eigenvalues of matrix A of size
n are ordered so that

|λ1| > |λ2| ≥ · · · ≥ |λn| (A.5)

Then, as shown in [39], after i steps of the algorithm, eigenvalue λ approximates dominant
eigenvalue λ1 with accuracy given by

|λ1 − λ| = O
(∣∣∣∣λ2λ1

∣∣∣∣
i
)

(A.6)

which corresponds to a linear convergence with a convergence factor

ρP =

∣∣∣∣λ2λ1

∣∣∣∣ (A.7)

If |λ2| is close to |λ1|, the convergence is slow. Moreover, Algorithm 1 do not converges
at all if λ2 �= λ1 but |λ2| = |λ1|.
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A.1.2 Spectral transformations

Spectral transformations are a very powerful tool which can be used for accelerating the
process of approximation of eigenvalues and eigenvectors. The idea of spectral transfor-
mations is to convert the spectrum of a matrix, so that the convergence factor for the
eigenvalues (eigenvectors) of interest is minimized. In this sense spectral transformations
are referred to as preconditioning techniques.
Consider a matrix A having an eigenvalue λ with a corresponding eigenvector u and

a general form of spectral transformation φ(χ) being a rational function

φ(χ) ≡ pk(χ)

ql(χ)
=

α0 + α1χ + α2χ
2 + . . . + αkχ

k

β0 + β1χ + β2χ2 + . . . + βlχl
(A.8)

where pk(χ) and ql(χ) are polynomials of degree k and l, respectively. If q(A ) is nonsin-
gular, we can define φ(A ) ≡ q(A )−1p(A ). Clearly, φ(A ) has an eigenvalue θ ≡ φ(λ). It
can be easily verified that the corresponding eigenvector v = u . Such important property
of preserving eigenvectors is representative for spectral transformations. Once eigenpair
{θ, v } has been computed, the corresponding eigenvalue λ can be calculated from the
equivalence θ ≡ φ(λ) or directly from the Rayleigh quotient (A.3).

Implementation. In terms of the power method we can derive the following algorithm:

Algorithm 2 The power method with spectral transformation

Input: A ,φ(χ), v (0), τ

Output: {λ, v } : Av = λv

(1) v = v (0)

‖v (0)‖

(2) for i = 1, 2, . . . until ‖Av − λv ‖2 < τ |λ|
(2.1) w = φ(A )v

(2.2) λ =
v HAv

v Hv
or λ =

wHAw

wHw

(2.3) v = w
‖w ‖

Calculation of λ in Step (2.2) should be performed in the manner which minimizes com-
putational cost of the Rayleigh quotient. The choice between the above two expressions
depends on transformation φ(χ). Moreover, if computation of λ can take advantage of
the normalization of w , Step (2.3) should precede Step (2.2).
Note, that any spectral transformation can also be implemented without affecting of

the original algorithm (which do not implement the spectral transformation) by directly
preconditioning the matrix operator, i.e., by passing φ(A ) to the program, instead of A .
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Convergence and efficiency. If n eigenvalues of A are ordered so that

|θ1| ≡ |φ(λ1)| > |φ(λ2)| ≥ · · · ≥ |φ(λn)| ≡ |θn| (A.9)

then the Algorithm 2 converges to λ1 with the convergence factor

ρ =

∣∣∣∣θ2θ1
∣∣∣∣ ≡

∣∣∣∣φ(λ2)

φ(λ1)

∣∣∣∣ (A.10)

Factor ρ is minimized when φ(χ) is constructed so that |φ(λ1)| � |φ(λ2)|.

The simplest spectral transformations a include linear shift and inverse iteration.
Other frequently used transformations are polynomial filters, in particular of Chebyshev
type. They are briefly discussed below in the context of the power method.

A.1.2.1 Linear shift

A linear shift is the simplest spectral transformation (A.8), which is defined by polynomials
p1(χ) = −σ + χ and q0(χ) = 1 with σ representing the shift. Thus

φ(A ) = A − σI (A.11)

θ ≡ φ(λ) = λ − σ (A.12)

where I is the identity matrix.

Implementation. Implementation of a linear shift in Algorithm 2 is simple. It requires
substituting Steps (2.1) and (2.2) by

Algorithm 3 The power method with linear shift

Input: A ,σ, v (0), τ

Output: {λ, v } : Av = λv

...

(2.1) w = (A − σI )v

(2.2) λ = σ + v Hw
v Hv

(2.3) v = w
‖w ‖

Note that the calculation of the Rayleigh quotient in Step (2.2) is performed without an
additional matrix-vector product.
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Convergence and efficiency. Linear shift is useful when computing the largest or the
smallest real eigenvalue of a matrix with purely real spectrum. Consider such matrix A

with eigenvalues ordered decreasingly

λ1 > λ2 ≥ · · · ≥ λn−1 > λn (A.13)

A suitable choice of a linear shift σ can improve convergence of the algorithm to the
eigenvalue λ1 = θ1 + σ or λn = θn + σ. Optimal convergence is obtained when the value
of σ is chosen so that it shifts the middle of the “unwanted” part of the spectrum to the
origin. Hence, for computing the largest real eigenvalue λ1, the optimal shift should be
chosen as

σLR =
λ2 + λn

2
(A.14)

while if the smallest real eigenvalue λn is of interest

σSR =
λ1 + λn−1

2
(A.15)

Corresponding optimal convergence factors are

ρSLR
=

∣∣∣∣λ2 − σLR
λ1 − σLR

∣∣∣∣ (A.16)

ρSSR
=

∣∣∣∣λn−1 − σSR
λn − σSR

∣∣∣∣ (A.17)

respectively.

Linear shifts can also be used in conjunction with inverse iteration and polynomial
(i.e. Chebyshev) acceleration, described below.

A.1.2.2 Inverse iteration

An inverse iteration is a spectral transformation (A.8), which is frequently used concur-
rently with a linear shift σ. This transformation is defined by polynomials p0(χ) = 1 and
q1(χ) = −σ + χ. Therefore

φ(A ) = (A − σI )−1 (A.18)

θ ≡ φ(λ) =
1

λ − σ
(A.19)

Implementation. In order to get specific algorithm for inverse iteration in terms of the
power method we can substitute Steps (2.1), (2.2) and (2.3) in Algorithm 2 by

Algorithm 4 The power method with inverse iteration

Input: A ,σ, v (0), τ

Output: {λ, v } : Av = λv
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...

(2.1) Solve (A − σI )w = v

(2.2) w = w
‖w ‖

(2.3) λ = σ + w Hv
w Hw

(2.4) v = w

where I is the identity matrix. Note that λ is calculated without an additional matrix-
vector product.
The iteration in Step (2.1), performed on vector v , requires an additional comment.

Since computation of the matrix inverse is very costly, direct calculation of the transfor-
mation (A.18) is, in general, inefficient. Much more practical approach involves computing
of the LU decomposition A − σI = L U (or Cholesky for symmetric case) at the begin-
ning of the algorithm and solving linear system L U w = v instead. The solution w of
the system is found in two steps: forward substitution L y = v and back substitution
U w = y .
The practical importance of the inverse iteration relies on the fact that its application

causes the algorithm to converge to the eigenvalue closest (in magnitude) to the shift σ.
In particular, when σ = 0 it converges toward the eigenvalue of the smallest magnitude.
This property allows one to compute any eigenvalue from the matrix spectrum and the
corresponding eigenvector.

Convergence and efficiency. If we consider matrix A with eigenvalues ordered so
that

|λ1 − σ| < |λ2 − σ| ≤ · · · ≤ |λn − σ| (A.20)

then Algorithm 4 converges to λ1 with convergence factor

ρI =

∣∣∣∣λ1 − σ

λ2 − σ

∣∣∣∣ (A.21)

We can see that convergence is faster if σ is closer to λ1. This observation conceived an
idea of changing the value of σ according to approximations of λ1 computed in subsequent
iterations. The algorithm which uses, in each iteration, Rayleigh quotient (A.3) as a new
shift is called Rayleigh Quotient Iteration (RQI). It was proposed by Parlett [83], who
showed that this algorithm offers quadratic convergence rate, in general case, and even
cubic for Hermitian matrices. Despite of that, application of RQI is rather limited due to
a high cost of frequent factorizations, which have to be performed in each iteration. In
practical algorithm, σ can be “refreshed” after each couple of iterations.
Main inconveniences of using the inverse iteration technique are that it requires the cal-

culation of the costly LU decomposition and that its good convergence properties strongly
depend on a priori knowledge of the approximate solution. However, these disadvantages
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can be mitigated in some practical cases. In particular, the inverse iteration can be ap-
plied at no additional cost for generalized eigenproblems, where such decomposition is
always computed (see Sec. A.5.2). It also becomes a very economical tool for calculating
eigenvectors once the corresponding eigenvalues have been found. The inverse iteration
used in this context is involved by other algorithms (i.e. QR, subspace iteration, Arnoldi
method).

