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Abstract

This study discusses efficient numerical algorithms for solving operator boundary
value problems arising in electromagnetics. It focuses on developing low cost methods
capable of dealing with eigenproblems which describe complicated 2D and 3D electromag-
netic structures. Original finite-dimensional operator projection techniques, exploiting
the concept of implicit operator projection and based on the Finite Difference Frequency
Domain (FDFD) and eigenfunction expansion methods are developed, offering reduced
computational and memory cost as compared to orthodox approaches. This thesis also
proposes a new method of reducing the effect of numerical dispersion, being an impor-
tant source of errors while modeling electrically large structures using FDFD algorithm.
The presented techniques applied jointly with modern Krylov subspace methods lead
to numerical solvers which may be efficiently implemented in scalable parallel systems.
Examples of application of these solvers to modeling selected waveguiding structures and
electrically large resonators are described. The presented computational results validate
the proposed algorithms and confirm their high performance and scalability in parallel
systems.
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Symbol conventions and
abbreviations

General symbols

A - linear operator
A∗ - adjoint operator associated with A
A - matrix
a - vector
↔
a - tensor
B(X, Y ) - space of linear operators {A|A : X → Y }
C - the set of complex numbers
C1 - the class of functions with continuous derivatives
C2 - the class of functions from C1 class with continuous second derivatives
δ(x) - the Dirac delta distribution
h(x) - the Heaviside function
L2(Ω) - space of square integrable functions defined over the region Ω
R - the set of real numbers
σ(A) - point spectrum of the operator A
v, w - functions
X - complete, linear (Banach) space
(·, ·) - inner product in a Hilbert space
|| · || - norm in a Hilbert space induced by the inner product

Physical quantities

β - propagation constant
ε - relative permittivity of medium
ε0 - permittivity of the free space
�Et - transverse electric field intensity
f - frequency
�Ht - transverse magnetic field intensity
k0 - wavenumber in the free space
µ0 - permeability of the free space
Z - normalized propagation constant
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Selected abbreviations

DFT - Discrete Fourier Transform
FD - Finite Difference discretization method
FEM - Finite Element Method
FFT - Fast Fourier Transform
GM - Galerkin Method
IEEM - Iterative Eigenfunction Expansion Method
IRAM - Implicitly Restarted Arnoldi Method
MGS - Modified Gram-Schmidt orthonormalization algorithm
P ARPACK - Parallel ARnoldi PACKage
TRM - Transverse Resonance Method

Symbols related to computational complexity

k, NEV - number of eigenvalues to be found
K - number of sample points in spatial domain
M - number of Fourier coefficients
N - matrix problem size
NCV - number of computed eigenvalues

(size of the constructed Krylov subspace)
P - number of applied processors
O(N) - linear asymptotic growth
O(N logN) - linear-logarithmic asymptotic growth
O(N2) - quadratic asymptotic growth



Chapter 1

Introduction

1.1 Motivation and background

Dynamic progress occurring in telecommunication and information systems over the past
few years, including advances in high frequency telecommunications, navigation, radar
systems and computer networks, created an enormous demand for modeling various elec-
tromagnetic systems. The problem of characterization of new materials or structures
such as waveguides or resonators in ‘high frequency’ range, became essential e.g. in fiber
optics technology or in the design of modern microwave and millimeter wave circuits.
Due to progress in manufacturing technology, the mentioned problem refers typically to
structures in which the size of geometrical features is comparable to the wavelength. This
situation requires application of rigorous analysis of electromagnetic wave interaction with
matter. Moreover, the structures being of current interest of science and technology are
usually characterized by a non-trivial geometry and/or complex materials. These factors
imply the necessity of applying numerical modeling of electromagnetic fields and waves
in order to be able to investigate the properties of these structures.

Typically, the physical problems to be modeled include investigating:

1. Electromagnetic response of a structure to the applied fields. – In numerical terms,
this normally implies solving a deterministic problem, e.g. a linear set of equations,
which allows one to find electromagnetic fields within the considered structure.

2. Free oscillations or waveguiding properties of a given structure. – In this case
one usually arrives at an eigenproblem, whose solution involves finding modes of a
structure, consisting both of electromagnetic field distributions and corresponding
eigenfrequencies or propagation constants.

A typical numerical modeling scenario arising while dealing with the above modeling
problems includes the following steps. First, a mathematical formulation of the problem
is developed. In electromagnetics, this step consists in building an initial value problem
or a boundary value problem involving an integral or differential equation or a set of
equations derived from Maxwell’s equations. In these formulations the electromagnetic
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8 High Performance Algorithms for Large Scale Electromagnetic Modeling

fields are represented as elements of infinite-dimensional functional spaces. Consequently,
in the next step a method of finite-dimensional projection is developed in order to convert
the initial problem into the form allowing one to apply an algorithmic procedure to find
a desired solution. The last step consists of solving approximately the projected problem
in a discrete domain using a computer program. The computer solver usually implements
a method capable of dealing with a finite-dimensional (discrete) problem, e.g. a matrix
eigenproblem or a system of linear equations. The above general methodology is used
to develop virtually all numerical solvers of electromagnetic problems and has served to
design various classical methods of solving operator boundary or initial value problems.

The necessity to model continually more complicated structures or systems has led to
defining a class of most complicated computational problems which is commonly referred
to as ‘large scale’ problems, which may be characterized by a number of factors, including:

• complicated geometries of the modeled structures,

• large dimensions of the structures, which in case of electromagnetic problems are
usually related to the wavelength of modes excited/propagating in a given structure,

• complicated characteristics of materials forming a modeled system.

In computational terms all the mentioned factors, imply:

• introducing sophisticated models which require advanced numerical treatment,

• appearance of large problem sizes (large projection space), usually related to fine
discretization,

• application of hi-end computers, often including scalable parallel systems, which
may handle computationally demanding tasks.

Consequently, ‘large scale’ problems generally lie beyond the range of applicability of
many orthodox numerical algorithms due to generally high computational and memory
complexity of the classical methods, as well as inadequate approximations applied in
these methods. In other words, a number of factors or effects, which become more acute
in large scale problems, e.g. numerical dispersion, slow convergence rate, high density of
operator spectrum cannot be handled efficiently by many ‘older’ algorithms.

Although the discussion or comparison of specific features of e.g. classical operator
projection methods or basic algorithms of solving matrix eigenproblems is far beyond the
scope of this work, it may be observed that in general the solvers based on the orthodox
numerical techniques are characterized by a fairly high numerical complexity e.g. of
O(N3) and high memory cost of O(N2), where N is the size of the discrete problem.
This kind of numerical and memory cost results unacceptable while trying to model
complicated electromagnetic systems. With a problem size N of order 104 or 105 the
quadratic growth of memory complexity implies that the memory storage requirements
approach or even exceed the storage capabilities of most available computer systems
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(including massively parallel supercomputers). The computation time, associated with
the numerical complexity, blows up already for much smaller problem sizes in the case
of many classical methods. These facts indicate that many existing techniques of solving
e.g. operator boundary value problems become useless while dealing with large scale
electromagnetic problems.

In order to be able to model complicated, large scale electromagnetic structures the
complexity of the applied techniques has to be reduced. This can be achieved by devis-
ing entirely new numerical algorithms and techniques, which allow one to reduce both
memory and computational costs at different stages of constructing a numerical solver.
This provides the main motivation for this work which investigates different approaches
towards numerical solving of operator boundary value problems arising in large scale
electromagnetic modeling. These approaches include:

• Applying new formulations of electromagnetic problems which are better suited for
modeling of certain classes of structures, as well as allow effective finite-dimensional
projection of the problem.

• Finding low cost methods for finite-dimensional mapping of electromagnetic oper-
ator equations.

• Investigating fast, low complexity methods of solving discrete operator problems,
e.g. matrix eigenproblems.

The issues pointed out above correspond to the basic numerical modeling scenario and
define the most up-to-date problems in computational electromagnetics and scientific
computing in general. The first of the mentioned points defines the scope of application of
a given method and influences the size of the emerging computational problem, the second
allows one to reduce primarily the memory storage requirements while the last one has the
most important impact on the computational complexity of the resulting numerical solver.
In fact, all the three points are closely related to each other and provide the necessary
conditions to be fulfilled by high performance numerical solvers, i.e. algorithms which
may be used to model efficiently complicated, large scale electromagnetic structures.

1.1.1 Previous work on the efficient algorithms for large scale
electromagnetic problems.

In the recent years a number of sophisticated numerical methods have been widely inves-
tigated in various application fields within computational electromagnetics. At different
stages of construction of a numerical solver, including mathematical problem formulation,
designing finite-dimensional projection method and solving the discrete problem a num-
ber of techniques have been developed aiming at enhancing efficiency and broadening the
range of application of electromagnetic modeling by reducing size of the computational
problems, improving numerical properties of the solvers and shortening computation time.
These issues are considered in more detail in the following paragraphs.
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1.1.1.1 Reducing size of the computational problem

The first group of developments to be considered refers to designing more efficient
formulations and projection techniques for electromagnetic modeling, allowing one to
reduce both computational and memory cost of numerical solution. These efforts gen-
erally concentrate on reducing the number of variables (degrees of freedom) involved in
certain mathematical formulations by applying model order reduction, hybrid projection
techniques and reducing errors associated with projection/discretization.

The model order reduction techniques aim at representing the dynamics of a given
electromagnetic system using a reduced number of degrees of freedom, which allows
a more efficient numerical treatment. Recent developments in the area of constructing
reduced-order models for electromagnetic systems include application of Krylov subspace
methods. Within this research field Lanczos and Arnoldi algorithms [100], [102] seem
to have most significance. The Arnoldi iterative scheme has been successfully applied
to build reduced-order models in simulation of 3D integrated circuit interconnects. It
has been shown that the reduced-order models are very efficiently generated from sur-
face/volume integral formulations [18], [62]. Fast Arnoldi-based techniques of generating
reduced-order models for RC and RLC circuits which guarantee stability and passivity
have been proposed [38], [105]. A number of methodologies combining Finite Difference
Time Domain (FDTD) method with non-symmetric Lanczos algorithm for fast extraction
of reduced-order models of electromagnetic responses have been developed and applied
to calculation of broad-band response of passive waveguiding structures [16] or tran-
sient electromagnetic wavefields in inhomogeneous and lossy media [93]. Lanczos-based
model-order reduction techniques, including Padé-via-Lanczos [39] or adaptive Lanczos-
Padé sweep (ALPS) [9], have also been applied to simulating multiconductor transmission
lines [17] or characterization of certain electromagnetic devices [9].

In problems involving modeling electromagnetic structures, such as waveguides or res-
onators, for both integral and differential problem formulations, the number of field
components is often reduced to two components (e.g. transverse components in case of
waveguiding structures) of either magnetic or electric field. This approach is applied
in [37], [64], [73], [118] (Finite Difference-based methods, differential formulations), [44]
(FD, integral formulations), [81] (Finite Element Method, differential formulation) or [55]
(finite volume, integral formulation). Apart from reducing the computational effort as-
sociated with solving the problem (related to the size of the variables), these approaches
achieve an additional goal of eliminating spurious modes or solutions, due to application
of the divergence condition.

Another example is the accuracy improvement in the methods based on finite difference
approach. In this class of numerical techniques the accuracy of results depends on the
applied computational grid, which directly determines the number of unknowns. This
in turn substantially influences both memory and computational cost of the numerical
solution of a given problem. Savings in computing resources can be achieved by devis-
ing techniques which ensure greater accuracy for the same number of unknowns (the
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same computational grid). These techniques include methods of correcting the errors
associated with discretization. For instance, the phase errors arising in finite difference-
based methods (due to numerical dispersion – cf. [110]) may be corrected by introducing
modified FD schemes – cf. [52] (modified higher-order schemes for FDTD – integral for-
mulations) or [83] (modified standard second order schemes for FDTD or FDFD), instead
of applying costly finite difference mesh refinement.

1.1.1.2 Improving the underlying linear algebra solvers

Apart from deriving mathematical problem formulations and designing numerical tech-
niques aiming at reducing size of the computational problem, one of crucial paths for
development of modern fast and efficient numerical techniques was improving the un-
derlying linear algebra solvers for problems arising from electromagnetic modeling. It
appears that one of the most important steps was application of Krylov subspace iter-
ative algorithms to solving eigenproblems and linear systems arising in electromagnetic
modeling. The first group of applications of Krylov subspace methods refers to solv-
ing eigenproblems arising in modeling of waveguiding structures and resonators. Ap-
proaches towards solving non-symmetric standard eigenproblems for large, sparse matri-
ces obtained by discretizing integral forms of Maxwell’s equations using Finite Difference
technique include application of Arnoldi method [102] with Chebyshev polynomial pre-
conditioning ( [44] – modeling dielectric channel waveguides), ( [74] – modeling dielectric
resonators). The Arnoldi algorithm is also used jointly with multiple deflation techniques
and inverse power method to solve non-symmetric standard eigenproblems for dielectric
waveguides obtained using integrated Finite Difference (FD) technique over non-uniform
meshes [37]. Finite volume discretization applied jointly with Arnoldi solver (instead of
QR-based solver) has been shown to reduce dramatically the solution time and memory
requirements for the problem of modeling microwave transmission lines [55].

The generalized non-symmetric eigenproblems which arise in numerical modeling of
waveguiding structures based on Finite Element Method (FEM) have also been effectively
and efficiently treated by using Arnoldi method accelerated using Chebyshev polynomial
and inflated inverse iteration technique [81] or the Arnoldi algorithm applied jointly with
shift and inverse strategy [72]. In the case of methods applying FEM the size of the nu-
merical problems to be solved appears to be somewhat limited due to costly matrix inverse
operations associated with solving a generalized eigenproblem [72]. Still, in general, the
proposed techniques succeed in substantially accelerating convergence to the desired set
of eigenvalues and eigenvectors and reducing memory requirements of the algorithms as
compared to orthodox methods, e.g. based on solving dense matrix eigenproblems. Due
to its advantages, the Arnoldi method is also applied to finding eigenvalues in the small
signal stability analysis of large electric power systems. In this case the Arnoldi method
used together with shift-invert and/or semi-complex Cayley preconditioning [3], [71] re-
sults in fast and robust algorithms for selective spectral analysis. It may be concluded
that among Krylov subspace methods used to solve eigenproblems the Arnoldi algorithm
gained most importance in the electromagnetic modeling due to its fast convergence,
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reliability, flexibility (which permits to use it efficiently with other methods and precon-
ditioners) and low memory requirements as compared to older methods.