A.1.2.3 Chebyshev acceleration

Chebyshev acceleration techniques are based on Chebyshev polynomials.

Chebyshev polynomials. The polynomial of degree k is defined by

Ck(t) = cos
(
k cos−1(t)

)
for − 1 ≤ t ≤ 1 (A.22)

This definition can be easily extended to the case |t| ≥ 1 using the expansion of cosine
function cos θ = (eiθ + e−iθ)/2, where i =

√−1, giving

Ck(t) =
1

2

[
(t +

√
t2 − 1)k + (t +

√
t2 − 1)−k

]
for |t| ≥ 1 (A.23)

Polynomial character of Ck(t) may not be readily seen yet can be expressed using the
recurrence formulae, valid for Chebyshev polynomials


C0(t) = 1
C1(t) = t
Ck+1(t) = 2tCk(t) − Ck−1(t) for k = 1, 2, . . .

(A.24)

This three-term recurrence relation is of high practical importance, which will be discussed
later in the text.
Chebyshev polynomials oscillate between −1 and 1 for t in the interval 〈−1, 1〉 while

their absolute values increase rapidly outside of the range. The rate of increase is larger
for higher polynomial order k.
A very important property of Chebyshev polynomials, which is known from approx-

imation theory, is that they are optimal in the sense of minimizing polynomial function
over a certain non-empty interval 〈α, β〉. It is shown in [98] that among all polynomials
pk of degree k such that pk(γ) = 1, where γ ≥ β or γ ≤ α, the minimum

min max
t∈〈α,β〉

|p(t)| (A.25)

is reached by the polynomial

Ĉk(t) ≡
Ck

(
1 + 2 t−β

β−α

)
Ck

(
1 + 2 γ−β

β−α

) =
Ck

(
−1 − 2 α−t

β−α

)
Ck

(
−1 − 2α−γ

β−α

) (A.26)

The numerator of Ĉk(t) has the form Ck(M(t)), where M(t) = 1 + 2 t−β
β−α is a linear trans-

formation which maps the interval 〈α, β〉 into 〈−1, 1〉. The polynomial in the denominator
is a constant function of t used for normalization purposes (Ĉk(γ) = 1).
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Implementation. Let us construct the algorithm based on the power method with spec-
tral transformation (Algorithm 2) defined by the optimal Chebyshev polynomial (A.26).
Ĉk(t) can be taken without normalization since Algorithm 5 has its own normalization in
Step (2.3). Substituting pk(χ) = Ck(M(χ)) and q0(χ) = 1 we get

Algorithm 5 The power method with Chebyshev acceleration

Input: A , c, e, k, v (0), τ

Output: {λ, v } : Av = λv

...

(2.1) w = Ck
(
A−cI

e

)
v

(2.2) λ =
v HAv

v Hv

(2.3) v = w
‖w ‖

where
c =

α + β

2
and e =

β − α

2
(A.27)

It should be noted that, in a practical algorithm, calculations in Step (2.1) are per-
formed using three-term recurrence (A.24) in the following way

Algorithm 6 Product of matrix Chebyshev polynomial and a vector via

three-term recurrence

Input: A , c, e, k, v

Output: w = Ck
(
A−cI

e

)
v

(1) w 0 = v

(2) w 1 = 1
e (Av − cv )

(3) for j = 2, . . . , k

(3.1) w = 2
e (Aw 1 − cw 1) − w 0

(3.2) w 0 = w 1

(3.3) w 1 = w

This approach enables computation of w using matrix-vector products only. However,
the above algorithm can generate overflow for large k because the generated iteratively
product of the Chebyshev polynomial and the vector is not normalized till k iterations
are performed. A version of the algorithm which avoids that by suitable normalization
can be found in [98] and is called Chebyshev iteration.
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Convergence and efficiency. Consider a matrix A whose eigenvalues are real and
ordered decreasingly, as in (A.13). If we choose γ to be equal λ1 or λn and interval 〈α, β〉
to include all the remaining eigenvalues, then the Algorithm 5 converges to λ1 or λn
respectively. For k → ∞, corresponding convergence factors are defined by

ρCLR
=

a2 +
√

a22 − e2

a1 +
√

a21 − e2
(A.28)

ρCSR
=

an−1 +
√

a2n−1 − e2

an +
√

a2n − e2
(A.29)

where ai = |λi − c|. It can be shown that maximal convergence rate for λ1 is reached
if c and e are defined by equations (A.27), where α = λn and β = λ2. In this case, the
convergence factor (A.28) is equal

ρCLR
=

e

λ1 − c +
√

(λ1 − c)2 − e2
(A.30)

At this point we can compare efficiency of Chebyshev acceleration with the simple
linear shift. Considering the same matrix A and taking the optimal shift for Algorithm 3
defined by (A.14) we get σLR = c. Thus, corresponding convergence factor (A.16) becomes

ρSLR
=

e

λ1 − c
(A.31)

Comparison of (A.30) and (A.31) shows that the Chebyshev acceleration is potentially
much more superior to a simple linear shift. Analogous considerations can be performed
for convergence of the smallest real eigenvalue λn which requires taking α = λn−1 and
β = λn.
Such consistent conclusions cannot be drawn from comparison of the Chebyshev ac-

celeration with the inverse iteration. The former technique is well suited to accelerate
the convergence of the eigenvalues from the ends of the spectrum while the latter one
can speedup computation of an arbitrary eigenvalue. However, in order to be effective,
inverse iteration requires much better approximation of the eigenvalue of interest than
the Chebyshev acceleration.
It should be noted, that the above analyzes assumed a matrix with purely real spec-

trum. Some generalizations are required when the eigenvalues are located in the complex
plane. Chebyshev polynomial Ck

(
t−c
e

)
in the complex domain is related to an ellipse of

center c and focal distance e. For the largest real eigenvalue λ1, convergence properties
of Algorithm 5 are described by the largest of convergence factors

ρ
(i)
CLR

=
ai +

√
a2i − e2

a1 +
√

a21 − e2
for 2 ≤ i ≤ n (A.32)

where ai are the major semi-axes of confocal ellipses (characterized by the same c and e)
passing through λi. The problem of convergence optimization is related to finding of the
optimal ellipse. This is not a straightforward task, since parameters c and e cannot, in
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general, be found from relations (A.27). More details concerning convergence properties
of Chebyshev polynomials in the complex plane and computing an optimal ellipse can be
found in [98] and [45].
Summarizing, suitably chosen parameters c and a cause that “unwanted” eigenvalues

are mapped inside the ellipse while “wanted” are mapped outside. As a consequence
eigenvalues of interest become better separated and convergence of the power method to
the eigenvalue of the largest or smallest real part can be significantly improved.

A.1.3 Deflation

Consider a matrix A of the size n with eigenvalues {λi}i=1,...,n ordered as in (A.5) and an
iterative solver such as the power method (Alg. 1), which is able to compute the largest
magnitude eigenvalue λ1 and corresponding eigenvector v 1. In order to find the next
largest magnitude eigenvalue λ2 deflation technique can be used.
A general procedure, called Wielandt’s deflation, consists of modifying the original

matrix A with the following rank one operation

A 1 = A − σv 1w
H (A.33)

where w can be arbitrary vector such that w Hv 1 = 1, and σ is a shift. It can be shown
that the eigenvalues of A 1 form the following set {λ1−σ, λ2, . . . , λn}. If σ is appropriately
chosen, then (A.33) shifts λ1 toward the origin leaving remaining eigenvalues unchanged.
Thus, λ2 becomes the largest magnitude eigenvalue of A 1 and can be found using the
same eigensolver.
One can think that in order to compute some subset of dominant eigenvalues, deflation

of form (A.33) can be applied many times producing A 1, A 2 and so on. However, it has
to be remembered that matrices A i accumulate errors from all previous calculations and
deflation should only be used for computing a few dominant eigenvalues.
Let u i be the left eigenvector of A , corresponding to λi. In general, deflation (A.33)

preserves the right eigenvector v 1 and the left eigenvectors {u i}i=2,...,n. If we choose
w = u 1 all right and left eigenvectors will be preserved. Such a choice is referred to as
Hotelling’s deflation. Another possibility is to take w = v 1, which has the property of
preserving all the Schur vectors of A . This type of deflation has a great practical impor-
tance and is frequently used in the algorithms such as QR method, subspace iteration or
Arnoldi method, described in the next sections. These algorithms often apply a general-
ization of the deflation (A.33), which uses several Schur vectors at a time. As a result of
the deflation applied to the same matrix A we get

A j = A − Q jΣjQ
H
j (A.34)

where Q j = [q 1, q 2, . . . , q j ] is orthonormal column matrix of j Schur vectors of A corre-
sponding to {λ1, λ2, . . . , λj} and Σ j = diag(σ1, σ2, . . . , σj) is a diagonal matrix of shifts. It
can be shown that the eigenvalues of A j become {λ1−σ1, . . . , λj−σj , λj+1, . . . , λn}. More-
over, as stated above, the associated Schur vectors remain unchanged. More comments
on practical implementation of the deflation can be found in [39, 98].
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A.1.4 Projection

Projection methods are used in order to approximate the subspace spanned on eigenvectors
of the original matrix A of size n by some m-dimensional subspace K of Cn, where m < n.
These methods are based on transformation of the original problem

A u = λu (A.35)

to the approximate problem
P K(A ũ − λ̃ũ ) = 0 (A.36)

where P K is the matrix representation of a projector 1 onto subspace K, ũ is an approxi-
mation of u in this subspace, and λ̃ is an approximate eigenvalue λ. Since ũ ∈ K we can
write

P KA ũ = λ̃ũ (A.37)

The projection is defined in terms of two m-dimensional subspaces: subspace of ap-
proximants K and the so-called left subspace L which is orthogonal to the residual vector
A ũ − λ̃ũ . If we denote by V and W matrices whose columns form biorthogonal bases
for subspaces K and L, respectively, i.e.

W HV = I (A.38)

where I is the identity matrix, then the associated projector P K can be represented by

P K = V W H (A.39)

This is referred to as oblique projection.
Using (A.39) and letting

ũ = V y (A.40)

we can reformulate the approximate eigenproblem (A.37) to the form of

B my = λ̃y (A.41)

where
B m = W HA V (A.42)

Note, that B m is a matrix of size m and m � n in practice. Therefore, computation of
the eigenvalues λ̃ and the eigenvectors y of eigenproblem (A.41) is not expensive. The
associated approximate eigenvectors ũ can be found using transformation (A.40). It was
shown in [98] that the quality of the approximation depends on the angle between the
exact eigenvector u and the subspace K. If u ∈ K then the approximation ũ is exact.
Most of the practical algorithms making use of projection methods, such as subspace

iteration or Arnoldi method, apply the so-called orthogonal projection. This is a special
1A projector P is a linear transformation from Cn to itself which is idempotent, i.e., such that P 2 = P .
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case, where L = K. As a consequence of condition (A.38) W = V and columns of V

form an orthonormal basis for K. Thus projector (A.39) takes the form

P K = V V H (A.43)

It results in
B m = V HA V (A.44)

The procedure consisting of computing orthonormal basis V and matrix B m, solving
approximate eigenproblem (A.41) for eigenpairs {λ̃, y } and determining corresponding
approximate eigenvalues λ̃ (Ritz values) and eigenvectors ũ = V y (Ritz vectors) of A ,
is called the Rayleigh-Ritz procedure (RR). The pairs of the approximate eigensolutions
{λ̃, ũ } are called Ritz pairs.
A frequently used variation of the RR procedure computes Schur vectors of B m and,

using transformation (A.40), calculates corresponding approximate Schur vectors of A .
Such an approach is computationally more stable and more natural for algorithms which
internally operate on the Schur vectors.
Dealing with orthogonal projections is numerically safer than dealing with oblique

ones. However, methods based on oblique projections can offer some advantages. In
particular, they may allow computing approximations to left as well as right eigenvec-
tors simultaneously or (and) require far less storage than similar orthogonal projection
methods.

A.2 QR method

QR method is the most popular technique for finding all the eigenvalues (and eigenvectors)
of a standard dense eigenproblem (A.1). The method was developed in 1961 by Fran-
cis [35] and Kublanovskaya [62] concurrently. The algorithm consists in transforming of
the operator matrix A into the upper triangular Schur form via the process called QR iter-

ation. It consists of a series of similarity transformations of form A (i+1) = Q (i)−1A (i)Q (i)

called QR steps. Since Q (i) is orthogonal they are equivalent to A (i+1) = Q (i)HA (i)Q (i).
The algorithm can be summarized as follows:

Algorithm 7 QR method

Input: A , τ

Output: {H ,V } : AV = V H ; V HV = I ; H is upper triangular

(1) H (1) = V (1)HAV (1) (Hessenberg reduction)

(2) for i = 1, 2, . . . until {|hj+1,j | < τ(|hj,j | + |hj+1,j+1|)}j=1,...,n−1 (QR iteration)

(2.1) H (i) = Q (i)R (i) (QR factorization)

(2.2) H (i+1) = R (i)Q (i)
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(2.3) V (i+1) = V (i)Q (i)

In order to reduce computational cost of subsequent QR factorizations (2.1) the al-
gorithm starts with a transformation of A to the form which is easy to factorize. Initial
Hessenberg reduction (1) is usually performed with using orthogonal Householder re-
flections which can zero the elements below the first subdiagonal, column by column.
Therefore after n − 2 basic transformations we get Hessenberg form. Each QR factor-
ization (2.1) usually involves orthogonal Givens rotations which are capable of zeroing
single elements, so n−1 basic transformations are needed to triangularize the Hessenberg
matrix. The QR step ends with multiplication (2.2) which turns back the matrix to the
Hessenberg form.

Eigenvalues and eigenvectors. It can be shown [39] that successive QR iterations
(2) tend the main subdiagonal elements hj+1,j to vanish. The algorithm stops when they
become sufficiently small provided that Schur decomposition V HA V = H is found. The
Schur form H is desirable, because its eigenvalues are located on the diagonal. Since
similarity transformations do not change the eigenvalues of the original matrix A , they
are equal to the eigenvalues of H .
Step (2.3) accumulates successive transformations and is performed when all the eigen-

vectors {u j}j=1,...,n of A are requested. They are computed via the process called diag-
onalization (see [39] for details) once the Schur decomposition has been found. If only
a certain subset of the eigenvectors is desired, an alternative method, involving inverse
iteration technique (described in Sec. A.1.2.2), can be used. A widely followed rule of
thumb advises to use this method if fewer than 25% of the eigenvectors are requested.
Each eigenvector u j corresponding to the eigenvalue λj is found as u j = V 1v j, where v j

is produced by the Algorithm 4 with A = H 1 and σ = λj. It can be a very economical
process since

• transformations in Step (2.3) have not to be accumulated (it gives savings of com-
putational cost of order O(n3) flops),

• Hessenberg matrices H 1 − λI can be factored very efficiently (in O(n2) flops),

• only one iteration is typically required to produce an adequate approximate eigen-
vector.

Therefore each eigenvector can be found in O(n2) flops.

Convergence and efficiency. Consider that the eigenvalues {λj}j=1,...,n of A are or-
dered decreasingly as in (A.13). In practice, it usually corresponds to the order of their
approximations along the diagonal of H . It can be shown [39] that subdiagonal hj+1,j
entry converges to zero with rate

ρQR =

∣∣∣∣λj+1λj

∣∣∣∣ (A.45)
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The convergence can be, therefore, extremely slow, if the modules of any neighboring
eigenvalues are not sufficiently different (e.g. complex pair). Algorithm 7 can be, however,
accelerated by incorporating of shifting techniques described in Sec. A.1.2.
The following algorithm modifies Steps (2.1) and (2.2) of QR iteration in Algorithm 7

in order to implement shifts

Algorithm 8 Explicitly shifted QR method

Input: A , τ

Output: {H ,V } : AV = V H ; V HV = I ; H is upper triangular

...