For the cases when linear systems arise instead of eigenproblems Krylov subspace meth-
ods other than Arnoldi process (or Full Orthogonalization Method (FOM) [100]) become
more eminent. These include e.g. Biorthogonal Conjugate Gradient (BiCG), Generalized
Minimal Residual (GMRES) or Quasi-Minimum-Residual (QMR) algorithms. (cf. [100]).
The mentioned methods combined with minimal residual smoothing techniques have been
shown to provide very efficient numerical solvers for large sparse complex systems of lin-
ear equations arising e.g. from discretization of the electro-quasistatic problems using
Finite Integration Technique (FIT) [7], [19].

1.1.1.3 Parallel computation

We have mentioned a number of recently developed approaches with their applications
which generally aim at reducing computational effort associated with modeling various
electromagnetic problems. These high performance techniques become even more signif-
icant in the context of ‘large scale’ problems, where addressing issues related to memory
and computational costs and adequacy of finite-dimensional projection often determines
whether a given problem may be numerically tractable. In this case it is necessary to
consider high performance algorithms also within the context of parallel processing. From
this point of view the term of high performance algorithm gains additional meaning, ap-
pearing as a method which makes efficient use of computational and memory resources
offered by multiprocessor systems. The computational power offered by modern super-
computers, especially scalable parallel distributed memory systems, providing now the
gigaflop or even teraflop peak performance may be used to model more complex, large
scale problems only if the applied algorithm satisfies additional requirements. These refer
mainly to balancing the workload and minimizing data interchange across a large num-
ber of processing elements and are found to have a substantial impact on the efficiency
of the algorithm executed in parallel environment. Consequently, the existing numeri-
cal techniques e.g. of solving operator boundary value problems have to be revised. It
is necessary to find out e.g. whether a given problem formulation and numerical finite-
dimensional projection technique produce a problem which may be efficiently distributed
across the processors and whether a corresponding method of solving a discrete problem,
e.g. a matrix eigenproblem may be parallelized efficiently. The challenging problems of
designing new scalable numerical solvers, being in the mainstream of current research
efforts in scientific computing, provide an important motivation for this study.

In recent years, the research in the fields of scientific computing and computational
electromagnetics focused on various numerical techniques and parallelization strategies,
which would result in high performance scalable algorithms suitable for different parallel
architectures, including e.g. shared or distributed memory systems. (cf. [30] or [43]).
A considerable effort has been devoted to investigate whether it is possible to apply
efficiently Krylov subspace method in scalable supercomputer systems. An early article
by Saad [99] describes efficient parallelization strategies for Conjugate Gradient (CG)
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and Generalized Minimal Residual (GMRES) methods. A number of studies present
high performance parallel algorithms based Krylov subspace methods applied to solving
partial differential equations [51], large scale differential-algebraic systems [12] (GMRES)
or large, sparse nonsymmetric systems of equations [8], [88], [103]. The cited works
indicate that Krylov subspace methods such as conjugate gradient (CG), biconjugate
gradient (BiCG), GMRES or quasi-minimal residual (QMR) are very well suited for
parallelization in different system architectures, including the currently most popular
multiple instruction multiple data (MIMD) systems [103]. The theoretical performance
models also imply that this class of methods may be efficiently applied in parallel systems
[108]. The most recent developments include parallelization of Krylov subspace methods
for structural finite element analysis [68] (based on domain decomposition scheme) or
designing Krylov-based acceleration schemes for solving linear systems in parallel [14].

The apparent success of Krylov subspace methods in parallel environments caused their
widespread application in a number of fields which make extensive use of high performance
processing, including computational electromagnetics. These highly efficient parallel it-
erative algorithms for solving linear systems or eigenproblems have been successfully ap-
plied in modeling cavity resonators [82], waveguiding structures [34], [72], scattering and
radiation problems [25], [113], solving electromagnetic inverse problems [86] or generally
wideband electromagnetic simulations [2].

Clearly, the main problem encountered in the mentioned application fields was match-
ing the characteristics of the specific electromagnetic problems and associated formula-
tions or finite-dimensional projection techniques with high performance parallel solvers of
linear systems or finite-dimensional eigenproblems. In other words, the existing numerical
approaches, e.g. projection methods based on the Finite Element Method, needed to be
revised in order to match the requirements of high performance parallel computing, such
as balancing the workload across the processors or minimizing the inter-processor com-
munication. Various parallelization strategies or entirely new approaches were developed
with the aim to assure that e.g. characteristics of the involved operators or projection
procedures would not ‘spoil’ the parallel performance and scalability of a given numerical
solver implemented for a certain system architecture.

In electromagnetic applications, for numerical methods based on the Finite Element
(FE) projection techniques, a number of (often sophisticated) parallelization schemes
or paradigms had to be developed in order to achieve reasonable parallel performance
and scalability. Early works developing parallel FE solvers for electromagnetic scattering
problems (for Hypercube system architecture) applied parallel domain decomposition,
based on inertial partitioning in order to assure load balancing across the processors and
good performance (speedup) [41] [42]. Due to the structure of the operator matrices
created by FE projection technique, characterized by random non-zero element distri-
bution, parallelization of FEM-based solvers experienced problems with performance in
distributed memory MIMD systems [46], [113]. These difficulties associated with load bal-
ancing and amount of inter-processor communications were solved using different strate-
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gies e.g. duplicating entire datasets to local memories of all processors (which had a
side effect of often unacceptably increasing the total memory storage requirements) [113]
(modeling scattering problems), applying load balancing based on finite element tearing
and interconnecting scheme [82] (fullwave analysis of microwave circuits and resonators)
or matrix reordering techniques reducing matrix bandwidth and increasing its regularity,
which also reduced the amount of inter-processor communication [23] (scattering prob-
lems). Parallel implementations of solvers for complicated scattering problems have also
been successfully developed for distributed memory computers using unstructured finite
element method, which does not use mesh partitioning techniques [25]. Other works in-
dicated the role of preconditioners while trying to obtain load balancing in FEM-based
method by applying matrix assembly by degrees of freedom [115]. It has been shown
that matrix assembly by degrees of freedom also reduces the amount of required inter-
processor communication which enhances performance of the parallel solvers [116]. The
FEM-based electromagnetic codes were also implemented in shared memory systems us-
ing parallel mesh partitioning [114] or bulk synchronous parallel approach [58]. The
latter approach has also been applied for distributed memory systems, resulting in rather
moderate parallel performances for a number of different FEM-based solvers.

Summing up, the parallelization of electromagnetic solvers based on the Finite Element
Method (FEM), especially for distributed memory parallel systems, requires relatively
complicated schemes in order to achieve good rates of e.g. parallel speedup. Addition-
ally, it is important to note that FEM-based methods require performing a certain form
of matrix inversion, which may result costly, particularly in parallel processing environ-
ments [46]. Comparisons made between FEM-based and Finite Difference-based parallel
electromagnetic codes [22], [46], [111] indicate that finite difference approach results in
much simpler and often more efficient parallelization schemes (as compared to FEM), so
in order for FEM codes to be competitive with Finite Difference algorithms in parallel en-
vironments, they need to be characterized by significantly better convergence properties.
In fact, very good scalable performance is observed for finite difference parallel solvers
(FDTD) used in modeling microwave circuit devices [48] or electrically large microwave
circuits [49] (using Planar Generalized Yee algorithm) implemented in distributed mem-
ory systems.

One should also mention parallel algorithms using Discrete Surface Integral Equation
technique to model microwave circuit devices [46], characterized by good parallel perfor-
mance or parallel solvers utilizing the Method of Moments (MoM) for modeling electro-
magnetic scattering problems [21], [29], [61], [87]. It is important to note that algorithms
in the cited works are based on the explicit method of moments (Galerkin) schemes,
which construct appropriate dense operator matrices. Consequently, the main part of
parallelization refers not to solution process, but to costly phase of operator projection
associated with computing matrix elements (which may be performed very efficiently in
parallel). Since, in general, solving very large linear systems involving dense matrices
(stored explicitly) is unsuitable for implementation in distributed memory systems due
to large inter-processor communication overheads, different approaches towards solving
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very large MoM-based problems in scalable systems need to be developed.

1.2 Scope, goals and claim of this work

The main interest of this work are the numerical methods suitable for solving large scale
electromagnetic problems. Moreover, the focus is on those numerical algorithms which
may be efficiently applied in parallel processing environment. This study does not aim
at presenting or proposing several advanced numerical techniques, each applied to a
specialized class of problems, e.g. initial value problems for electromagnetic differential
operators or boundary value problems for given integral operators. Instead, it tries to
perform a careful selection of paths to be followed or approaches to be applied at each
stage of construction of a numerical solver (mathematical formulation, projection, numer-
ical solution) which allow one to design high performance parallel algorithms applicable
to electromagnetic modeling. A few techniques which, in author’s opinion, appear most
effective for the investigated class of physical problems are proposed and systematically
investigated. These techniques are then applied to the design of numerical solvers for
large scale electromagnetic eigenproblems involving differential operators. This class of
problems has been selected as it constitutes one of the broadest and most important
classes of formulations used in modeling of electromagnetic structures. The discussed
algorithms are validated and their performance in scalable parallel systems is assessed.
According to the above description, the scope of this work may be summarized in the
following points:

• Presenting operator formulations of electromagnetic BVPs involving differential
operators and discussing their applicability to solving complex, large scale problems.

• Proposing methods of finite-dimensional projection of electromagnetic operators
offering reduced numerical cost as compared to classical techniques.

• Analyzing and comparing selected numerical properties of different operator pro-
jection strategies in the context of large scale electromagnetic problems.

• Presenting numerical methods of solving discrete operator eigenproblems and dis-
cussing their applicability while dealing with discretized large scale electromagnetic
problems in parallel processing environment.

• Applying the proposed numerical techniques in design of high performance algo-
rithms of solving large scale electromagnetic eigenproblems.

• Performing numerical validation of the proposed methods applied to solving selected
electromagnetic problems.

• Carrying out performance tests of the discussed algorithms in scalable parallel sys-
tems.
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In this context, the emerging main goal of this work is constructing high performance
parallel algorithms which may be effectively and efficiently applied to solving those elec-
tromagnetic problems, in particular eigenproblems of given differential operators, which
are too complex to be treated using classical, orthodox numerical methods.

This thesis makes the claim, that high performance numerical methods for large-scale
electromagnetic modeling can be obtained by applying several new advanced techniques
at different stages of the design of the solver as well as selecting an appropriate operator
formulation, which include:

• Methods of implicit finite-dimensional operator projection which reduce memory
and computational costs and assure high locality of data and computations as well
as good workload balancing.

• Low cost iterative algorithms based on the concept of Krylov subspaces, allow-
ing one to embed finite-dimensional projection of the operator into the process of
solution of a numerical problem.

• Methods of reducing errors due to numerical dispersion, for algorithms applying
finite difference approximations.

• Algorithms of accelerating the convergence of the Krylov subspace algorithms.

1.3 Chapter outline

This work starts with a formulation (in Chapter 2) of electromagnetic problems in both
physical and mathematical terms. The description concentrates on boundary value prob-
lems for selected differential operators, suitable for modeling either two-dimensional
waveguiding structures or three-dimensional resonant cavities. The derivations of the
operators for 2D problems are based on the book by Mrozowski [80]. Chapter 2 also
describes some characteristics of large scale electromagnetic boundary value problems.

Chapter 3 presents iterative algorithms of solving operator and matrix eigenproblems,
with an emphasis on Krylov subspace methods. The description of the algorithms is based
on the paper by Sorensen [107] and the books by Saad [100], [102].

Chapter 4 discusses methods of projection of infinite-dimensional operators, based
on the Finite Difference Frequency Domain (FDFD) method and the eigenfunction ex-
pansion technique. The chapter includes an originally developed technique for reducing
the effects of numerical dispersion in FDFD discretization method for problems defined
in the cylindrical coordinate system. It also contains a new hybrid projection scheme
for operators arising in modeling 3D electromagnetic systems in cylindrical coordinates.
The scheme combines standard FDFD technique with eigenfunction expansion technique.
The discussed design of the fast method of calculating inner products for the operators
and functions applying the Method of Moments representation has been first proposed
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by Mrozowski [78]. This chapter also describes the novel methodology of implicit finite-
dimensional projection of electromagnetic operators [95]– [97]. The methodology is ap-
plied both to FDFD-based techniques as well as algorithms exploiting eigenfunction ex-
pansions, including the FDFD discretization scheme for 3D systems in cylindrical systems
developed by Mielewski, Ćwik�la and Mrozowski [74].

Chapter 5 concentrates on describing original parallel designs and/or implementations
of the algorithms of solving operator eigenproblems. Also a description of a new eigen-
solver (based on the IRAM algorithm and implicit representation of the input operator)
is given.

Chapter 6 discusses application of the previously described eigensolvers to the prob-
lems of modeling dielectric waveguides with arbitrary permittivity profiles as well as
cylindrical and hemispherical resonators and shows the results of tests validating the
algorithms. It also discusses the applicability of the algorithms based of the Method of
Moments projection to modeling dielectric waveguides with discontinuous, rectangular
permittivity profiles by presenting modifications to the basic eigensolvers and applying
two different operator formulations.

Chapter 7 presents a collection of the results of performance tests in selected parallel
distributed memory systems as well as some comparison of execution times among the
discussed solvers.
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Chapter 2

Operator boundary value problems
arising in electromagnetics

This chapter defines and briefly characterizes electromagnetic boundary value problems
(BVPs), which provide a background for application of the numerical methods to be
proposed later on in this work. It focuses on presenting BVPs arising in modeling of
electromagnetic structures, such as closed or open waveguides or resonators with dielec-
tric filling. The problems are represented as eigenproblems involving specific differential
operators. Their solutions bring essential information on the modeled systems, includ-
ing propagation constants (or wavenumbers) of modes in waveguides with corresponding
modal field distributions or eigenfrequencies in resonators. The knowledge of mentioned
parameters is crucial e.g. in the design of certain filters, passive elements or investigation
of properties of materials used in microwave frequency range. Moreover, the following
description consciously focuses on the operator formulations which:

• use a reduced number of unknowns, e.g. four field components instead of six,

• may be represented as standard eigenvalue problems,

as these two factors have a significant impact on the size of the corresponding discrete
problem and performance of the numerical algorithms which apply these formulations
to solving large scale electromagnetic eigenproblems. As shown in Chapters 6 and 7
the proposed operator formulations allow one to develop methods which efficiently and
effectively deal with complicated electromagnetic problems.

2.1 Formulation of 2D and 3D electromagnetic bound-

ary value problems

This study investigates algorithms applied to the analysis of two general types of elec-
tromagnetic structures, i.e. waveguides and resonators (resonant cavities). In physical
terms the problems to be considered involve:

• Finding the wavelength or propagation constant of one or more waveguide modes
at a given frequency.

19
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Figure 2.1: A waveguide loaded with inhomogeneous dielectric material in a rectangular
coordinate system.

• Finding electromagnetic field distributions corresponding to appropriate waveguide
modes.

• Finding resonant frequencies (and corresponding field distributions) in given cavi-
ties.