(2.1) Select shift σ(i)

(2.2) H (i) − σ(i)I = Q (i)R (i) (QR factorization)

(2.3) H (i+1) = R (i)Q (i) + σ(i)I

(2.4) V (i+1) = V (i)Q (i)

Convergence rate for the above algorithm is strongly dependent on the shift σ and for the
eigenvalues ordered so that

|λ1 − σ| ≥ |λ2 − σ| ≥ · · · ≥ |λn−1 − σ| ≥ |λn − σ| (A.46)

it is defined as

ρSQR =

∣∣∣∣λj+1 − σ

λj − σ

∣∣∣∣ (A.47)

It is evident that choosing σ close to λn, one can thoroughly improve the convergence of
appropriate entries of Hessenberg form H (i). Fortunately, H (i) offers quite good estimates
of the eigenvalues along the diagonal. The hnn entry is regarded as the best one and is
usually selected in each iteration (Step 2.1) as the shift σ(i). It results in rapid zeroing
of the hn,n−1 entry and fast convergence of hnn to λn.
Such a single shift approach is inefficient when the matrix is real and hnn is to ap-

proximate a complex eigenvalue. In this case real hnn is no longer a good approximation.
Taking a complex shift is not advised because it results in computations in complex arith-
metic. In order to avoid these problems, the so-called double shift strategy can be used,
based on performing two successive single shift QR steps at once. It is usually imple-
mented without explicitly formulating H (i)−σ(i)I = Q (i)R (i) factorizations and is called
implicitly shifted QR method.
Another technique involved in practical QR algorithm is deflation (mentioned in

Sec. A.1.3) which is performed in each QR iteration for eigenvalues regarded as the exact
ones. Each deflation results in reducing of the size of the eigenproblem, which accelerates
the whole algorithm.
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Problem specific considerations. The version of the QR method described above is
suited for nonsymmetric eigenproblems. The algorithm applied to a symmetric matrix is
considerably simplified because:

• symmetric Hessenberg matrix H is tridiagonal, so similarity transformations are
less costly,

• symmetry and tridiagonal band structure are preserved when a single shift QR step
is performed,

• consideration of complex shifts can be abandoned since the spectrum of the matrix
is purely real,

• symmetric Schur matrix is diagonal and Schur vectors (columns of V ) are identical
to the eigenvectors of A , so their computation does not require any additional cost.

Empirical observations show that implicitly shifted QR algorithm for nonsymmetric
real matrices requires ≈ 25n3 flops, if H and V are computed, while ≈ 10n3 flops is
needed, if only the eigenvalues are desired. The algorithms for symmetric real matrices
require ≈ 9n3 flops and ≈ 4/3n3 flops respectively.
Algorithms for complex matrices are similar to those for real eigenproblems with the

difference that they operate on complex numbers. In practice, they are written so that all
operations are performed in real arithmetic. The complex algorithms are ≈ 4 times more
expensive than their corresponding real analogs (the complex analog of a real symmetric
matrix is a Hermitian matrix).

More details on the techniques used in QR algorithms (e.g. balancing), as well as
references to numerous papers devoted to the QR method, can be found in [39].

A.3 Subspace iteration

Subspace iteration, called also simultaneous iteration, is one of the simplest and the most
popular methods for solving large, sparse and in general, nonsymmetric eigenproblems.
The method was originally introduced in 1957 by Bauer [10] as Treppeniteration (stair-
case iteration). The subspace iteration computes the eigenvalues of largest modulus and
can be viewed as a generalization of the power method described in Sec. A.1.1. The
algorithm generates the sequence of matrices A iQ

(0)
m , where Q

(0)
m is an n × m column

subspace formed from m < n linearly independent vectors. Their linear independence is
progressively lost during the iteration and should be reestablished in order to get conver-
gence to the eigenvectors corresponding to different largest magnitude eigenvalues. For
that purpose, the original Bauer’s version uses LU decomposition, nevertheless usually
QR decomposition is more frequently performed. Such a version of the method is some-
times called orthogonal iteration, since QR factorization additionally orthonormalize the
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vectors. As a consequence, the columns of Qm converge to appropriate Schur vectors, in
place of the eigenvectors.
The following basic subspace iteration algorithm simultaneously computes m Schur

vectors of A corresponding to the largest magnitude eigenvalues.

Algorithm 9 Subspace iteration

Input: A , {q j}j=1,...,m linearly independent, τ

Output: {T m, Qm} : AQm = QmT m ; QH
mQm = I ; T m is upper triangular

(1) Q (0)
m =

[
q 1

‖q 1‖ , . . . ,
qm

‖qm‖
]

(2) for i = 1, 2, . . . until
{
‖(Q (i)

m −Q (i−1)
m )j‖2 < τ

}
j=1,...,m

(2.1) V (i)
m = AQ (i−1)

m

(2.2) V (i)
m = Q (i)

mR
(i)
m (QR factorization)

(3) T m = Q (i)
m

H
AQ

(i)
m

The above algorithm is similar to the power method presented in the Algorithm 1. The
main difference is that the iteration is performed on m vectors at once, thus V m ∈ Cn×m,
T m ∈ C

m×m and usuallym � n. Step (2.2) can be viewed as a normalization process that
is similar to the normalization used in the power method (Step (2.3) the in Algorithm 1).
As a stopping criterion a simpler stationarity condition can be used instead of costly
residual criterion used in the power method. It is based on a comparison of the columns
of Qm calculated in succeeding iterations. Such criterion, however, can fail if A has equal
or nearly equal eigenvalues.

Eigenvalues and eigenvectors. Assuming that the eigenvalues {λj}j=1,...,n of A are
ordered decreasingly as in (A.5), it can be shown that the above algorithm generates
column matrix Qm = [q 1, . . . , q m], where each Schur vector q j corresponds to λj . Since
T m is a Schur form and its eigenvalues are equal to the diagonal entries, the eigenvalues
of A can be obtained as λj = tjj. Corresponding eigenvectors u j can be calculated by
means of the inverse iteration in the following way: u j = Qmv j , where v j is produced
by the Algorithm 4 with A = T m and σ = λj.

Convergence and efficiency. As in the power method, the convergence of the al-
gorithm depends on the separation between neighboring eigenvalues. For eigenvalues
ordered as above the convergence of the j-th column of Qm to the Schur vector of A is
proportional to the ratio

ρSI =

∣∣∣∣λj+1λj

∣∣∣∣ (A.48)
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Convergence of the eigenvalues is governed by the same ratio and can be extremely slow
if λj is close to λj+1. In order to improve the convergence, projection technique can be
incorporated. In context of the subspace iteration, this technique was introduced for the
first time by Stewart [110].
The additional enhancement in efficiency can be expected if matrix Qm is multiplied

by A several (say l) times before the relatively expensive orthonormalization Step (2.2)
is performed.
The following algorithm takes advantage of the ideas mentioned above.

Algorithm 10 Subspace iteration with projection

Input: A , {q j}j=1,...,m linearly independent, k, τ

Output: {T m, Qm} : AQm = QmT m ; QH
mQm = I ; T m is upper triangular

(1) Q (0)
m =

[
q 1

‖q 1‖ , . . . ,
qm

‖qm‖
]

(2) for i = 1, 2, . . . until
{
‖(AQ (i)

m −Q (i)
m T

(i)
m )j‖2 < |tjj|τ

}
j=1,...,k

(2.1) Select l

(2.2) V (i)
m = A lQ

(i−1)
m

(2.3) V (i)
m = Q (i)

mR
(i)
m (QR factorization)

(2.4) B m = Q (i)
m

H
AQ

(i)
m (projection)

(2.5) T (i)
m = X (i)

m
H
B mX

(i)
m (Schur form via QR algorithm)

(2.6) Q (i)
m = Q (i)

mX
(i)
m

where k ≤ m is the number of required eigenvalues.
Proper selection of l is very important for general performance of the algorithm. For

larger values of l, the subspace spanned on the dominant eigenvectors is better approxi-
mated by column subspace V

(i)
m . On the other hand, too large l can cause problems in

orthogonalization step because the columns of V
(i)
m may have become (numerically) lin-

early dependent. In practice, l can be determined based on observations of convergence
rate of particular Schur vectors.
It can be shown [110] that the application of orthogonal projection (2.4) accelerates

convergence of the j-th eigenvalue to the rate

ρSIP =

∣∣∣∣λm+1λj

∣∣∣∣ (A.49)

In this case even the convergence of the last required k-th eigenvalue can be substantially
accelerated by choosing large enough m.
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Symmetric case. In the case of Hermitian matrix, Algorithm 10 can be simplified
because projection (2.4) results in a symmetric matrix B m. Therefore, a more efficient
symmetric QR algorithm can be applied in Step (2.5), leading to a symmetric Schur
(diagonal) form T m. Moreover, computation of A ’s eigenvectors requires no additional
cost because the eigenvectors are equal to the Schur vectors Qm, computed in Step (2.6).