The stated problems are mathematically formulated using the frequency domain ver-
sion of Maxwell’s equations and appropriately defined boundary conditions. Before writ-
ing the operator equations one should define properties of spatial domains for problems
involving either waveguiding structures or resonant cavities.

A rectangular coordinate system is to be used in the analysis of dielectric waveguides
(cf. Fig. 2.1). It is assumed that a waveguide has an arbitrarily shaped cross-section
Ω in the x − y plane bounded by periphery δΩ and is filled with an inhomogeneous
dielectric material. The structure is uniform along the waveguide axis aligned with the z
direction. Consequently, the equations describing this system are invariant with respect
to the translation in the z direction which allows one to assume a harmonic variation of
the modal field along the waveguide axis z. Then, the 3D problem domain may be easily
reduced to a 2D domain, containing the x− y cross-section of the waveguide.

For problems involving resonant cavities (e.g. circular or hemispherical resonators) a
cylindrical coordinate system will be used (cf. Fig. 2.2) which gives more convenient
mathematical formulations for some classes of structures, e.g. structures with rotational
symmetry filled with isotropic materials and/or structures whose boundaries coincide
with surfaces r = const, φ = const or z = const. In the case of systems with rotational
symmetry a 3D problem of finding resonant field distributions is straightforwardly re-
duced to a problem with a 2D domain having a Cartesian metrics. In a more general
case, it is assumed that volume Ω of the resonant cavity is filled with an anisotropic
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Figure 2.2: An arbitrarily shaped electromagnetic resonant cavity in a cylindrical coor-
dinate system.

material and is bounded by the surface δΩ. If the constitutive parameters are described
by diagonal tensors, e.g. the permittivity is given as follows:

↔
ε (r, φ, z) =


 εr(r, φ, z) 0 0

0 εφ(r, φ, z) 0
0 0 εz(r, φ, z)


 (2.1)

then, as shown later on, application of cylindrical coordinate system allows one to obtain
operator formulation with a reduced number of unknowns. This may be also achieved if
the system has a rotational symmetry but an anisotropic medium is rotated about the z
axis, so that:

↔
ε (r, z) =


 εr(r, z) εrφ(r, z) 0

εφr(r, z) εφ(r, z) 0
0 0 εz(r, z)


 (2.2)

It is also assumed that the electromagnetic field components normal or tangential to
the bounding surface δΩ satisfy Dirichlet or Neumann conditions. In physical terms it
means that δΩ is either a perfect magnetic or electric conductor and therefore this kind of
boundary may be used to describe closed electromagnetic systems or non-radiative open
structures in which fields vanish at infinity. Whenever possible the bounding surface
coincides with surfaces x = const or y = const in rectangular coordinates or r = const,
φ = const or z = const in cylindrical coordinates, which simplifies analysis of a given elec-
tromagnetic system. The non-radiating modes in open structures are modeled by moving
the walls defining the bounding surface sufficiently far away e.g. from the waveguide core.
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Assuming a time harmonic (ejωt) variation of both electric and magnetic fields, the
fields in any electromagnetic system may be described by Maxwell’s equations:

∇× �E (�r) = −jµ0
↔
µ (�r)ω �H (�r) (2.3)

∇× �H (�r) = jε0
↔
ε (�r)ω �E (�r) (2.4)

In the above equations �E and �H denote the electric and magnetic field intensities,
µ0 and ε0 are the permeability and permittivity of the vacuum,

↔
µ and

↔
ε represent the

tensors of relative permeability and relative permittivity of the medium, ω is the angular
frequency, j is the imaginary unit and �r is the coordinate vector, either in rectangular or
cylindrical coordinates.

The above equations are complemented by the conditions imposed on the electromag-
netic fields at the boundary δΩ. If n̂ denotes a unit vector normal to δΩ, then the
boundary conditions at δΩ may be written as follows:

∇ · ↔ε �E

n̂× �E

n̂ · ↔µ �H


 = 0 (2.5)

if δΩ is a perfect electric conductor (PEC) or:

∇ · ↔µ �H

n̂× �H

n̂ · ↔ε �E


 = 0 (2.6)

if δΩ is a perfect magnetic conductor (PMC).

With the general form of electromagnetic boundary value problems defined above one
may now derive operator equations suitable for analysis of either waveguiding structures
or resonant cavities and using a reduced number of unknowns (field components).

2.1.1 Formulations of electromagnetic BVPs for waveguiding
structures

As assumed, the electromagnetic field time variation is described by the ejωt factor, which
allows one to use equations (2.3) and (2.4). These equations may be further customized
for the case of a waveguiding structure shown in Figure 2.1. Due to the uniformity of the
waveguide in the propagation (z) direction, Maxwell’s equations should be invariant with
respect to the translation in that direction. Consequently, one may impose a harmonic
variation of electric and magnetic fields in the z direction in the form of e−jβz, where β
is a propagation constant.
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One may now decompose the differential operator ∇(·) in two parts: transverse and
longitudinal with respect to the propagation direction:

∇(·) = ∇t(·) + ẑ
∂

∂z
(·) (2.7)

where ẑ is a unit vector in the z direction and ∇t is a differentiation operator in the
x− y plane. Using this decomposition and assuming the harmonic field variation in the
z direction, Maxwell’s equations (2.3) and (2.4) may be written in the following form:

∇t × �E (x, y)− jβẑ × �E (x, y) = −jµ0
↔
µ (x, y)ω �H (x, y) (2.8)

∇t × �H (x, y)− jβẑ × �H (x, y) = jε0
↔
ε (x, y)ω �E (x, y) (2.9)

Next, the electric and magnetic field intensities can also be decomposed into their
transverse and longitudinal parts:

�E(x, y) = �Et(x, y) + ẑEz(x, y) and �H(x, y) = �Ht(x, y) + ẑHz(x, y) (2.10)

Substituting the above expressions to the left hand sides of equations (2.8) and (2.9)
one gets:

∇t × �Et (x, y) +∇t × ẑEz (x, y)− jβẑ × �Et (x, y) = −jµ0
↔
µ (x, y)ω �H (x, y) (2.11)

∇t × �Ht (x, y) +∇t × ẑHz (x, y)− jβẑ × �Ht (x, y) = jε0
↔
ε (x, y)ω �E (x, y) (2.12)

Performing simple vector manipulations on the above equations gives the following
relations for the transverse and longitudinal parts (cf. [80]):

ẑ ×∇t × ẑEz (x, y) + jβ �Et (x, y) = −jωµ0ẑ × ↔
µ (x, y) �H (x, y) (2.13)

ẑ ×∇t × ẑHz (x, y) + jβ �Ht (x, y) = jωε0ẑ × ↔
ε (x, y) �E (x, y) (2.14)

∇t ·
(
�Et (x, y)× ẑ

)
= −jωµ0ẑ × ↔

µ (x, y) �H (x, y) (2.15)

∇t ·
(
�Ht (x, y)× ẑ

)
= jωµ0ẑ × ↔

µ (x, y) �E (x, y) (2.16)

Using equations (2.15) and (2.16) one may derive formulae for Ez and Hz components,
which substituted to (2.13) and (2.14) give equations involving only four transverse field
components. Although this can be done for the most general form of the permeability
and permittivity tensors

↔
µ and

↔
ε (cf. [80]), below it is assumed that they both have a

diagonal form:

↔
ε =

[
ε t 0
0 εzz

]
↔
µ =

[
µ t 0

0 µzz

]
(2.17)

where ε t and µ t are diagonal 2× 2 matrices.
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Such situation occurs for strictly bidirectional waveguides, i.e. guides with an arbitrary
cross-section filled either with nongyrotropic uniaxial or biaxial materials whose one
principal axis is aligned with the z direction or gyrotropic materials magnetized along the
propagation direction. One may note that this class of structures includes all waveguides
filled with isotropic media, being of particular interest of many engineering applications.

After performing the appropriate substitutions one obtains the following equations:

jβẑ × �Et = jωµ0µ t · �Ht +∇t ×
(

1

jωε0εzz
∇t × �Ht

)
(2.18)

and

jβẑ × �Ht = −jωε0ε t · �Et −∇t ×
(

1

jωµ0µzz
∇t × �Et

)
(2.19)

The above two equations may be cast in the form of the following operator equation:

LTΨt − βMTΨt = 0 (2.20)

or

[
LTee 0
0 LThh

] [
�Et

�Ht

]
− β

[
0 −ẑ×
ẑ× 0

] [
�Et

�Ht

]
=

[
0
0

]
(2.21)

where

LTee(·) = ωε0ε t(·)−∇t × 1

ωµ0µzz
∇t × (·) (2.22)

LThh(·) = ωµ0µ t(·)−∇t × 1

ωε0εzz
∇t × (·) (2.23)

Ψt =
[
�Et

�Ht

]T
(2.24)

In the operator equation (2.21) the transverse magnetic and electric fields are cou-
pled. This equation may be viewed as a generalized eigenproblem involving four field
components. Still, one may note that this equation can be easily transformed to give two
separate equations, each involving only electric or magnetic field. Rewriting (2.21) gives:

LTee
�Et = −βẑ × �Ht (2.25)
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LThh
�Ht = βẑ × �Et (2.26)

Multiplying the first equation by ẑ× and the second equation by −ẑ× one obtains:

ẑ × LTee
�Et = β �Ht (2.27)

−ẑ × LThh
�Ht = β �Et (2.28)

If one derives a formula for �Et from equation (2.28), substitute it into equation (2.27)

and proceed analogously for �Ht the following two equations are obtained:

−ẑ × LTeeẑ × LThh
�Ht = β2 �Ht (2.29)

−ẑ × LThhẑ × LTee
�Et = β2 �Et (2.30)

Introducing operators QH and QE, given by the left hand sides of equations (2.29)
and (2.30), one gets:

QH
�Ht = β2 �Ht (2.31)

QE
�Et = β2 �Et (2.32)

Comparing operator equation (2.21) to equations (2.29) and (2.30) it is clearly seen
that an equivalent physical problem may be solved using the equation involving either a
second order differential operator and four field components or a fourth order differential
operator and only two field components. Another difference refers to the form of the
resulting operator equations. Comparison of equations (2.20) and (2.31) (or (2.32)) yields
that the first operator equation may be viewed as a generalized operator eigenproblem
with β as an eigenvalue and Ψt as a corresponding eigenfunction while the other operator
equation is a standard eigenproblem with eigenvalue β2 and eigenfunction �Ht (or �Et).
Still, equation (2.20) may also be transformed into a standard eigenproblem by deriving
the inverse of operator MT which can be done analytically due to the simple form of
MT.

One should be aware that for both formulations only the curl Maxwell’s equations
have been used to derive the final forms of the operator equations. Consequently, it
is possible that, in general, the solutions of (2.21), (2.29) or (2.30) with appropriately
defined boundary conditions do not satisfy the divergence equations:1

∇ · ε0↔ε �E = 0 or ∇ · µ0
↔
µ �H = 0 (2.33)

1Such solutions may emerge if the domain used in the operator projection is too broad.
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A different formulation suitable for modeling of waveguiding structures may also be
proposed. In that approach (presented below) the divergence equations are applied to
eliminate the longitudinal field components.

Starting with equations (2.8) and (2.9) one may derive formula for �E from the right
hand side of (2.9) and substitute it into equation (2.8). Then one obtains:

∇t × ↔
ε
−1
(
∇t × �H − jβẑ × �H

)
− jβẑ × ↔

ε
−1
(
∇t × �H − jβẑ × �H

)
= k2

0

↔
µ �H (2.34)

where k2
0 = ε0, µ0ω

2.

Assuming that the permittivity and permeability tensors are quasi-diagonal (cf. equa-
tion (2.17)) and taking the transverse part of the above vector equation yields:

∇t × 1

εzz
∇t × �Ht − jβẑ × ε −1

t ∇t × ẑHz − k2
0µ t

�Ht − β2ẑ × ε −1
t ẑ × �Ht = 0 (2.35)

It follows from the divergence equation ∇ · �B = 0 that:

Hz =
−j

βµzz
∇t · µ t

�Ht (2.36)

Substituting the above formula into (2.35) and then multiplying the equation by ẑ×ε tẑ×
gives:

ẑ × ε tẑ ×
[
∇t × 1

εzz
∇t × �Ht

]
+∇t

1

µzz
∇tµ t

�Ht − k2
0 ẑ × ε tẑ × µ t

�Ht − β2 �Ht = 0 (2.37)

An analogous relation holds for the transverse electric field:

ẑ × µ tẑ ×
[
∇t × 1

µzz
∇t × �Et

]
+∇t

1

εzz
∇tε t �Et − k2

0 ẑ × µ tẑ × ε t �Et − β2 �Et = 0 (2.38)

As one notes, the above equations provide formulations for waveguiding problems
involving separated transverse magnetic and electric fields. Unlike in the former formu-
lation (cf. equations (2.29) and (2.30)) the operators defined by the left hand sides of
(2.37) and (2.38) are second order differential equations. As shown later on in this work,
the methods applying these second order differential operators are characterized by faster
convergence than algorithms which make use of the formulation involving the fourth or-
der operator. Still, in both cases only two electromagnetic field components are involved,
which implies that smaller number of variables will be needed to solve numerically the
discussed problems.
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2.1.1.1 The case of isotropic media
A fairly complicated form of equations (2.37) and (2.38) may be simplified for the case
of waveguides filled with isotropic dielectric material. Then ε t = εI , εzz = ε, µ t = µI ,

µzz = µ. One may also assume that µ is constant. In such a case, equation (2.37)
becomes:

−ε∇t × 1

ε
∇t × �Ht +∇t∇t · �Ht + k2

0εµ
�Ht − β2 �Ht = 0 (2.39)

Applying the vector identity:

∇× (A�a) = ∇A× �a+ A∇× �a (2.40)

yields:

−ε

[
∇t

1

ε
×∇t × �Ht +

1

ε
∇t ×∇t × �Ht

]
+∇t∇t · �Ht + k2

0εµ
�Ht − β2 �Ht = 0 (2.41)

Using another identity: ∇2
t
�At = ∇t(∇t · �At)−∇t ×∇t × �At one obtains:

∇2
t
�Ht + k2

0εµ
�Ht +

1

ε

[
∇tε× (∇t × �Ht)

]
− β2 �Ht = 0 (2.42)

Using the duality principle an analogous equation may be written for the electric field
formulation:

∇2
t
�Et + k2

0εµ
�Et +

1

µ

[
∇tµ× (∇t × �Et)

]
− β2 �Et = 0 (2.43)

The above equations may be rewritten in the operator form:

TE
�Et = β2 �Et (2.44)

TH
�Ht = β2 �Ht (2.45)

where operators TE and TH are defined by the left hand sides of equations (2.42) and
(2.43), respectively. One may note, that both equations (2.31) and (2.32) as well as
equations (2.44) and (2.45) may be viewed as standard eigenproblems. Then, the squared
propagation constants are eigenvalues of TE and TH and transverse magnetic or electric
fields are corresponding eigenfunctions.

2.1.2 Operator equations for resonant cavities

One of the most important cases to be considered while investigating formulations of elec-
tromagnetic boundary value problems for resonant cavities is a BVP defined in cylindrical
coordinates for a system with rotational symmetry (i.e. a system homogeneous in the φ
direction). As will result in the chapters that follow, developing a formulation for the
mentioned case allows one to propose a discretization scheme and numerical algorithms
valid for systems which do or do not possess rotational symmetry.
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The derivation starts with a general form of a wave equation obtained from substituting
the formula for magnetic field �H given by equation (2.3) into equation (2.4):

c2∇× ↔
µ
−1∇× �E = ω2↔ε �E (2.46)

where c is the speed of light in the vacuum. The above equation may be viewed as a
generalized eigenproblem.

This equation may be rewritten using electric flux density �D instead of electric field
intensity:

c2∇× ↔
µ
−1∇× ↔

ε
−1 �D = ω2 �D (2.47)

The equation above may be already viewed as a standard eigenproblem of an operator
given by the left hand side with eigenvalue ω2 and corresponding eigenfunction �D. The
above formulation involves all three electric field components. Nevertheless, it may be
transformed so that only two field components appear in the final equation. This op-
eration reduces the size of the numerical problem to be solved. This reduction has in
turn a principal influence on memory requirements as well as performance of a numerical
solver. Both factors are extremely important while dealing with large scale problems.
The reduction of the number of unknowns can be achieved if a modeled structure has
rotational symmetry, i.e. its geometry and constitutive parameters do not depend on φ.
Then, a natural choice of the form of both electric and magnetic field defined in (r, φ, z)
coordinates is:

�D(r, φ, z) = �Dn(r, z)e
(−jnφ) and �B(r, φ, z) = �Bn(r, z)e

(−jnφ) (2.48)

where n is an integer number, �Bn = [Br
n, B

φ
n , B

z
n]
T and �Dn = [Dr

n, D
φ
n, D

z
n]
T .2 With a

given, fixed value of n the differentiation operation ∂
∂φ
(·) on magnetic or electric field

may be replaced with the multiplication by (−jn) term. The divergence operator (in
cylindrical coordinates) may be decomposed as follows:

∇ · �A = ∇̃ · Ã− jnAφ (2.49)

where Ã = [Ar, Az]
T and the definition of ∇̃ · (·) follows naturally from the form of the

divergence operator in cylindrical coordinates. Applying the zero divergence condition
for the electric flux density one gets:

Dφ =
−jr

n
∇̃ · D̃ (2.50)

where D̃ = [Dr, Dz]
T . Using the above formula equation (2.47) may be transformed as

follows:

c2Γ∇× ↔
µ
−1∇× ↔

ε
−1
(
ΠD̃ − φ̂

jr

n
∇̃ · D̃

)
= ω2D̃ (2.51)

2For a structure which does not possess rotational symmetry the magnetic and electric field may be
represented as a superposition of the fields defined by (2.48) with different values of n.
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where Γ[Ar, Aφ, Az] = [Ar, Az] and Π[Ar, Az] = [Ar, 0, Az]. The above equation defines an
eigenproblem involving only two electric field components. This means that the number
of variables for this problem is reduced which, as shown in the following chapters, has
a substantial impact on the performance of a numerical algorithm used to model the
discussed system in a discrete domain.

Equation (2.51) may be written using compact operator notation:

SD̃ = ω2D̃ (2.52)

where D̃ = [Dr, Dz]
T .

It defines a standard operator eigenproblem suitable for modeling resonant cavities
with rotational symmetry. Operator S in the above equation is non-symmetric. The
eigenvalues to be found determine resonant frequencies and the corresponding eigen-
functions – modal field distributions in a given structure. An analogue of the above
derivation of equation (2.52) is given in Appendix A. The appendix presents a more
‘practical’ derivation using expanded form of vector Maxwell’s equations.

Summing up the above derivations of electromagnetic operator boundary value prob-
lems, one may note that in all cases we were able to formulate these problems as standard
eigenvalue problem involving a reduced number of unknowns (two and not three electric
or magnetic field components). As shown later on this has important implications on the
efficiency of the constructed numerical solvers.

2.2 Numerical modeling of electromagnetic systems

using boundary value problems: a typical sce-

nario

The above sections presented derivations of different operator equations which may be
used to model electromagnetic fields and waves in selected structures if appropriate
boundary conditions are specified. All the derived equations may be viewed as oper-
ator eigenproblems with eigenvalues and eigenfunctions to be found. Below, a general
scenario of numerical modeling of electromagnetic systems involving solution of operator
eigenproblems is presented. The aim of this description is to indicate the key steps of
the process of numerical solution typically encountered in modeling of electromagnetic
systems.

The first step consists of a selection of a form of an operator boundary value problem to
be used to model a given structure. At this stage one determines which quantities will be
found, e.g. propagation constants or eigenfrequencies. If the operator problem takes the
form of an eigenproblem then its solution consists of eigenpairs having different physical
meanings. By selecting a certain eigenproblem one decides whether the eigenfunctions
will consist of e.g. three or two field components, which essentially influences the size
(number of variables) of the discrete problem to be solved later on. This, in turn, has an
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important influence on the performance of the numerical solvers for large scale problems.
The choice of an eigenproblem also determines the properties of the discrete problem
developed in the subsequent steps, such as e.g. the spectrum of the discrete operator,
symmetry or definiteness of the resulting discrete operator. Last but not least, operator
equations are obtained in two forms. The first is a standard eigenproblem and the other
is a generalized eigenproblem. Each type of the problem requires a different numerical
treatment. In general, standard eigenproblems should be preferred in the context of
large scale modeling, as solution of generalized eigenproblems typically involves some
kind of matrix inversion to be performed which may be very costly in case of large
matrix problems.

After the operator formulation has been selected and appropriate boundary conditions
have been defined it is necessary to transform the operator, namely perform an opera-
tor projection, so as to permit numerical, algorithmic treatment of the problem. The
projection process consists of selecting a finite-dimensional basis to be used to represent
(and approximate) both the functions from the operator’s domain and the operator itself.
The finite-dimensional representations of functions include e.g. representation by a finite
number of samples (function values), representation using finite Fourier series, orthogonal
or non-orthogonal polynomials etc. The mapping of the operator usually follows from the
selected finite-dimensional representation of functions from its domain. The properties
of the emerging finite-dimensional, projected operator eigenproblem differ from the prop-
erties of the initial (infinite-dimensional) eigenproblem. Most importantly, the spectrum
of the projected operator is different from the spectrum of the initial operator. Firstly,
the number of eigenvalues becomes finite so that an infinite set of eigenvalues from the
spectrum of the initial operator does not have its counterparts in the spectrum of the
projected operator. The common eigenvalues of the two operators include only those
whose corresponding eigenfunctions belong both to the initial operator domain and the
applied finite-dimensional projection of the domain. The eigenfunctions of the initial
operator which are outside the domain of the projected operator may only have approx-
imate counterparts in the discussed finite-dimensional domain. Concluding, the selected
projection method determines whether a certain eigenvalue or its approximation may be
found as an eigenvalue of the projected operator or not. Therefore, the projection should
be selected so as to assure that the class of desired solutions is included in the set of
solutions of the projected problem. The projection method also significantly influences
e.g. size of the discrete problem to be solved or definiteness of the resulting operator
matrix. Application of either explicit or implicit projection methods (described in detail
in Chapter 4) also affects the complexity of the algorithms solving the discussed operator
problem.

After the finite-dimensional projection of the initial operator has been performed one
is ready to solve numerically an (approximate) operator eigenproblem. A wide variety
of algorithms known from linear algebra may be applied. The range of methods which
can be used is restricted by the form and properties of the projected operator, includ-
ing implicit or explicit operator representation, definiteness of the operator, hermitian
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integral/differential formulation

of the projected problem.
Method of solution

projection method
Finite-dimensional 

of the problem
Operator formulation

direct/iterative solver

solver does/does not require explicit matrix representation

solver does/does not apply spectral transformations

Design stage Choices affecting performance of a numerical solver

mesh based projection vs. projection using functional basis

explicit/implicit projection method

projection results in banded/non-banded operator matrix
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choice of data distribution pattern
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standard/generalized eigenproblem

choice of the number of variables (e.g. field components)

symmetric/nonsymmetric operator

deterministic/eigenvalue problem

Figure 2.3: Factors affecting performance of a numerical solver at different stages of its
construction.

or non-hermitian (symmetric or non-symmetric) form of the operator. A choice of the
solution method is also affected by the form of an eigenproblem which may be standard
or generalized. Another issue which has to be addressed is whether it is necessary to
find e.g. all the eigenvalues of the finite-dimensional operator or only a small subset of
the spectrum. In the former case, one may apply e.g. direct methods based on matrix
transformations. In the latter case it is often justified to apply e.g. methods which create
smaller subspaces including desired solutions or methods which use spectral transforma-
tions in order to accelerate the solution process.

Once the method of solving of a discrete operator eigenproblem is selected it is possible
to implement a solver of a given operator problem in a computer algorithm. The questions
which arise at this stage refer mainly to the problem of parallelization of a given method
of solving operator eigenproblem. It is necessary to establish whether an algorithm may
be efficiently implemented for use in scalable supercomputer systems or whether further
modifications need to be introduced in order to assure high performance of the parallel
solver.
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Summing up, the cost of obtaining the final solution of a given problem may be con-
trolled by making judicious choices at different stages of the construction of a numerical
algorithm. These stages include:

• selecting an operator formulation,

• selecting a method of projection of the operator,

• choosing a numerical algorithm capable of solving the eigenproblem for the approx-
imate, projected operator,

• designing a parallelization strategy for the numerical solver.

The choices affecting performance of a numerical solver available at different stages of its
construction are summarized in Figure 2.3.

This chapter aimed at developing operator formulations for selected electromagnetic
problems which involve a reduced number of variables (field components) and may be
represented as standard eigenvalue problems. The following chapters discuss further
stages of construction of a numerical solver. Their main goal is to propose projection
and solution techniques satisfying a number of a-priori requirements, which, as shown in
the chapters containing results of numerical tests, assure high performance while solving
large scale electromagnetic eigenproblems.



Chapter 3

Methods of solving operator and
matrix eigenproblems

The previous chapter presented derivations of selected equations involving differential
operators which may be applied to modeling either waveguiding structures or resonant
cavities. As already mentioned, all of the derived operator equations are characterized
by a reduced number of variables and may be viewed as standard or generalized eigen-
problems with eigenvalues and eigenfunctions which have to be found. In order to solve
numerically the arising problems one constructs an algorithm involving several general
stages as described in Section 2.2. Apart from finite-dimensional operator projection,
which has to be applied to operators, the most essential part of the algorithm refers to
actual solving of a (discrete) operator eigenproblem. This chapter focuses on this stage
of the design of numerical solvers.

The following sections give a description of approaches towards numerical solution of
operator eigenproblems. They refer either to infinite-dimensional operators or finite-
dimensional operators. In the latter case the operator problems may be associated with
appropriate matrix problems, which allows one to exploit the ample set of techniques of
the linear algebra.

Before starting the presentation of the methods one should define whether all the so-
lutions or only a certain subset of the space of solutions is to be found. This selection
determines a class of methods of solving operator eigenproblems which has to be applied
in order to meet the needs. For instance, if all the eigenvalues of an operator defined
over a finite-dimensional space are to be found the choice of the methods which may be
applied is typically restricted to algorithms using diagonalization or tridiagonalization
routines e.g. based on orthogonal matrix transformations. The most eminent representa-
tives of this class of methods are classical Jacobi and QR algorithms [50]. Both methods
are characterized by a relatively high computational complexity of O(N3), where N is
the matrix operator size (dimension of the operator domain), which limits the scope of
applications of the methods to small or medium size problems (N of order 103). For
larger problems the computation time blows up so that a solution cannot be obtained in

33
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a ‘reasonable’ time period. Consequently, the problem of finding all eigenvalues of a given
operator may be solved only for smaller problems. Nevertheless, in a great deal of engi-
neering and scientific applications it is necessary to find only one or several eigenvalues
and eigenfunctions of a given operator. In such a case a much wider spectrum of meth-
ods may be used. It includes mainly iterative algorithms capable of dealing with much
larger problems, characterized by reduced complexity compared to methods of finding all
matrix eigenvalues.

The scope of interest of this work is limited to large scale problems in which size
of the matrix obtained as a result of the operator projection is of order 105 − 106 or
more. Application of methods of finding the entire spectrum of an operator (which, in
fact, is not of interest in most electromagnetic applications), e.g. the QR algorithm, to
such large scale problems is inevitably associated with enormous cost or simply results
in a failure due to both high memory and computational complexity of the algorithm.
Consequently, the description below focuses on low-cost methods of finding only selected
eigenpairs from the operator’s spectrum. Obviously, it is far beyond the scope of this
study to present or even mention all the available methods of solving large eigenproblems.
Instead, a reference may be be given at this point to an excellent book by Saad [102].
The discussion below is confined to only two methods, namely the Arnoldi and Lanczos
algorithms. The mentioned methods belong, in author’s opinion, to the most efficient
and flexible numerical algorithms which, as shown in a number of publications ( [33], [34],
[37], [44], [69], [72], [74], [81], [94]– [97]), provide a truly high performance and reliability
while solving large scale operator eigenproblems. Before presenting the Arnoldi and
Lanczos methods it is worthwhile to give an introduction concerning the simple iteration
algorithm (the Power Method).

3.1 The Power Method

The first method to be described is the classical Power Method (a simple iteration
method) [50]. Not only is this the simplest but also the most important iterative algorithm
for finding operator eigenvalues due to its numerous implications for modern iterative
eigensolvers. Numerical methods used throughout this study originate precisely in the
Power Method which serves as a basis for the iterative processes. Given the operator A
the steps of the basic version of the Power Method are given as follows:

Algorithm 1: The Power Method.

Step 0: Choose an initial function v1 such that ||v1|| = 1, assume k = 1.

Step 1: Iterate:

Step 1.1: Calculate wk+1 = Avk.

Step 1.2: Normalize: vk+1 = wk+1/||wk+1||.
Step 1.3: k := k + 1.
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The main feature of the above method is that it converges to the eigenfunction cor-
responding to the dominant eigenvalue (the eigenvalue with the largest modulus) of the
operator A. In the case of a symmetric operator A with its eigenfunctions forming an
orthonormal basis in the operator’s domain it is easy to show (cf. [117]) that:

lim
k

||Akv1||
||Ak−1v1|| = lim

k
||Avk−1|| = |λmax| (3.1)

where λmax is the dominant eigenvalue of the operator A. The other important feature
of the above algorithm is that the information on the operator A is passed to the iter-
ative process only via the Avk operation which allows one to apply any kind of implicit
representation of the input operator.1 The main drawback of the above simple method
is that it is able to find only a single, dominant eigenvalue and eigenfunction of the
operator. Still, the functionality of this algorithm may be extended if deflation and shift-
ing techniques and/or spectral transformations are applied within the iterative process
(cf. e.g. inverse iteration method – [50], [102]) allowing one to find other eigenvalues of
the input operator.