Some variations of the subspace iteration (e.g., [111]) use an oblique projection instead
of the orthogonal one. Then, the QR decomposition is not performed and so-called lop-
sided oblique projection B m = (V H

mV m)−1V H
mA V m is computed in place of Step (2.4).

The subspace iteration is the first of the algorithms discussed here which does not
operate on matrix elements but uses only the information obtained from the product of
a matrix operator and a vector. This is a very important feature, since considerable time
savings can be gained, if the matrix is sparse and the matrix-vector product is adequately
implemented.
Practical subspace iteration codes often use other basic algorithms discussed in Sec. A.1,

which can additionally enhance the performance of the method. The most frequently used
ones are locking (a form of deflation) and various spectral transformations. Details can
be found in [98].

A.4 Arnoldi method

Arnoldi method is an orthogonal projection method for searching a few eigenvalues and
eigenvectors of a general non-Hermitian eigenproblem (A.1). It was developed in 1951 by
Arnoldi [4], who introduced the method as a means of reducing a dense matrix A into the
upper Hessenberg form H = V HA V . He observed that the reduction truncated before
completion can give good approximations of some eigenvalues.
Comparison of j-th columns in A V = V H leads to

A v j =

n∑
i=1

hijv i =

j+1∑
i=1

hijv i (A.50)

Separating the last term in the summation we get

w j ≡ hj+1,jv j+1 = A v j −
j∑

i=1

hijv i ; hij = v H
i A v j (A.51)

If w j �= 0 then q j+1 can be expressed by

v j+1 =
w j

hj+1,j
; hj+1,j = ‖w j‖2 (A.52)

Equations (A.51) and (A.52) define iterative Arnoldi process. After m steps, this process
generates the following m-step Arnoldi factorization, starting from an initial vector v 1.

A V m = V mH m + w meH
m (A.53)



Appendix A Review of numerical methods for matrix eigenvalue problems 127

where V m = [v 1, . . . , v m] is column orthogonal and H m ∈ Cm×m is upper Hessenberg
with non-negative subdiagonal elements. Since V mw m = 0 by construction, then

H m = V H
mA V m (A.54)

It should be noted that the columns of V m, called Arnoldi vectors, form an orthonormal
basis for a Krylov subspace Km

Km ≡ span{v 1, A v 1, A 2v 1, . . . , Am−1v 1} (A.55)

Therefore H m is an orthogonal projection of A onto Km.
The following algorithm computes m-step Arnoldi factorization.

Algorithm 11 Arnoldi method

Input: A , v 0,m

Output: {H m, V m, wm} : AV m = V mH m + wme
T
m ; V H

mV m = I ;
V mwm = 0 ; H m is upper Hessenberg

(1) v 1 = v 0

‖v 0‖ ; V 1 = v 1 ; Ĥ
1

= 0

(2) for j = 1, . . . ,m

(2.1) w j = Av j

(2.2) h = V H
j w j ; w j = w j − V jh

(2.3) H j = [Ĥ
j
, h ]

(2.4) βj = ‖w j‖2 ; v j+1 = w j

βj

(2.5) Ĥ
j

=
[
H j

βje
T
j

]
; V j+1 = [V j , v j+1]

With the successive iterations of the Arnoldi method, V m converges to an invariant
subspace of A and w j , computed in Step (2.2), becomes smaller. On the one hand,
the decreasing of w j is desirable because it indicates that the approximate eigenvalues
become more exact (the rationale for that is discussed below in the paragraph devoted to
eigenvalues and eigenvectors). On the other hand, however, significant digits of w j can
be easily lost due to numerical cancellation, leading to loss of numerical orthogonality
of the iteratively generated Arnoldi vectors {v j}j=1,...,m. It should be noted that the
orthogonality of V m is crucial for the algorithm since non-orthogonal basis vectors may
cause numerical difficulties, such as spurious eigenvalues.
Great effort has been made in the last years to overcome the difficulties in the or-

thogonalization process. Different orthogonalization schemes have been proposed, i.e.,
Gram-Schmidt (GS), Modified Gram-Schmidt (MGS) or Householder approach (see [98]
for details). Algorithm 11 uses the GS orthogonalization in Step (2.2). However, in order
to obtain orthogonal to working precision vectors, a reorthogonalization step is sometimes
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required. A simple and efficient method, called DGKS correction, has been proposed
in [22] by Daniel et al. It consists in computing of the following iterative refinement steps

s = V H
j w j ; w j = w j − V js ; h = h + s (A.56)

just after Step (2.2). If the DGKS correction is necessary, it is sufficient, in practice, to
perform only one step of the refinement (A.56).
It should be noted that both, Step (2.2) and correction (A.56), can be accomplished

with using Level 2 BLAS operations. This is important for performance on vector and par-
allel computers. Other alternative orthogonalization types are not recommended because
they cannot be formulated in terms of Level 2 BLAS.

Eigenvalues and eigenvectors. In the projection method, such as the Arnoldi method,
Ritz approximations {λ̃j, ũ j} of the eigensolutions of A can be determined from eigen-
pairs of the approximate eigenproblem H my = λ̃y (see Section A.1.4). Each Ritz vector
ũ j, corresponding to the Ritz value λ̃j , is calculated as ũ j = V my j. Quality of the
approximation is represented by the residual norm r, called Ritz estimate

rj = ‖A ũ j − ũ jλ̃j‖2 = ‖(A V m − V mH m)y j‖2 = hm+1,m|eH
my j | = βm|eH

my j| (A.57)

If w m = 0 then rj = 0 for j = 1, . . . , m, V m spans an invariant subspace of A and the
Ritz approximations {λ̃j, ũ j} are exact.

Convergence and efficiency. Convergence theory of orthogonal projection methods
onto a Krylov subspace for a general nonsymmetric matrix is very complex and will not
be discussed here on the whole. We only mention some convergence properties important
for comparison with other methods. More details can be found in [98].
As m increases, approximate Ritz pairs {λ̃j, ũ j}, computed from the m-step Arnoldi

factorization, converge to the eigenpairs of A . The subspace spanned on eigenvectors
{ũ j}j=1,...,m converges the most rapidly to the subspace spanned on the eigenvectors of A

corresponding to the largest magnitude eigenvalues. Therefore approximations of these
vectors seem to be the most accurate. However, the accuracy also depends on the choice
of the initial vector v 0. In consequence, the other eigenvectors, better approximated by
v 0, may become more exact.
As an example, describe the convergence of the subspace Km to an eigenvector u 1 of

A , corresponding to the largest eigenvalue λ1. Assume that the initial vector v 1 has the
expansion v 1 =

∑n
j=1 αju j with respect to the eigenbasis {u j}j=1,...,n, in which ‖u j‖2 = 1

for j = 1, . . . , n and α1 �= 0. Define the distance between u 1 and the subspace Km as
‖(I −P K)u 1‖2, where P K = V mV H

m is a projection matrix. It is shown in [98], that the
distance is bounded as follows

‖(I − P K)u 1‖2 ≤ ξ1
Cm−1

(
a
e

)
|Cm−1

(
λ1−c
e

) | (A.58)
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where ξ1 =
∑n

j=2 |αj|/|α1| and Cm−1 is Chebyshev polynomial of degree m − 1. Symbols
c, e, a denote respectively the center, focal distance and the major semi-axis of the ellipse,
containing all the eigenvalues of A except λ1.
It can be seen that the upper bound in (A.58) becomes small if v 0 (v 1 = v 0/‖v 0‖) is

“reach” in the direction of u 1 and λ1 is well separated from other eigenvalues. These obser-
vations are obviously coincident with the convergence properties of the methods discussed
in the previous sections, however, potential convergence of the Arnoldi method can be
much superior due to the properties of Chebyshev polynomials, described in Sec. A.1.2.3.
Another observation is that the appropriate selection of the initial vector v 0 can lead

to the convergence to the eigenvalues other than the largest ones. In consequence, if
v 0 is “reach” in the direction of some arbitrary eigenvectors of interest, it may result in
a small number of iterations m, which should be performed in order to calculate these
eigenvectors with a required accuracy.