3.2 Krylov subspace methods

The main reason for presenting the Power Method in the previous section was that during
the iterative process the Krylov subspace Km is being constructed:

Km = Span{v1,Av1, . . . ,A
m−1v1} (3.2)

At this point it should be noted that the Power Method exploits only the last two vectors
from the basis of the Krylov subspace Km shown above. This fact provided a basis
for the development of the iterative subspace methods which exploit the whole Krylov
subspace in order to achieve quicker convergence than in the Power Method. These
algorithms, which may be used to solve eigenproblems both for infinite-dimensional linear
operators and finite-dimensional matrix operators, are currently the most dynamically
developing field of research in numerical analysis ( [50], [100]). This is mainly due to
the fact that the methods may be efficiently parallelized and then applied to construct
scalable parallel algorithms capable of solving most complicated large scale eigenproblems
arising in mathematical modeling. The most representative examples of modern iterative
subspace methods are the Lanczos method (for symmetric or non-symmetric operators),
the Arnoldi method (non-symmetric case) or the Davidson algorithm ( [31]) (originally
designed for symmetric matrices). In these highly effective methods the problem, defined
usually for a sparse or structured matrix operator of very large dimension, is reduced to a
much smaller dense matrix operator problem. This smaller problem may then be solved
by any of the standard techniques used for dense matrix operators. Due to the structure
of the three mentioned algorithms they are normally used to find several eigenvalues from

1Implicit representation means that the linear operator does not have to be stored (explicitly) e.g. as
a matrix of elements, but instead through e.g. a series of linear transformations performed on an input
vector.
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a spectrum of a given operator. Another numerical method which, to a certain extent,
contains the Power Method is the Iterative Eigenfunction Expansion Method (IEEM) [78]
which may be used to solve non-symmetric operator and matrix eigenproblems.

3.2.1 The Arnoldi algorithm

This section presents the Arnoldi method which belongs to a class of iterative subspace
algorithms capable of approximating a few eigenvalues and the corresponding eigenvectors
of a general square matrix. The method is based on constructing an orthonormal basis
in a Krylov subspace Km, spanned by a number of generally non-orthogonal vectors
(functions) v1, Av1, A2v1 and so on. In a classical approach ( [4]) the applicability of
this technique was strongly limited due to a potentially unbounded growth in storage as
well as the lack of numerical stability of the iterative process resulting e.g. in the loss of
orthogonality of the computed eigenvectors. These problems have been successfully solved
by Sorensen [107] who proposed a modification of the initial Arnoldi algorithm called
the Implicitly Restarted Arnoldi Method (IRAM). Exploiting the analogy between the
Arnoldi process and the QR iteration the IRAM provides an iterative scheme which has a
fixed memory complexity if the number of eigenvalues to be sought is pre-specified. The
other advantage of the method is that it preserves the orthogonality of the Arnoldi basis
in the Krylov subspace (compare the previous section) if the number of the eigenvalues
to be found is not too large.

The Implicitly Restarted Arnoldi Method was found to be a highly efficient tool for
solving eigenproblems, capable of reducing both storage requirements and the computa-
tion time for a very wide class of large structured non-symmetric matrices in different
fields of applications. (cf. [33], [55], [69], [72]) The problem which was found to occur
with the IRAM [95] is the significant increment in the number of update iterations with
the increasing size of the input matrix.

3.2.1.1 The Arnoldi factorization

In the approach proposed by Sorensen ( [107]) the Arnoldi factorization may be treated
as a truncated reduction of a given square matrix A to a form of an upper Hessenberg
matrix. This operation is performed in an iterative process and the k-th step of the
factorization may be described by the following formula (cf. [50], [102]):

AV k = V kH k + f ke
T
k (3.3)

where:

A is the input n× n matrix,

H k is a k × k upper Hessenberg matrix (k < n),

V k is an n× k matrix whose columns are Arnoldi vectors ,

f k is a residual vector of size n, satisfying the relation V T
k f k = 0 .
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Figure 3.1: The schematic of the Arnoldi factorization.

The idea of Arnoldi factorization is illustrated in Figure 3.1. From equation (3.3)
it may been noticed that the process is a truncation of the complete reduction to the
Hessenberg form and if the vector f k becomes zero the eigenvalues of the Hessenberg
matrix will equal the eigenvalues of the given matrix A . The columns of the matrix
V k = [v 1, v 2, . . . , v k] constructed in the Arnoldi process form an orthonormal basis in
the Krylov subspace Kk:

Kk = Span
{
v , A v , A 2v , . . . , A k−1v

}

where v ∈ Rn (v ∈ Cn). The basis {vi}i=1,...k is formed in k iterations of the basic Arnoldi
algorithm, which may be implemented in a few ways, including the most common, known
as the Arnoldi Modified Gram Schmidt algorithm. The steps of this algorithm are given
as follows (cf. [102]):

Algorithm 2: Arnoldi-MGS.

Step 0: Choose an initial vector v 1 such that ||v 1||2 = 1

Step 1: Iterate: For j = 1, 2, . . . , k do:

Step 1.1: w := Av j

Step 1.2: For i = 1, 2, . . . , j do:

Step 1.2a: hij = (w , v i),

Step 1.2b: w = w − hijv i

Step 1.3: hj+1,j = ||w ||2
Step 1.4: v j+1 = w /hj+1,j

where hij are the elements of the upper Hessenberg matrix H . It has to be noted that
during the factorization process the information on the input matrix (A ) is passed to
the algorithm only via the matrix-vector product Av j. This is an extremely important
feature since A does not have to be known explicitly.
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As already mentioned, the reduction of a given matrix A to the upper Hessenberg
matrix is incomplete, and usually k << n. This means that only k eigenvalues from the
spectrum of A are found. Consequently, the important questions which arise are: What
is the accuracy of the computed eigenvalues? Which eigenvalues may be found? These
issues are addressed below.

3.2.1.2 Filtering eigenvalues in the Arnoldi method

In the basic Arnoldi algorithm two main problems arise. The first is an undefined num-
ber of iterations k necessary to obtain a desired accuracy of the eigenvalues (estimated
by calculating the residual norm) which leads to unbounded memory complexity. If one
recalls equation (3.3) describing the k-th step of the Arnoldi factorization, it becomes
clear that the quality of approximation of the eigenvalues of matrix A by the eigenval-
ues of matrix H is determined by the norm of the residual vector: ||fk||. The number
of iterations k needed to reduce this norm to an acceptable level is unknown and con-
sequently the size of the matrix V k containing the computed orthogonal basis vectors
may grow indefinitely. This constitutes the first important problem of the basic Arnoldi
algorithm. This problem may be solved by restarting the iterative process after a given,
fixed number of iterations with a updated initial vector v 1, which zeroes the residual
vector [106]. At this point one may ask which eigenvalues may be found if this restarted
procedure is applied. Sorensen has shown in [106] that the restarted algorithm may be
forced to converge to eigenvalues from the edges of the spectrum of A , i.e. eigenvalues
with the smallest or largest modulus, smallest or largest real part by applying polynomial
filtering and eliminating the “unwanted” eigenvalues at each restart of the method. In
this technique, after initial k steps of the basic Arnoldi algorithm, additional p iterations
are performed. Next, k+ p eigenvalues are found as the eigenvalues of the upper Hessen-
berg matrix H k (the Ritz values) and p “unwanted” eigenvalues are then being filtered
out using the implicit shift algorithm with an appropriate filtering polynomial. The al-
gorithm is then restarted with an updated initial vector v 1 and the subsequent p basic
Arnoldi iterations are being performed. The modifications described above introduced
to the basic Arnoldi algorithm form a new algorithm known as the Implicitly Restarted
Arnoldi Method (IRAM). The question of convergence to eigenvalues located ‘far’ from
the edges of the operator spectrum are discussed in Section 3.2.3.

3.2.1.3 Numerical and memory complexity of the IRAM algorithm

As explained in the previous sections, the Implicitly Restarted Arnoldi Method (IRAM)
demonstrates a fixed memory complexity. If the number of the eigenvalues to be found
equals k, the number of additional eigenvalues to be computed is p and the input matrix
size is n then, denoting l = k+p, the algorithm requires n ·O(l)+O(l2) storage. Lehoucq
et al. suggest ( [67]) that p should equal k in order to obtain an efficient algorithm with
good convergence rate. Then the memory complexity equals n·O(k)+O(k2). If one keeps
in mind that k is much smaller than n, it results that the IRAM itself requires very little
storage. (Obviously some extra storage may be required to perform the matrix-vector
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product A · v operation, but it should not exceed n2).2

The numerical complexity may only be assessed for a single update in a p-step IRAM
algorithm. If the cost of the matrix-vector product (step 1.1 of the factorization) is
excluded then the complexity equals O(p2n). If one assumes that p = k (p = O(k)) then
the numerical cost becomes of O(k2n). Once again, as the number of eigenvalues k to be
found is normally much smaller than the problem size n, a linear complexity is obtained.
Obviously the cost of the operation of matrix-vector product may be significantly higher,
reaching O(n2) in the worst case and result in a quadratic overall complexity. Still, as
shown later in this work, this cost may be reduced in two cases. The first case occurs
when the given input operator matrix A is sparse. The other case occurs when the
discrete operator does not have to be represented explicitly by computing (and storing)
the elements of the corresponding matrix A .

3.2.2 The Lanczos algorithm

This section briefly describes the other algorithm belonging to a class of iterative Krylov
subspace methods, characterized by low computational and memory cost. Besides the
Arnoldi method, the Lanczos algorithm appears to be the most widely used computa-
tional procedure, applied in various scientific and engineering problems, e.g. simulation
of multiconductor transmission lines [17] or characterization of different electromagnetic
devices (e.g. T-junctions between waveguides) [9]. The basic version of Lanczos algo-
rithm applies to symmetric operators and is a simplification of the Arnoldi method for
the particular symmetric case (cf. [100] or [102]). In this case the Hessenberg matrix
H k constructed during Arnoldi/Lanczos factorization becomes symmetric tridiagonal,
which leads to a three-term recurrence in the Arnoldi process. A much more impor-
tant version of the Lanczos algorithm is the non-symmetric Lanczos method (Lanczos
biorthogonalization method). In this case significant differences between Lanczos and
Arnoldi algorithms show up. In the Arnoldi method an orthogonal basis in the Krylov
subspace Km was being constructed. The non-symmetric Lanczos method builds a pair
of biorthogonal bases for the two subspaces:

Km = Span{v1,Av1, . . . ,A
m−1v1} (3.4)

and

K̃m = Span{w1,A
Tw1, . . . , (A

T )m−1w1} (3.5)

The construction of the bases is performed in the following steps [100]:

2Other authors [33] indicate that the choice p = k may not be the optimal one and propose a choice
of the value of p as a function of the problem dimension n in order to obtain faster convergence. In this
case the theoretical memory complexity is O(n2), still in the applications presented in [33] it does not
result in high memory requirements.
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Algorithm 3: Lanczos method.

Step 0: Choose the initial vectors v 1, w 1 such that (v 1, w 1) = 1

Step 1: Set β1 = δ1 ≡ 0, w 0 = v 0 ≡ 0

Step 2: Iterate: For j = 1, 2, . . . , m do:

Step 2.1: αj =
(
Av j , w j

)
Step 2.2: v̂ j+1 = Av j − αjv j − βjv j−1

Step 2.3: ŵ j+1 = A Tw j − αjw j − δjw j−1

Step 2.4: δj+1 = |(v̂ j+1, ŵ j+1)|1/2
Step 2.5: βj+1 =

(
v̂ j+1, ŵ j+1

)
/δj+1

Step 2.6: w j+1 = ŵ j+1/βj+1

Step 2.7: v j+1 = v̂ j+1/δj+1

The scalars αm, βm and δm computed in the above algorithm may be treated as elements
of the following tridiagonal matrix T m:

T m =




α1 β2 0 . . . 0 0 0
δ2 α2 β3 . . . 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 0 . . . δm−1 αm−1 βm
0 0 0 . . . 0 δm αm




(3.6)

The following relations link matrices A and T m:

AV m = V mT m + δm+1v m+1e
T
m (3.7)

A TW m = W mT T
m + βm+1w m+1e

T
m (3.8)

W T
mAV m = T m (3.9)

where A is the input n × n matrix and V m and W m are n ×m matrices consisting
of columns of biorthogonal vectors v m and w m respectively, computed in Algorithm 3.

In the context of the above formulae one notes that T m is a projection of A obtained

from oblique projection procedure onto Km and orthogonally to K̃m (cf. (3.4) and (3.5)).
It is also clear that selected eigenvalues of matrix A are approximated by eigenvalues of
tridiagonal matrix T m.
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The memory cost of the non-symmetric Lanczos method is very low, as only 6 vectors
of size n are needed during biorthogonalization procedure, for any value of m. This is
usually less than the storage cost needed to perform Arnoldi factorization, which equals
O(mn) (cf. Section 3.2.1.3). Still, analogously as for the Arnoldi method, the additional
cost of representing the operator matrix has to be taken into account. This cost often
determines the overall storage requirements, e.g. if the operator is represented by a dense
matrix with matrix elements computed explicitly.

The memory cost of the Lanczos algorithm is lower than for the Arnoldi (IRAM)
method. On the other hand, the disadvantage of the Lanczos method is that there
are potentially more opportunities for breakdown than in the Arnoldi algorithm. These
breakdowns happen when the computed values of δj+1 from Step 2.4 of the Lanczos
biorthogonalization procedure become close or equal zero (cf. Algorithm 3). The com-
puted basis vectors are then scaled by small quantities and the cumulative effect of these
scalings may introduce very significant rounding errors. This problem is solved by ap-
plying the look-ahead strategy [89]. Unfortunately, this modification is associated with
significant extra computational complexity, as well as causes the matrix T m to cease to
be tridiagonal.

Referring to computational complexity of the non-symmetric Lanczos algorithm, the
cost of performing m iterations of the algorithm is O(mn). In this estimation the cost
of performing the matrix-vector products Av j and A Tw j in steps 2.1 and 2.3 has been
excluded. Once again, this cost is theoretically lower than for the Arnoldi method (which
equals O(m2n). Still, if the IRAM algorithm is considered then m becomes constant and
the complexity of this algorithm becomes linear. In fact as m << n the complexity
of both algorithms is quasi-linear and a similar performance is observed. Obviously,
similarly as for the Arnoldi method, the cost of the matrix-vector product operation may
significantly raise the overall computational cost of the algorithm. Additional complexity
in the Lanczos algorithm is associated with the fact that products involving both initial
and transposed matrix have to be computed.

Nevertheless, as already mentioned, the Lanczos algorithm is used in a great variety of
application fields, including large scale electromagnetic modeling. In the applications the
algorithm appears either in standard version valid for solving eigenproblems or versions
valid for solving linear systems of equations. Often more specialized algorithms are
constructed on top of Lanczos biorthogonalization, e.g. Padé via Lanczos (PVL) method
used in modeling of certain electromagnetic devices (cf. [16], [17], [93], [100]).

3.2.3 Convergence in the Krylov subspace methods

Although, as shown in the previous sections, both the Arnoldi and Lanczos methods are
characterized by relatively low memory and computational complexity their performance
was found to depend on various properties of the input operator matrix for which an
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eigenproblem is being solved. Below a few factors affecting the convergence of the iterative
Krylov subspace methods are outlined.

The rate of convergence is determined by the number of iterations e.g. during Lanczos
biorthogonalization or e.g. the number of implicit restarts of the iterative process in
the IRAM algorithm. A noticeable effect while using the discussed methods of solving
operator eigenproblems is the increment of the number of iterations (and implicit restarts)
with the increasing problem size (This problem is discussed in Chapter 4. See also
Table 4.1). The substantial reason for this phenomenon is the increment of the spectral
radius of an operator matrix with the increasing problem size. This effect widely occurs
virtually always if the matrix is a projection (discretization) e.g. of a differential or integral
equation. For instance, if the Laplace operator is discretized using Finite Difference
technique (discussed in the following chapter), then doubling the number of sampling
points in every spatial direction results in an approximately four-fold increment of the
spectral radius.

There is a number of other factors which influence the number of iterations needed
to obtain convergence, which include: existence of multiple eigenvalues in the matrix
spectrum (e.g. corresponding to degenerate modes), definiteness of the matrix, hermitian
or non-hermitian form of the operator matrix (which determines existence of complex
eigenvalues).

Another issue which arises while analyzing the Krylov subspace eigensolvers is the con-
vergence to eigenvalues located ‘far’ from both ends of the operator spectrum, i.e. eigen-
values separated from λmin and λmax by a large number of other eigenvalues, where λmin

and λmax are correspondingly the eigenvalues with the smallest and the largest modulus.
If e.g. the 1000-th eigenvalue (looking from hi-end of the spectrum) is to be found, appli-
cation of the Arnoldi (IRAM) algorithm will result in excessively long iterative process,
due to a large size of the Krylov subspace which has to be considered and the obtained
results are likely to contain significant errors. Consequently, additional convergence ac-
celeration techniques have to be applied. (The techniques based on polynomial filtering
(already described in Section 3.2.1.2) applied in Implicitly Restarted Arnoldi Method
accelerate the convergence to the eigenvalues located on the ‘edges’ of the operator spec-
trum, i.e. to eigenvalues with the largest or smallest modulus or the largest or smallest
real part.) The acceleration methods are most frequently based on transformations of the
operator spectrum, i.e. operator preconditioning. Applying the appropriate polynomials
(e.g. based on Chebyshev polynomials) the initial operator problem is transformed so
that the desired eigenvalues are moved from the interior of the spectrum of the initial
operator to the far end of the spectrum of the modified operator. Then, the eigenvalues
(and corresponding eigenfunctions) may be easily found as e.g. largest modulus eigenval-
ues of the modified operator. As the operator eigenfunctions are invariant to polynomial
transformations, they may serve to compute the actual eigenvalues of the initial, non-
transformed operator. An example of an algorithm performing a spectral transformation
has been described in detail in Section 6.2.1 and Appendix C.
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3.3 Other methods of solving operator and matrix

eigenproblems

Above we have focused on presenting the two Krylov subspace algorithms of solving
operator and matrix eigenproblems playing a crucial role in modern computational elec-
trodynamics and scientific computing in general. At this point let us only mention some
other recent developments concerning algorithms of solving operator eigenproblems. The
most important include modifications in the Davidson method leading to algorithms suit-
able for non-symmetric matrices, e.g. the Jacobi-Davidson algorithm or the introduction
of look-ahead strategy to two-sided Lanczos algorithms. The investigations also include
the designs of algorithms which inherently assume parallel computations. An example for
such method is the divide and conquer algorithm ( [5]) with extensions exploiting the re-
lationship between a certain matrix algebra and complex polynomials ( [6]). The detailed
description of the methods outlined above is clearly far beyond the scope of this limited
study and may be found in many excellent books, including classical book by Wilkinson
and Reinsch [119], the monograph by Golub and van Loan [50] which broadly covers the
questions of non-symmetric eigenproblems, the book by Saad [100] or the paper by van
der Vorst and Golub [117] which presents a review of recent developments.

3.4 Summary

This chapter presented in detail two modern Krylov subspace methods, namely the
Arnoldi and Lanczos algorithms. Both methods are generally characterized by low com-
putational and memory cost. Still, as noted earlier, this cost largely depends on the cost of
performing the Av product, where A is a given discrete operator, which, in turn, depends
primarily on the projection method applied to the initial operator A. Consequently, this
imposes a number of requirements which should be satisfied by a finite-dimensional pro-
jection method, as to ensure high performance of the numerical solver based on a Krylov
subspace method. These include:

• low cost of the projection procedure,

• low memory cost associated with the representation of the projected operator,

• low (preferably linear) cost of computing the Av product,

• possibly a small spectral radius of the projected operator,

• ability to exploit the fact that only the outcome of the Av operation has to be
known during the iterative process.

Additionally the projection method should allow efficient and simple parallelization and
should feature scalability comparable to the scalability of the Krylov subspace methods
(This issue is discussed later on in Chapter 5). The main goal of the following chapter is
to find projection methods which would most closely fit the requirements set above.
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Chapter 4

Cost reducing projection methods of
infinite-dimensional electromagnetic
operators

The previous chapter described selected methods of solving operator eigenproblems putting
aside the questions concerning the form, representation or domain of the operator involved
in the computations. In the case of linear operators in finite-dimensional domains, the
algorithms presented above, e.g. the Arnoldi or Lanczos methods give recipes ready to
be used to find numerically eigenvalues and corresponding eigenvectors of the discrete
operator at hand. Still, if an infinite-dimensional operator is involved one has to project
it onto a certain finite-dimensional space before the mentioned methods of solving eigen-
problems may be applied. In the discussion it was found that the key factor influencing
the performance of the numerical solvers based on the Krylov subspace methods is the
form and representation of the projected operator. A number of requirements to be sat-
isfied by an ‘ideal’ projection method have been listed. Consequently, in this chapter we
will try to propose the projection techniques which meet the following general goals:

• Assure low memory cost associated with a discrete operator representation and the
low cost of projection procedure.

• Allow low cost of computing the Av product.

• Generate projected operators with relatively small spectral radii.

• Allow efficient parallel implementation in scalable systems.

Before moving to the descriptions of specific numerical methods, it is worthwhile to
study in more detail the above goals in the context of finite-dimensional operators.

The first general goal (requirement) which has been pointed out is the low memory cost
of the representation of the projected, discrete operator. This cost depends on several
factors, such as:

45
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• The dimension of the domain of the discrete operator or the size of the matrix
associated with the discrete operator, which is directly related to the size of the
basis of the space onto which an initial operator has been projected as well as
the number of variables (e.g. field components) associated with a given operator
formulation,

• Representation of the operator matrix which may be: 1) explicit, when the elements
of the matrix are computed and stored and the operation of a matrix vector product
consists of computing appropriate inner products of matrix and vector elements; 2)
implicit, when the operations performed by the matrix are stored (implemented)
instead of matrix elements and the computation of a matrix-vector product consists
now of performing a number of linear transformations on the input vector,

• The form of the discrete operator matrix, e.g. sparse or dense character of the ma-
trix, regular or irregular distribution pattern of non-zero matrix elements, existence
of block structure of the matrix or bandwidth of the matrix.

In this context it is apparent, that if a matrix of a projected operator is sparse, banded
and has a very regular pattern of distribution of non-zero elements, then it is very likely
that memory cost associated with its representation will be lower than for a dense matrix
or a non-banded sparse matrix with irregular distribution of non-zero elements. Moreover,
if a discrete operator may be represented implicitly, rather than explicitly, using a matrix
of elements, then memory requirements may further be reduced.

One may note that the cost of computing the matrix-vector product is also directly
related to the size and form of the matrix. Once again it turns out that this cost is usually
lower for sparse, ‘structured’ matrices, i.e. matrices which are e.g. banded, regular or have
a block structure.

The spectral radius, which has an important influence on the performance of the Krylov
subspace methods, depends on various factors. For instance, as shown later in this chap-
ter, in a simple case of discrete operators constructed using Finite Difference technique
it may be directly controlled by the number of applied discretization points. Another
requirement to be met by a projection method is the ability to exploit the fact that
only the outcome of the Av operation is used by iterative Krylov subspace solvers. This
requirement is directly related to the question of representation of the projected operator.

This short discussion reveals the extremely important role of finite-dimensional oper-
ator projection. The various projection (and discretization) methods which exist allow
one to control the numerical properties (e.g. spectral radius), the form and representation
of the emerging finite-dimensional operator and consequently provide means to substan-
tially influence the convergence of the Krylov subspace methods as well as to reduce the
memory storage requirements and/or the numerical cost of performing the Av operation,
where A should be understood as a finite approximation of the initial operator and v
should as perceived as a corresponding representation of the function from the operator’s
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domain. Another issue which has not been addressed yet is the impact of the projection
method and the resulting form and representation of the discrete operator on the scal-
ability of the constructed numerical eigensolver. In other words, the applied projection
method often determines whether the emerging discrete operator may be efficiently rep-
resented in a parallel environment and whether the entire method of solving the discrete
eigenproblem may be parallelized in order to obtain a high performance solver. This
in turn, defines the scope of application of the solver, determining whether is may be
applied to modeling large scale (‘grand challenge’) computational problems, requiring
the processing power of massively parallel supercomputers. All the issues concerning
parallel design and performance of the algorithms of solving operator eigenproblems in
scalable parallel systems and relations between parallelization strategy and the form of
the discrete operator are discussed in Chapter 5.

Returning to the projection techniques, the problem of defining a finite-dimensional
mapping refers obviously both to operators and to the functions belonging to the op-
erator’s domain. There is a great variety of finite representations of functions, with a
vast majority based on expansions in terms of a chosen set of basis functions. Obviously,
even a short description of the most popular functional bases lies far beyond the scope
of this work. Nevertheless, some general classes of representations may be distinguished,
starting from simple representations based on regular or irregular sampling of a function
in its domain to the entire domain expansions, entire subdomain expansions or domain
subdivision expansions [79] in which accuracy of the representation depends correspond-
ingly on the number of expansion terms or (in the third case) the number of subdomains
or sampling points within the domain. (The Finite Difference (FD) discretization method
presented later on in this chapter belongs clearly to the domain subdivision methods.)
Apart from different finite mappings of functions also various operator representations
may be selected which gives rise to a number of numerical procedures. If, for instance,
the operator projection is achieved by calculating scalar products, as in the Method of
Moments (the Galerkin Method) then for different representations of functions various
methods are obtained e.g. the Finite Element Method (FEM) with a resulting sparse
operator matrix having usually an irregular distribution of non-zero elements or the col-
location (or point matching) technique with a resulting sparse or dense matrix. The
discussion of functional expansion and discretization techniques may be found in a num-
ber of books – cf. [28], [40], [59], [80], [79].

The rest of this chapter aims at presenting and proposing projection methods which
would meet the requirements concerning the reduction of computational cost as well as
produce discrete operators which suit the Krylov subspace methods of solving opera-
tor eigenproblems described in the previous chapter. The discussion below concentrates
on two basic types of finite-dimensional mapping methods: the algorithms based on fi-
nite difference discretization and techniques based on the functional expansion. It also
presents a hybrid approach in which both techniques are used together. Although the
mentioned projection methods produce approximate finite-dimensional operators with
entirely different properties, they all try to meet the outlined general goals. In other
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words, the specifics of all representations enable one to 1) reduce the cost of performing
the Av operation, which has a substantial impact on the efficiency of numerical solving
of given eigenvalue problems; 2) efficiently implement operations involving the discrete
operators in parallel distributed memory environments (as shown in the following Chap-
ters); 3) efficiently apply Krylov subspace methods to solve the emerging eigenproblems;
4) Control the spectral radius of the emerging discrete operator.

4.1 Finite difference methods in frequency domain

(FDFD)

The sections below describe discretization techniques based on the finite difference (FD)
approximation. Generally speaking, the FD approach results in finite-dimensional prob-
lems that involve highly regular sparse matrix operators which, as shown in the next
Chapter, allow straightforward and efficient parallel decomposition. Therefore they ap-
pear to be well suited to solving large scale electromagnetic problems. On the other
hand, the resulting discrete problem sizes may become very large in the case of compli-
cated electromagnetic systems which causes increment in memory complexity. Moreover,
significant errors associated with numerical dispersion appear for large scale problems
and serious decrement in convergence rate of the iterative eigensolvers, such as IRAM is
observed (associated with increment of the spectral radius of the matrix) (cf. Table 4.1).
These problems may be treated correspondingly by applying implicit operator projec-
tion, using methods reducing the effect of numerical dispersion and introducing hybrid
discretization techniques, joining eigenfunction expansion techniques with the finite dif-
ference method (e.g. in order to obtain operators with reduced spectral radius). All the
mentioned techniques are addressed below and indicate that the solvers applying the FD
method, if carefully implemented, may be effectively used to model numerically large
scale problems.

4.1.1 Simple FDFD discretization for 2D problems

The Finite Difference (FD) method is one of the simplest and very commonly used al-
gorithms of operator discretization. In this method, the functions from the domain of
the given operator are represented either as simple sets of values sampled over a certain
region or as expansions with simple (usually piecewise linear) expansion functions defined
over rectangular subdomains. As already mentioned, this method belongs to a class of
domain subdivision expansions which become more accurate with a growing number of
subdomains or sampling points [110].