Symmetric case. Symmetric version of the Arnoldi method is called the Lanczos
method. It can be viewed as a simplification of Arnoldi’s method for the particular Her-
mitian matrix case. In fact, this method was developed earlier. It was introduced by
Lanczos [63] in 1950, i.e., a year before the Arnoldi method was developed. Due to the
symmetry of the operator not only can numerous simplifications be done in the algorithm,
but also the convergence of the method is superior.
The simplifications are considerable because Hessenberg matrix H m, generated in

the Lanczos process, is real, tridiagonal and symmetric, and therefore the solution of
the approximate eigenproblem is much simpler and less time consuming. Moreover, the
calculations in Step (2.2) are radically simplified since they involve only a single dot
product and a single scalar-vector multiplication (see [39, 98] for details).
In a symmetric case the eigenspectrum of A is purely real. Assume that the eigen-

values are ordered decreasingly as in (A.13). The largest and the smallest eigenvalues
are then denoted by λ1 and λn respectively. It was shown in [39] that the extremal (the
largest and the smallest) eigenvalues of H m, generated in the Lanczos method, become
progressively better approximates of A ’s extremal eigenvalues as m increases. This be-
havior is the consequence of the Lanczos method’s convergence properties described by
the so-called Kaniel-Paige theory. Samples of this theory along with references can be
found in [39]. It was therein shown that the choice of the initial vector is not so important
for the convergence properties of the algorithm as in the nonsymmetric case because the
convergence in the Kaniel-Paige style is very fast. A comparison of the Lanczos method
and the power method (Algorithm 1) in context of the largest eigenvalue convergence
demonstrated that the Lanczos method is much more superior.

Similarly to the subspace iteration, discussed in the previous section, the Arnoldi
method represents a class of iterative algorithms which are independent on matrix storage
scheme and problem type. The information about the operator matrix is passed to the
algorithm as a result of a matrix-vector product in Step (2.1).
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A.4.1 Restarting of the Arnoldi method

There are two important problems with the above simple Arnoldi method. The first one
is acquisition of “wanted” eigenvalues. The reason is, that convergence properties of the
algorithm favor the eigenspace corresponding to the eigenvalues with the largest absolute
values while they may not be the ones of interest. The second problem is, that since
the required eigenvectors are not a priori known (even approximately), the number of
Arnoldi iterations m, which need to be taken in order to obtain expected accuracy, can
be considerable. It may result in high requirements for memory and computation time
due to increasing, in each iteration, size of generated matrices m.
One of the possibilities, which can resolve the above problems, is to restart the al-

gorithm after each m iterations with appropriately updated starting vector v 1. In this
manner interesting information from a very large Krylov subspace is iteratively extracted
and compressed in the fixed size m-dimensional subspace. The update has the form

v
(i+1)
1 = φ(A )v

(i)
1 (A.59)

where φ is a filtering polynomial constructed so that “unwanted” part of the eigenspectrum
is filtered out from v 1. Such update determines the amount of required memory and
causes that the algorithm converges to the “wanted” eigenvalues. The information about
the spectrum, used for the construction of φ, may be given a priori from the spectral
properties of A or may be derived from A ’s approximate eigenvalues just before the
restart. The techniques based on the concept of restarting with use of polynomial filtering
are referred to as polynomial acceleration techniques.
In general, the subspace size m can be selected independently before each restart.

Assuming thatm never exceeds some fixed maximal value, the amount of required memory
is, however, still strictly determined.
Two alternative approaches to restarting procedure has been proposed. The first one

is called explicit restarting and the second one is called implicit restarting. They are
briefly discussed below.

A.4.1.1 Explicit restarting

Explicit restarting for symmetric problems (the Lanczos method) was developed by Cul-
lum and Donath [20]. The explicitly restarted Arnoldi method (for nonsymmetric case)
was proposed by Saad [96–98]. The explicitly restarted algorithm, computing k eigenval-
ues of interest, has the following form:

Algorithm 12 Explicitly restarted Arnoldi method

Input: A , v 0, k,m, τ

Output:
{{λj , u j} : Au j = λju j

}
j=1,...,k

(1) v 1 = v 0

‖v 0‖
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(2) for i = 1, 2, . . . until
{
rj < |λ̃j |τ

}
j=1,...,k

(2.1) AV m = V mH m + wme
T
m (m-step Arnoldi factorization)

(2.2) Compute {λ̃j , ũ j, rj}j=1,...,m
(2.3) Construct φ

(2.4) v 0 = φ(A )v 1 ; v 1 = v 0

‖v 0‖

In each iteration, the Ritz approximations {λ̃j , ũ j} are calculated at Step (2.2) from
eigensolutions of H m. The QR method is usually used for this purpose. Nonexpensive
stopping criterion in Step (2) is based on the corresponding Ritz estimates rj (A.57), com-
puted for k “wanted” eigenpairs. A main difference between various explicitly restarted
Arnoldi/Lanczos algorithms relies on the construction of the filtering polynomial φ.
The original restarting strategy, proposed by Saad [96], was to replace the starting

vector with a linear combination of Ritz vectors, corresponding to wanted Ritz values.
Assuming that the first k Ritz pairs {λ̃j, ũ j} are “wanted”, the replacement has the form

v
(i+1)
1 =

k∑
j=1

αj ũ j (A.60)

Since ũ j ∈ Km then ũ j = φj(A )v
(i)
1 and (A.60) becomes

v
(i+1)
1 =

k∑
j=1

αjφj(A )v
(i)
1 (A.61)

Comparing this equation to (A.59) we can see that (A.61) evidently defines the filtering
polynomial φ =

∑k
j=1 αjφj.

In each iteration convergence of the algorithm depends on the choice of the coefficients
αj. In order to equalize the convergence rates of “wanted” Ritz values Saad [96] suggested
a simple heuristic choice of the coefficients, favoring the Ritz vectors that have least
converged. In this choice, j-th Ritz vector ũ j is weighted with the value of its Ritz
estimate (αj = rj).
Another restarting strategy is to sort the spectrum of A into two disjoint sets Ωw and

Ωu, corresponding respectively to “wanted” and “unwanted” eigenvalues and construct
the polynomial φ, which is minimized on an open convex set Cu containing Ωu with
Ωw∩Cu = ∅. One of Saad’s proposals [97] was to choose φ to be a Chebyshev polynomial.
Such approach is called the Arnoldi-Chebyshev method. In this case Cu is an ellipse. The
problem of constructing the optimal ellipse has been studied in [45] and [98].
An alternative, which can be more appropriate in some cases, is to enclose the set Ωu

in a polygonal region Cu and find such polynomial φ that has minimum on Cu in a least
squares sense. This is referred to as least squares - Arnoldi method. The details can be
found in [98].
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In order to examine some convergence properties of the Arnoldi-Chebyshev method
and the least squares - Arnoldi method we expand the starting vector v 1 into a series of
A ’s eigenvectors u j

v
(i)
1 =

n∑
j=1

γju j (A.62)

According to (A.59) we get the updated starting vector

v
(i+1)
1 =

n∑
j=1

γjφ(λj)u j (A.63)

If the eigenvalues {λj}j=1,...,n are ordered as in (A.9), then the j-th original expansion
coefficient is essentially attenuated, in each iteration, by the factor

ρ =

∣∣∣∣φ(λj)

φ(λ1)

∣∣∣∣ (A.64)

In consequence, the iteration converges faster to the eigenvalues of interest, located outside
the region Cu.