The FD method is most frequently used to discretize various differential operators and
consists in substituting the differentials by the finite-dimensional difference operators.
The finite difference operators may yield various forms, starting from simple 2-point
stencils valid for approximating the first order derivatives in one dimension to complex
multipoint stencils used to obtain higher accuracy or deal with higher order derivatives,
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Figure 4.1: Finite Difference grid over a rectangular 2D region with zero boundary con-
ditions and distribution of non-zero elements in the corresponding discrete 2D Laplace
operator.

directional derivatives and so forth. It is worthwhile to give at this point a simple example.
One may consider a problem for two-dimensional Laplace’s operator given as follows:

∇2(·) = ∂2(·)
∂x2

+
∂2(·)
∂y2

(4.1)

defined for a rectangular 2D region with a zero boundary condition on the edges of the
region. The grid for this domain is shown in Figure 4.1. The numbers at the grid points
determine the assumed ordering (usually referred to as natural ordering). (Zeros denote
grid points located on the boundary of the region). The same figure shows the distribution
of non-zero elements in a discrete version of the Laplace operator, given by the following
formula:

Lvij =
−2vij + vi+1,j + vi−1,j

∆x2
+

−2vij + vi,j+1 + vi,j−1

∆y2
(4.2)

As one may note the operator matrix has a regular 5-diagonal structure which corresponds
to a 5-point stencil applied to approximate second derivatives in both spatial directions
using central difference discrete operators, as shown above. One should stress that also
different stencils are possible for the discrete Laplace’s operator based on non-collocated
meshes, such as Yee’s mesh.

As observed, the general feature of the matrices generated by the finite difference
scheme is a highly sparse structure and a usually very regular pattern of distribution
of non-zero elements. It is also characteristic that in most modern applications these
matrices have very large dimensions that equal the number of sampling points (which is
the product of the numbers of sampling points (of order 102-103 or more) in each of the
spatial dimensions).
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Figure 4.2: Distribution of non-zero elements in operator matrix obtained using the FD
discretization.

A more advanced example of a structure of the operator matrix obtained using the
FD discretization has been shown in Figure 4.2. The figure presents the distribution of
non-zero elements in the matrix approximating the following second order non-symmetric
differential operator (derived in Section 2.1.1) (cf. equation (2.42)):

Av = ∇2
tv + k2

0ε(x, y)v +
1

ε(x, y)
[∇tε(x, y)× (∇t × v)] (4.3)

where ∇t(·) =
(
∂
∂x

, ∂
∂y

)
(·), ε(x, y) is a fixed, arbitrary function defined over 2D space

and v is an appropriate two-dimensional vector field defined over a 2D spatial domain.

The matrix shown in Figure 4.2 has a dimension of approximately 40000, which corre-
sponds to a discretization of a 2D vector field �v = (vx, vy) over a 200×100 regular spatial
grid and the number of the non-zero matrix elements equals approximately 200000. Al-
though the matrix is non-symmetric, it has a highly regular structure with 95% of its
elements located on 5 diagonals: 0 (main diagonal), +2, -2, +199, -199. These five diago-
nals reflect the 5-point finite difference stencils replacing the appropriate derivatives. At
this point it should be noted that the bandwidth of the discussed matrix depends sub-
stantially on the ordering of the elements of vector functions, obtained from discretizing
the vector field �v = (vx, vy). With an inappropriate ordering of elements one may obtain
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a matrix with a substantially increased bandwidth (or even a non-banded matrix). In
our example the bandwidth equals approximately 400 and is minimal for the applied or-
dering, which puts first all the elements of the vx field component before all the elements
of the vy field component. Still, in this case the bandwidth is increased if the elements
of the vx and vy field components are mixed. It should be noted that the situation may
be different if we consider a vector operator which couples Hx and Hy field components,
instead of the scalar Laplace operator (in which both field components are decoupled).
In such a case applying the ordering in which field components are mixed results in a
matrix with substantially lower bandwidth than if the elements of vx are all stored before
the elements of vy.

4.1.1.1 Explicit representation of the discrete operator

One may consider an explicit representation of a matrix constructed using the Finite
Difference Frequency Domain (FDFD) method. As shown in the above examples the
matrix of the projected operator is sparse. Consequently, it may be noted that, although
the dimension of the matrix n is large, the memory requirements are not of order O(n2)
but of order O(n) and the matrix may be stored in one of the sparse matrix storage
formats, e.g. Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC) which
save memory and enable efficient handling of sparse matrices using specifically designed
numerical procedures (cf. the description of the SPARSKIT numerical library – [101]). In
the above example the storage requirements may be further reduced if the five diagonals
are stored separately and solely the irregularly located elements are stored using e.g. the
CSR format.

4.1.1.2 Implicit representation of the discrete operator

Memory savings may also be achieved in a different way – by applying implicit repre-
sentation of the discrete operator. One may easily note that the equal values of matrix
elements associated with five-point finite difference stencils can be excluded from the
stored elements and included implicitly only while calculating e.g. a matrix-vector prod-
uct. The following simple example for implicit representation of the discrete 2D Laplace
operator may be given. Recalling equation (4.1) and the form of the matrix of a dis-
crete Laplace operator shown in Figure 4.1 an algorithm of computing the matrix-vector
product may be easily developed. If the input vector is:

v = [v1, . . . , vNx·Ny ]
T (4.4)

where Nx and Ny equal the number of grid points in the respective spatial directions.
For the case Nx = 5 and Ny = 3, the fragment of algorithm used to compute the first Nx

components of the vector w = Lv , where L denotes a discrete Laplace operator, is as
follows:
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Nx Ny largest modulus Number of
eigenvalue iterations

20 10 -1.244D+01 155
40 20 -5.089D+01 271
80 40 -2.047D+02 556

Table 4.1: Eigenvalues with largest modulus computed using IRAM algorithm for the
operator (4.3) discretized using FDFD technique. The results are shown for different
numbers of grid points applied. The table also gives the number of iterations of the
IRAM algorithm needed to obtain convergence.

Algorithm 4: Matrix-vector product (fragment)

Step 1: Do for j = 1, Nx:

Step 1.1: If j = 1 then w(1) = 4v(1)− v(2)− v(Nx + 1)

Step 1.2: else if j = Nx then w(Nx) = 4v(Nx)− v(Nx − 1)− v(2Nx)

Step 1.3: else w(j) = 4v(j)− v(j − 1)− v(j + 1)− v(Nx + j)

Step 1.4: end if.

In the above fragment of the matrix-vector product computation algorithm the assumed
spacing between the grid points equaled 1. Analogous algorithms may be developed to
compute the remaining elements of vector w . As one may note the above algorithm
has a linear computational cost and consequently application of the above ‘functional’
representation of the discrete Laplace instead of the explicit matrix storage does not in-
crease the cost of computing the matrix-vector product. At the same time the storage
requirements are significantly reduced, as for the implicit representation the storage re-
quirements are in fact constant, independent of the matrix size N = Nx · Ny, while for
the explicit representation they grow linearly with the problem size.

The above example shows the possible optimizations due to specific form of the matrix
obtained in the Finite Difference discretization. — It is found that although the size of
matrix is inevitably large the memory cost of storing the matrix may be reduced to even
a constant value and numerical complexity of calculating the matrix-vector product may
be kept linear.

Referring to the spectral radius of the discrete operator obtained during FDFD dis-
cretization, once again the example of the 2D Laplace operator will be used. If the
distance between the grid points in the domain shown in Figure 4.1 equals ∆, then the
function:

v = A sin

(
mπx

(Nx + 1)∆

)
sin

(
nπy

(Ny + 1)∆

)
(4.5)
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evaluated at grid points defines an eigenfunction of the discrete 2D Laplace operator
satisfying the boundary condition, as shown in Figure 4.1. The corresponding eigenvalue
is (cf. [50]):

λmn = − 2

∆2
(1− cos(mπ/(Nx + 1)))− 2

∆2
(1− cos(nπ/(Ny + 1)) (4.6)

The finite difference grid defines the maximum values of m and n: mmax = Nx + 1
and nmax = Ny + 1. If the Finite Difference grid is sufficiently fine (∆ → 0), then the
largest modulus eigenvalue (highest order eigenvalue) of the discrete Laplace operator
(corresponding to mmax and nmax) equals approximately:

λmax = −4 (mmax + 1)2 − 4 (nmax + 1)2 (4.7)

If now a grid refinement is applied so that ∆ := ∆/2 (and consequently Nx, Ny, mmax

and nmax are doubled), then it is clear from the above formula that the modulus of the of
the largest modulus eigenvalue will increase approximately four times. Consequently, the
matrix spectral radius will also increase approximately four times. Table 4.1 shows eigen-
values with the largest modulus computed using IRAM algorithm for a more complicated
operator, given by equation (4.3) with appropriately defined boundary conditions. The
operator includes a 2D Laplace operator and has been discretized using FDFD technique
as described above. The results clearly indicate that doubling the number of grid points
in every spatial direction within the problem domain (equivalent to the grid refinement)
results in a four fold increment in the spectral radius of the matrix. The table also gives
the number of iterations of the IRAM algorithm needed to obtain convergence. One
notes that the number of iterations approximately doubles while doubling the number of
discretization points in every spatial direction.

4.1.2 FDFD discretization in cylindrical coordinates – 3D prob-
lems

The previous section focused on a simple FDFD technique in Cartesian coordinates which
may be suitable for modeling e.g. longitudinally homogeneous waveguiding structures.
This section presents a more sophisticated application of the FDFD method by describ-
ing a derivation of a discrete operator which may be used to model 3D electromagnetic
systems possessing rotational symmetry (homogeneous in the φ direction) in a cylin-
drical coordinate system. In this case the r − z plane is covered with the Yee mesh
(cf. Figure 4.3), defining dual grids of magnetic and electric fields. The operator to be
constructed will be an analogue of an infinite-dimensional operator, given by equations
(A.17) or (A.18). The derivation is entirely analogous as in Appendix A, still it starts
with Maxwell’s equations discretized using the finite difference scheme.

In order to obtain discrete Maxwell’s equations on the Yee mesh (cf. Figure 4.3) in
cylindrical coordinates from the initial Maxwell’s equations (A.3)-(A.9) the finite differ-
ence (central difference) scheme is applied in r and z directions and a harmonic variation
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Figure 4.3: Yee’s mesh in cylindrical coordinates.

on φ of all the field components, i.e. �E(r, φ, z) = �E ′(r, z) exp(jnφ) and �H(r, φ, z) =
�H ′(r, z) exp(jnφ), where n is an integer number, is assumed. Then, one obtains the
following set of equations for any grid cell (I, J):

jn

I∆r
EI,J+1/2
z − 1

∆z

[
EI,J+1
φ −EI,J

φ

]
= jωµ0H

I,J+1/2
r (4.8)

1

∆z

[
EI+1/2,J+1
r −EI+1/2,J

r

]− 1

∆r

[
EI+1,J+1/2
z − EI,J+1/2

z

]
= jωµ0H

I+1/2,J+1/2
φ (4.9)

1

(I + 1/2)∆r

[
(I + 1)EI+1,J

φ − IEI,J
φ

]
− jn

(I + 1/2)∆r
EI+1/2,J
r = jωµ0H

I+1/2,J
z (4.10)

jn

(I + 1/2)∆r
HI+1/2,J
z − 1

∆z

[
H
I+1/2,J+1/2
φ −H

I+1/2,J−1/2
φ

]
= −jωε0εrE

I+1/2,J
r (4.11)

1

∆z

[
HI,J+1/2
r −HI,J−1/2

r

]− 1

∆r

[
HI+1/2,J
z −HI−1/2,J

z

]
= −jωε0εφE

I,J
φ (4.12)

1

I∆r

[
(I + 1/2)H

I+1/2,J+1/2
φ −

−(I − 1/2)H
I−1/2,J+1/2
φ

]
− jn

I∆r
HI,J+1/2
r = −jωε0εzE

I,J+1/2
z (4.13)

1

I∆r

[
(I + 1/2)DI+1/2,J

r − (I − 1/2)DI−1/2,J
r

]
+

+
jn

I∆r
DI,J
φ +

1

∆z

[
DI,J+1/2
z −DI,J−1/2

z

]
= 0 (4.14)
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where ∆r and ∆z are FD grid sizes in r and z directions, respectively. In the above for-
mulae it is assumed that the permittivity tensor has a diagonal form:

↔
ε = diag(εr, εφ, εz),

where εr, εφ and εz vary only in the r − z plane. Also, for simplicity, the permeability is
assumed to be constant in the entire domain and equals µ0. It is worthwhile to note that
the equations (4.14)–(4.10) may also be obtained by discretizing Maxwell’s equations in
the integral form applying the Finite Integration Technique (FIT) on the Yee mesh (cf.
Figure 4.3) [66].

Denoting as D r, D φ, D z, E r, E φ, E z, H r, H φ, H z the vectors containing values of
respective fields at the appropriate grid points one may write equations (4.14)–(4.10) for
the entire discretized 2D domain using the following matrix notation:

D φ = DφdivDrD r +DφdivDzD z (4.15)

ωεr E
r = ErrotHz H z + ErrotHφH φ (4.16)

ωεφE
φ = EφrotHrH r + EφrotHzH z (4.17)

ωεz E
z = EzrotHφH φ + EzrotHrH r (4.18)

ωµ0H
r = HrrotEz E z +HrrotEφE φ (4.19)

ωµ0H
φ = HφrotEr E r +HfrotEz E z (4.20)

ωµ0H
z = HzrotEφE φ +HzrotEr E r (4.21)

where εr , εφ and εz are vectors containing the values of the elements of the permittivity

tensor at the subsequent grid points. (In fact those vectors may contain values of effective
permittivity for the cells of the defined Yee mesh as to improve the model of geometry
of the investigated boundary value problem. [26], [27])

Using equation (4.15) one may derive a formula for E φ and substitute it into equations
(4.19) and (4.21). Then, equations (4.19)–(4.21) may be used to derive formulae for H r,
H φ and H z which may be substituted to equations (4.16)–(4.18). Eventually one gets:

ω2D r = ErrotHz (HzrotEφ ε−1
φ (DφdivDrD r +DφdivDz D z)

+ HzrotEr ε−1
r D r)

+ ErrotHφ (HφrotEr ε−1
r D r +HφrotEz ε−1

z D z) (4.22)
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Figure 4.4: Sample matrix of the operator S – a discrete mapping of differential operator
S, given by equation (2.52).

ω2D z = EzrotHr (HrrotEφ ε−1
φ (DφdivDrD r +DφdivDzD z)

+ HrrotEz ε−1
z D z)

+ EzrotHφ (HφrotEr ε−1
r D r +HφrotEz ε−1

z D z) (4.23)

The above two equations may be cast in the following compact form:

ω2D = S D (4.24)

where D = [D r&D z]T ≡ [D r
1, D

z
1, . . . , D

r
N , D z

N ] and S is an operator defined by the
right hand side of equations (4.22) and (4.23). Discrete operator S is a finite-dimensional
projection of operator S given by equation (2.52). A sample form of the matrix of operator
S is given in Figure 4.4 which shows non-zero elements of the matrix.