A.4.1.2 Implicit restarting

Implicit restarting was proposed by Sorensen [108, 109]. This approach is more efficient
and numerically stable than the explicit one. It combines the implicitly shifted QR mech-
anism (see Section A.2) with the k-step Arnoldi/Lanczos factorization. The implicitly
restarted algorithm can be presented in the following steps:

Algorithm 13 Implicitly restarted Arnoldi method

Input: A , v 0, k,m, τ

Output:
{{λj , u j} : Au j = λju j

}
j=1,...,k

(1) v 1 = v 0

‖v 0‖

(2) AV k = V kH k + w ke
T
k (k-step Arnoldi factorization)

(3) for i = 1, 2, . . . until
{
rj < |λ̃j |τ

}
j=1,...,k

(3.1) AV m = V mH m + wme
T
m (perform p additional steps (k + p = m))

(3.2) Compute {λ̃j , ũ j, rj}j=1,...,m
(3.3) Select shifts {µj}j=1,...,p
(3.4) AV +

m = V +
mH

+
m + wme

T
mQ (apply p shifts via implicit QR)

(3.5) AV +
k = V +

kH
+
k + w +

k e
T
k (discard the last p columns)
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Main differences between this algorithm and the previous explicitly restarted one rely on
the way of applying filtering polynomial φ and on the fact that successive iterations in
the implicit algorithm need not to be restarted from scratch but starts from the k-step
factorization.
Applying the shifts {µj}j=1,...,p to the Arnoldi factorization is mathematically equiva-

lent to explicitly restarting the algorithm with the initial vector (A.59), where

φ(λ) =

p∏
j=1

(λ − µj) (A.65)

is a polynomial φ of degree p, whose roots are the shifts. This process is accomplished in
Step (3.4) and can be implemented in the following way:

Algorithm 14 Application of shifts into m-step Arnoldi factorization

Input: AV m = V mH m + wme
T
m , {µj}j=1,...,p

Output: AV +
m = V +

mH
+
m + wmq

H : q H = e TmQ

(1) q = em

(2) for j = 1, . . . , p

(2.1) H m − µjI = Q jR j (QR factorization)

(2.2) H m = QH
j H mQ j

(2.3) V m = V mQ j

(2.4) q H = q HQ j

It is worthwhile to note that each iteration (2) corresponds to a single iteration of the ex-
plicitly shifted QR Algorithm 8 with H = H m and σ = µj . The implicitly shifted version
of Algorithm 14 is mathematically equivalent, yet the QR factorization at Step (2.1) is
not explicitly computed (see [108] for details).
A k-step Arnoldi factorization, which is used as a starting point for successive iterations

of Algorithm 13, is obtained in Step (3.5) by equating the first k columns in the “shifted”
m-step Arnoldi factorization, resulting from Step (3.4). In consequence, each iteration
involves p matrix-vector multiplications (in Step (3.1)) in contrast to m = k+p products,
required by the explicit Algorithm 12.
Any polynomial acceleration technique, described in Section A.4.1.1, can be used in

this implicit scheme on condition, that the filtering polynomial is of degree p. If the roots
of the polynomial can be easily determined, e.g. in the case of Chebyshev polynomials, it
is obvious, that φ can be applied by selecting shifts µj equal to its p roots. In order to
apply φ which is specified by the coefficients, e.g. in the case of least squares polynomials,
an alternative technique is also proposed in Sorensen’s [108].
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Another Sorensen’s shift selection strategy that has proved successful in practice is
called exact shifts. In this strategy, the shifts µj are selected to be equal to Ritz values λ̃j,
corresponding to p “unwanted” eigenvalues. This is mathematically equivalent to Saad’s
explicitly updating v 1 with a particular linear combination of k “wanted” Ritz vectors
ũ j.
The details of the implicitly restarted Arnoldi algorithm can be found in [108, 109].

Compared to the explicit restarting techniques, the implicit ones are more stable, due
to implementation of the implicitly shifted QR restarting mechanism, and more efficient,
approximately by a factor of (k + p)/p.

The restarted Arnoldi/Lanczos algorithms are very efficient tools for finding eigen-
values located at any end of the spectrum. The performance of these methods can be
additionally enhanced by the application of deflation and preconditioning techniques,
which can be used independently on the restarting techniques described in Section A.4.1.
The most effective preconditioners are inverse iteration and Chebyshev polynomials. More
implementation details can be found in [98].

A.5 Generalized eigenproblems

In practice, there are two general approaches of solving generalized eigenproblems of form
(A.2). The first one is the QZ method and the second one is the reduction of the eigenprob-
lem to a standard one and exploiting the methods for standard eigenproblems discussed in
the previous sections. These approaches are shortly discussed in the succeeding sections.

A.5.1 QZ method

QZ method can be regarded as a version of the QR method intended for generalized
eigenproblems of the form (A.2). It is based on a series of orthogonal transformations
A (i+1) = Q (i)HA (i)Z (i) and B (i+1) = Q (i)HB (i)Z (i), which lead the pencil {A , B } to
the generalized Schur decomposition {H , T }, where H and T are upper triangular. The
algorithm can be summarized as follows:

Algorithm 15 QZ method

Input: A ,B , τ

Output: {H ,V , T ,W } : AW = V H ; BW = V T ; V HV = I ; W HW = I ;
H ,T are upper triangular

(1) H (1) = V (1)HAW (1) ; T (1) = V (1)HBW (1) (Hessenberg-triangular reduction)

(2) for i = 1, 2, . . . until {|hj+1,j | < τ(|hj,j | + |hj+1,j+1|)}j=1,...,n−1 (QZ iteration)
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(2.1) Compute {Q (i), Z (i)} : Q (i)HH (i)Z (i) is upper Hessenberg ;

Q (i)HT (i)Z (i) is upper triangular ;

H (i)T (i)−1 QR= (Q (i)D (i))R (i) ;

D (i) = diag(1,±1, . . . ,±1) ; Z (i)HZ (i) = I

(2.2) H (i+1) = Q (i)HH (i)Z (i)

(2.3) T (i+1) = Q (i)HT (i)Z (i)

(2.4) V (i+1) = V (i)Q (i)

(2.5) W (i+1) =W (i)Z (i)

General ideas incorporated in the above algorithm are similar to the concepts exploited
by the Algorithm 7. In order to reduce computational cost of QZ iterations the algorithm
starts with the reduction of A and B to Hessenberg form H (1) and upper triangular form
T (1), respectively. This is performed using orthogonal Householder and Givens transfor-
mations. Same transformations are used in each QZ iteration, determining orthogonal
matrices Q (i) and Z (i). It should be noted, that Q (i) has the same first column as would

be obtained in the QR iteration applied to H (i)T (i)−1, while the next columns can only
differ in sign. The construction of Z (i) is dictated by the conservation of the Hessenberg-
triangular structure of the pencil {H , T }. The iteration carries on until the stopping
criterion of the algorithm is fulfilled, i.e., until the magnitudes of the main subdiagonal
elements hj+1,j of H (i) become sufficiently small. Finally, the algorithm results in the
generalized Schur decomposition {V HA W = H , V HB W = T }. The overall process
is mathematically equivalent to the QR method Algorithm 7 performed for A (i)B (i)−1

matrix.
The eigenvalues λ of the original pencil {A , B } are equal to the eigenvalues of the

pencil {H , T } and can be calculated as {λj = hjj/tjj : tjj �= 0}j=1,...,n. The transforma-
tions Q (i) and Z (i) are accumulated in Steps (2.4) and (2.5) only if all the eigenvectors
{u j}j=1,...,n of A are desired. If just some eigenvectors are requested and the inverse itera-
tion technique, described in Sec. A.5.2 is used, these costly operations can be avoided. In
this case, the eigenvector u j, corresponding to the eigenvalue λj, is found as u j = W (1)v j,
where v j is generated by Algorithm 17 with A = H (1), B = T (1) and σ = λj.
Efficiency of the QZ method can be improved in practical algorithms by application

of the techniques such as implicit shift or deflation. Implementation details can be found
in [39]. Computational cost of such optimized QZ method is ≈ 66n3 flops if H , T , V

and W are desired, while it needs ≈ 30n3 flops if only the eigenvalues are computed.
In reality the QZ method is applicable only to nonsymmetric eigenproblems because

the transformations of the form A (i+1) = Q (i)HA (i)Z (i) and B (i+1) = Q (i)HB (i)Z (i)

destroy symmetry of the pencil.
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A.5.2 Reduction to standard form

The simplest transformation method of generalized eigenproblem (A.2) into a standard
one is to compute, for nonsingular B , the operator

C = B −1A (A.66)

and to solve standard C v = λv problem. This approach is explored by iterative meth-
ods (i.e., the power method, subspace iteration or the Arnoldi method) in the case of
nonsymmetric B . However, B −1A matrix is never explicitly formulated since the ma-
trix inversion is very costly, ill conditioned and destroys matrix structure and sparsity.
In practice, at the beginning of the iterative algorithm, LU decomposition B = L U is
computed, factoring B into the lower and upper triangular matrices, respectively. Then
appropriate triangular systems are solved each time, when the product of B −1 and a
vector is to be computed. Therefore, in order to compute w = B −1A v the following
steps are performed:

Algorithm 16 B −1A matrix-vector product via LU decomposition of B

Input: A , {L ,U } : B = LU , v

Output: w = B −1Av

(1) x = Av

(2) Solve Ly = x (forward substitution)

(3) Solve U w = y (back substitution)

For dense matrices, computation of the LU requires 2n3/3 flops, while each forward or
back substitution needs n2 flops. This cost is relatively high but in the case of structured
sparse matrices, e.g. banded, it can be substantially reduced. Denote by p and q the lower
and the upper bandwidth of B , where p, q � n. The cost of the factorization is reduced
to 2npq flops while forward and back substitutions cost 2np and 2nq, respectively.
In order to transform a nonsymmetric generalized eigenproblem into a standard one the

decomposition (e.g. LU) is always computed. In this case, a shift-invert preconditioner,
which also requires the factorization (see Sec. A.1.2.2), can be applied at no additional
cost. An example algorithm exploring the shift-invert technique in the context of the
power method has the following form

Algorithm 17 Inverse iteration for generalized eigenproblem

Input: A ,B , σ, v 0, τ

Output: {λ, v } : Av = λB v

(1) v = v 0

‖v 0‖
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(2) (A − σB ) = LU (LU decomposition)

(3) for i = 1, 2, . . . until ‖Av − λB v ‖2 < τ |λ|
(3.1) x = B v

(3.2) Solve Ly = x (forward substitution)

(3.3) Solve U w = y (back substitution)

(3.4) w = w
‖w ‖

(3.5) λ = σ +
w HB v

w HB w

(3.6) v = w

It should be noted, that Steps (3.1) to (3.3) implicitly solve (A − σB )w = B v system.
Subsequent approximations of λ are calculated with the Rayleigh quotient

λ =
v HA v

v HB v
(A.67)

If the normalization in Step (3.4) has the form ‖w ‖B = w HB w , the Rayleigh quotient
calculation in Step (3.5) can be simplified so that λ = σ + w HB v .
The algorithm converges to the eigenvalue λ closest to the shift σ. In order to improve

convergence, the shift can be occasionally changed during the iteration. However, the
change of σ implies expensive recomputation of the LU decomposition and should not be
performed too frequently.

Symmetric case. In the case of symmetric generalized eigenproblem, the approach
based on involving the LU decomposition in implicit formulation of B −1A matrix is not
advised since it destroys the operator symmetry. Assume that B is positive definite. In
order to transform the problem into a symmetric standard one, Cholesky factorization
B = G G H can be computed and the following symmetric operator can be formulated

C = G −1A G −H (A.68)

Its eigenvalues correspond to the eigenvalues of the pencil {A , B }. The eigenvectors v

of the pencil can be computed as v = G −Hq , where q are the eigenvectors of C . If the
size of the matrices is small, then C can be explicitly formulated and QR method can
be used for determination of the eigenvalues and eigenvectors. It leads to the following
algorithm

Algorithm 18 Solution of symmetric generalized eigenproblem by means

of Cholesky factorization and QR method

Input: {A ,B } : A = AH ; B = B H ; B is positive definite

Output: {diag(λ1, . . . , λn), V } : V HAV = diag(λ1, . . . , λn) ; V HB V = I
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(1) B = GGH (Cholesky factorization)

(2) C = G−1AG−H

(3) diag(λ1, . . . , λn) = QHC Q (Schur form via QR algorithm)

(4) V = G−HQ

This algorithm requires ≈ 14n3 flops.
If A and B are large and sparse, then C should not be explicitly formulated due to

high cost of the process and probable loss of sparsity and structure. In this case, some
iterative eigensolver is used, which implements a product of the operator C and a vector
in the way similar to shown in Algorithm 16.
The cost of Cholesky factorization is half as high as the cost of the LU decomposition,

while forward and back substitutions for G and GH matrices are same expensive as
for L and U . Similarly to the LU decomposition, the cost of the factorization and the
substitutions can be reduced for banded B .



Appendix B

Nonreciprocal ferrite phase shifter

This appendix is intended as an illustration of practical significance of some computational
techniques discussed in this thesis and presents design considerations for a nonreciprocal
latching ferrite phase shifter that was manufactured and measured in Telecommunications
Research Institute, Gdańsk Division [15]. The measurement results of this structure
validate the analysis performed in Sec. 5.4.1.

B.1 Structure considerations

Waveguide ferrite phase shifters are often used in the feeding systems of high-power elec-
tronically scanned array antennas. Among a variety of phase shifter configurations latch-
ing ferrite phase shifters with toroidal ferrite section are the most frequently used for
that purpose. The main advantages of such structures are elimination of external mag-
nets and reduction of switching power [115]. A cross-section of a typical latching ferrite
structure is shown in Fig. B.1(a). A ferrite toroid can be permanently magnetized by the
impulses of electrical current flowing via a wire placed in the central slot of the toroid.
Depending on the direction of the current, induced remanence magnetization is +Mr or
−Mr, which correspond to the states where propagation constant of the dominant mode
is, respectively, β+ and β−. These values define one of the most important phase shifter
parameters, i.e. nonreciprocal phase shift

∆Θ = β+ − β− (B.1)

which is the phase change per unit length between two states of opposite magnetization.
In order to improve the figure of merit of the phase shifter, which is the phase change di-

vided by the attenuation, various modifications of the basic structure shown in Fig. B.1(a)
have been proposed. Clark [17] investigated the effect of chamfering the corners of the
ferrite toroid. He found that the modified structure resulted in 20% increase in the non-
reciprocal phase shift and a reduction of the microwave attenuation. Ince et al. have
verified these results in [47] and they showed that the increase is in fact 10%, while
another 10% was probably caused by the elimination of mechanical stresses occurring
in the non-chamfered toroid. Another modification, contributing nothing to the phase

139
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Figure B.1: Cross-sections of a simple phase shifter structure (a) and the physical struc-
ture designed in Telecommunications Research Institute, Gdańsk Division (b).

change but only decreasing the microwave loss, has been proposed by Mizobuchi and
Kurebayashi [78]. They used reduced height grooved waveguide to obtain 20% improve-
ment of the figure of merit compared to the phase changer in a rectangular waveguide.
Another problem arising in the design of the phase shifters are higher order modes de-
grading the reflection and transmission characteristics of the device. The methods for
suppressing the parasitic modes, consisting on the application of a thin resistive sheet in
the central y-z plane of the guide, are described in [116].
Taking into account the described above improvements of the basic structure, the

phase shifter shown in Fig. B.1(b) was designed and manufactured in Telecommunications
Research Institute, Gdańsk Division [15].

B.2 Analysis

The simplified analysis of the reduced height grooved waveguide structure has been per-
formed in [78] by means of the transmission matrix technique. However, in order to
apply this method, the toroid is approximated by three vertical slabs homogeneous in the
y-direction. Main disadvantage of this approach is that the nonuniform magnetization
vector inside the ferrite cannot be accurately modeled.
In our approach, we suggest the application of the perturbation method (which is a

special case of the coupled mode method for the only one fundamental mode taken into
expansion) with basis fields computed by means of the finite difference frequency domain
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method. The details of the analysis are described in Sec. 5.4.1.
The application of the perturbation method allows one to divide the structure into

any subregions with locally defined magnetization vector and thus exact modeling of
nonuniform distribution of the magnetization vector is possible.

B.3 Realization and measurements

The manufactured phase shifter structure shown in Fig. B.2 included a 16mm long
yttrium-gadolinium garnet G-120 ferrite toroid fabricated by POLFER Ltd. The ferrite
section was matched to R-58 waveguide using dielectric loaded four-section transformers
providing maximally flat impedance matching in the operation frequency range from 5 to
5.6GHz.
Measurement results of the nonreciprocal phase shift ∆Θ along with the analytical

values are compared in Fig. 5.17(b) and discussed in Sec. 5.4.1. Measurement results of
the insertion loss and the return loss of the total structure can be found in [15].
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(a)

(b)

Figure B.2: The ferrite phase shifter structure manufactured and measured in Telecom-
munications Research Institute, Gdańsk Division. Two halves of the waveguide structure
(a) and a view of the entire structure with driver part and long ferrite toroid (b).
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