The matrix has been obtained by mapping the operator S, given by equation (2.52) for
certain boundary conditions (discussed in Chapter 6). One may note that the operator
matrix does not have an ideally regular structure. A tapered end appears in the pattern
of non-zero element distribution. This is due to the applied boundary conditions, and is
explained in Figure 4.5. The figure shows two domains: a regular rectangular domain
and a domain with a semicircular boundary (marked with a dashed line). Outside these
domains the values of functions are imposed to equal zero. If, once again, the example of
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Figure 4.5: Forms of a discrete 2D Laplace operator with different boundary conditions
applied. The left pictures show the case of a rectangular domain, while the right one –
the case of of a domain with semicircular boundary.

a 2D Laplace operator is considered, then the forms of discrete, projected operators with
boundary conditions implemented for the respective domains are also shown in Figure
4.5. In fact the matrix on the right hand side is formed by removing columns and rows
with indices 1, 2, 4, 5, 6 and 10 from the matrix on the left hand side. This is done as
it is unnecessary to represent the grid points at which the zero boundary conditions are
assumed.1 One may note that even for this extremely coarse grid a tapered end appears
in the matrix shown on the lower-right picture of Figure 4.5.

1Still, under certain circumstances, discussed in Section 5.3.2, it is advantageous to include the zeroed
grid points in the domain representation in order to preserve a more regular matrix structure.
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∆ = ∆z = ∆r Spectral radius Matrix
[mm] size N

6 · 0.237 9.175 · 1023 2146
3 · 0.237 2.515 · 1024 8322
1 · 0.237 1.652 · 1025 73780

Table 4.2: The spectral radii computed for the S operator using IRAM algorithm. During
computations n = 1 (in exp(jnφ) term).

n Computed Estimation for
(exp(jnφ)) ω2

max ω2
max

128 2.9176 · 1027 2.9171 · 1027

256 1.1668 · 1028 1.1668 · 1028

512 4.6671 · 1028 4.6671 · 1028

1024 1.8668 · 1029 1.8668 · 1029

Table 4.3: The comparison of estimated and computed spectral radii for the S . It has
been assumed that ∆r = ∆z = ∆ = 6 · 0.237 mm.

Referring to the numerical costs associated with applying the presented FDFDmapping
technique the situation is similar as in the previous section. Due to a highly sparse
character of the operator matrix the memory cost of storing explicitly the matrix is linear
(O(N)). For the matrix shown in Figure 4.4 the storage requirements equal approximately
11N , where N is the matrix size. If the operator matrix is represented implicitly, then
this complexity may be reduced to a constant complexity. This estimations do not take
into account the cost of storing the elements of the permittivity tensor

↔
ε . If the values of

permittivity tensor may be computed rather than stored, then the overall matrix storage
cost remains constant. Otherwise, it becomes linear and equals approximately 3N . The
cost of computing the matrix-vector product for both implicit and explicit representations
is linear.

Another important issue which has to be addressed at this point is the spectral radius
of the discrete operator obtained by applying the discussed FDFD projection procedure
over the Yee mesh in cylindrical coordinates. The following discussion will focus solely on
the properties of the discrete operator S derived above. It is expected that, analogously
as in the previous section, the spectral radius increases while refining the grid in the r−z
plane. This is verified by the numerical results shown in Table 4.2. One may note that
also in this case the spectral radius is inversely proportional to ∆2.

Additionally, the spectral radius (in physical terms the squared modal angular fre-
quency) should depend on the value of integer n, associated with the term exp(jnφ)
and determining the azimuthal variation of the modal fields. The following estimation
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has been developed by Dehler [36] by using eigenvalue localization methods (Gershgorin
theorem):

ω2
max ≤ c24n

2
max + 4

∆2
(4.25)

where nmax is a maximum possible value of n from the exp(jnφ) term and ∆ determines
the grid size. The estimation is valid for nmax >> 1. In the case of operator S one has
nmax = n, as n is a pre-determined, fixed number. One may note that the term:

4n2
max

∆2

relates to the squared wavenumber in the φ direction for a wave described by the exp(jnφ)
term, propagating along the cylindrical surface of the smallest cylinder defined by the Yee
mesh, having the radius R = ∆/2. Comparison of the estimations to the computed values
of the eigenvalues with the largest modulus are presented in Table 4.3. The results imply
that for larger values of n the inequality (4.25) gives correct and accurate estimations for
the spectral radius.

It is worthwhile to note that estimation (4.25) may also be used to bound the spectral
radius for the case, when the discretization is applied not only in the r− z plane, but in
all the three spatial dimensions. In this case the value of nmax equals:

nmax = Nφ/2 (4.26)

where Nφ is the number of discretization points in the φ direction. (It is assumed that
Nφ is even.) The discussed estimation is also valid for the method described in Section
4.3.1, which uses eigenfunction expansion representation in the φ direction.

Concluding the discussion, it may be pointed out that the FDFD technique results
in discrete operators which may be represented as highly regular, banded matrices, that
in turn may be easily represented implicitly. Moreover, computing the matrix-vector
product is straightforward and is associated with only a linear cost. As shown in Chapter
5 these properties allow efficient parallel implementation of the problems associated with
this class of operators. Unfortunately, application of FDFD method has one important
disadvantage, which is appearance of numerical dispersion. While the effects of numerical
dispersion can be neglected in most small scale or medium scale problems, they become
very pronounced in large scale numerical modeling. This issue is addressed in detail in
the following section.

4.1.3 Reduction of numerical dispersion in finite difference meth-

ods

This section discusses the problem of numerical dispersion which inevitably arises while
applying the finite difference approximation to differential operators. In general, the
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Figure 4.6: Reducing the effect of numerical dispersion. The error in the values of
wavenumber kz may be lowered by refining the FDFD discretization grid.

numerical dispersion is attributed to the fact that numerically modeled electromagnetic
waves propagate not in a continuous (possibly homogeneous) space but in a finite differ-
ence grid, which may be compared to a crystal lattice. In this context the numerical ‘free
space’ becomes an anisotropic medium. Consequently, the following important effects
are observed. Most importantly, for the simulated wave modes, being eigenfunctions of
e.g. operator S (cf. previous section, equation (4.24)), propagating in an FDFD grid it
is observed that their phase velocity differs from the speed of light c in the vacuum and
varies with the wavelength, the direction of propagation with respect to the grid and the
grid discretization. The numerical errors, e.g. the phase velocity error, accumulate along
the propagation direction. In other words, the longer is the distance traveled by a prop-
agating wave, the larger are the errors due to numerical dispersion. This explains why
the problem of numerical dispersion is most visible in large scale electromagnetic systems
whose geometrical dimensions are by tens larger than the wavelength of the propagating
modes. The further consequences of numerical dispersion include significant errors in
computed propagation constants or resonant frequencies of modes in resonators.

The most common way to overcome the effect of numerical dispersion is to refine
the discretization grid. Figure 4.6 illustrates such approach. The Figure shows values
of wavenumbers (propagation constants) kz computed for different directions of wave
propagation θ (which is the angle between the wavevector and the r − φ plane) and
different refinements of the Yee mesh applied. The computed wavenumbers are compared
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to the theoretical values of kz. The waves propagate in a hollow cylindrical region. The
values of ∆r = ∆z vary from about λ/14 = 1.5 · 0.237 mm (coarse grid) to λ/64 =
(1/3) · 0.237 mm (fine grid), where λ is the wavelength of the propagating wave. For the
coarse grid the relative error of computing kz equals about 1%. As one notes this error
is very much reduced for the fine grid.

Still, this method of reducing the effects of numerical dispersion is an expensive one.
The technique of grid refinement has a disadvantage of increasing the size of the solved
matrix problem and in consequence increasing memory and computational cost of solving
the eigenproblem. For instance, if a 2D domain having dimensions of 20λ in each direction
is considered, where λ is the wavelength of the propagating wave, then applying a grid
spacing of λ/10 in each direction yields a matrix problem size of about 80000 for the
formulation (4.24). Refining a grid so that the cell spacing becomes λ/20 results in a
matrix of the size N = 320000, with four times larger bandwidth and approximately four
times larger spectral radius (compare the discussion in the previous section). This in
turn causes a significant increment in solution time of the resulting matrix eigenproblem.

Consequently, a different method has to be applied to reduce the effects of numerical
dispersion if excessive memory and computational costs are to be avoided while modeling
large scale problems. The approach towards reducing errors due to numerical dispersion
proposed below does not change the size of the problem and consequently does not
increase memory and computational cost associated with the solution of the eigenproblem.
Therefore, it appears to be well suited to be used together with FDFD technique to model
complicated large scale electromagnetic problems.

The proposed method of reducing the effect of numerical dispersion is based on intro-
ducing a correction into the discrete operator equations. The correction annihilates or
reduces the error associated with numerical dispersion for a certain range of solutions.
In general, the idea is based on replacing the standard finite difference operator, e.g. the
central difference operator:

DF (x) =
F (x+∆x/2)− F (x−∆x/2)

∆x
(4.27)

with a modified operator:

DF (x) = A
F (x+∆x/2)− F (x−∆x/2)

∆x
(4.28)

where A( = 1) is a certain constant number. In this way a modified discrete operator
with corrected eigenvalues is constructed. A broad discussion of this approach for the
Finite Difference Time Domain (FDTD) method applied to solving Maxwell’s equations
in rectangular coordinate system may be found in a book by Taflove [110]. Somewhat
different approaches towards reducing numerical dispersion, also referring to rectangular
coordinate system and FDTD method, may be found in [52] and [83].
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The sections below present an originally developed technique of reducing the effect of
numerical dispersion for the Finite Difference Frequency Domain (FDFD) discretization
method in cylindrical coordinates. This technique provides a way to compute the value
of constant A from equation (4.28) in the case of modes propagating in homogeneous
3D regions. It is assumed that the FD discretization has been performed in the r and z
directions only using a standard Yee’s mesh (cf. previous section).

If a 3D region whose boundaries coincide with cylindrical coordinate surfaces is consid-
ered, then the electromagnetic fields may be found analytically using a scalar Helmholtz
equation in cylindrical coordinates:

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
+

∂2ψ

∂z2
+ k2ψ = 0 (4.29)

The class of solutions of the above equation to be considered takes the following form:

ψ(r, φ, z) = Bn(krr) exp(jnφ+ kzz) (4.30)

where Bn(·) is the n-th Bessel (or Hankel) function of the first or the second kind, n is
an integer number, and the following relation is satisfied:

k2 = k2
z + k2

r (4.31)

where kz and kr denote the components of the free-space wavenumber k in the z and r
directions, respectively (cf. Figure 4.7).

Modes in cylindrical coordinates may be described by means of the TE or TM potentials
(cf. Rozzi and Mongiardo [98]) which give the following expressions for TM and TE fields,
respectively:

Er = −jωµ1
r
∂ψ
∂φ

Hr =
∂2ψ
∂r∂z

Eφ = jωµ∂ψ
∂r

Hφ =
1
r
∂2ψ
∂φ∂z

Ez = 0 Hz =
(
k2 + ∂2

∂z2

)
ψ

(4.32)

and:

Er =
∂2ψ
∂r∂z

Hr = jωε1
r
∂ψ
∂φ

Eφ =
1
r
∂2ψ
∂φ∂z

Hφ = −jωε∂ψ
∂r

Ez =
(
k2 + ∂2

∂z2

)
ψ Hz = 0

(4.33)

Consequently, the fields may be represented in the following form (TM case):

Er = Er0jB
′
n(krr) exp(jnφ+ kzz) (4.34)

Eφ = Eφ0
1

r
Bn(krr) exp(jnφ+ kzz) (4.35)
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Ez = Ez0Bn(krr) exp(jnφ+ kzz) (4.36)

Hr = Hr0
1

r
Bn(krr) exp(jnφ+ kzz) (4.37)

Hφ = Hφ0jB
′
n(krr) exp(jnφ+ kzz) (4.38)

Hz = 0 (4.39)

and (TE case):

Hr = Hr0jB
′
n(krr) exp(jnφ+ kzz) (4.40)

Hφ = Hφ0
1

r
Bn(krr) exp(jnφ+ kzz) (4.41)

Hz = Hz0Bn(krr) exp(jnφ+ kzz) (4.42)

Er = Er0
1

r
Bn(krr) exp(jnφ+ kzz) (4.43)

Eφ = Eφ0jB
′
n(krr) exp(jnφ+ kzz) (4.44)

Ez = 0 (4.45)

If the TE case is considered, the formulae (4.40)–(4.45) may be substituted to discrete
Maxwell’s curl equations for cylindrical coordinates (4.11)-(4.13), (4.9) and (4.10) in
which the standard central difference operators (4.27) are replaced with modified opera-
tors (4.28). The substitution yields the following set of equations:

W Ψ = 0 (4.46)

where Ψ =
[
Hr0 Hφ0 Hz0 Er0 Eφ0

]T
is a vector of the electromagnetic field ampli-

tudes and W is a 5× 5 matrix. If the above set of equations is about to have a non-zero
solution, then matrix W has to be singular:

det(W ) = 0

The explicit form of the above equation is presented below:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ωµ 0 0 0 2A sin(kz∆z/2)
∆z

0 ωµ 0 2A sin(kz∆z/2)
∆z

0

−n
((I+1/2)∆r)2

A
(I+1/2)∆r

×
0 0 ωµBn(α) ×Bn(α) [B′

n(γ)(I + 1)

−B′
n(δ)I]

0 −2A sin(kz∆z/2)
∆z

n −ωε 0

−2A sin(kz∆z/2)
∆z

0 −Bn(α)
∆r

A 0 ωεB′(krI∆r)

×B′
n(krI∆r) +Bn(β)

∆r
A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4.47)

where

α = kr(I + 1/2)∆r β = kr(I − 1/2)∆r
γ = kr(I + 1)∆r δ = krI∆r

An analogous relation may be developed for a TM field.

It is important to note that if ∆r → 0 and ∆z → 0 (and imposing that (I+1/2)∆r = r)
the discrete dispersion relation (4.47) reduces to the Bessel equation:

r
d

dr

(
r
dBn(krr)

dr

)
+ r2(k2 − k2

z)Bn(krr)− n2Bn(krr) = 0 (4.48)

which is satisfied if and only if:

k2 − k2
z = k2

r (4.49)

Equation (4.47) may therefore be used to establish relation between k, kz and kr in the
case of a discretized problem domain. If the values of k = ω/c, kr, I, n, ∆r, ∆z and A are
fixed then one may compute the value of kz using (4.47). (Introducing q = sin(kz∆z/2),
equation (4.47) becomes a biquadratic equation with an unknown q. If the solutions
are limited to kz ranging from 0 to π/4∆z then only two of the four solutions q of the
biquadratic equation are significant.) The computed values of kz may then be compared
to the theoretical value of kzt computed using the ‘continuous’ dispersion relation (4.49):

kzt =
√

k2 − k2
r (4.50)

Consequently, for given wavenumbers k and kr one may optimize the value of A as to
minimize the difference between kz and kzt, computed using equations (4.47) and (4.50)
respectively. The value of A can be optimized for a single value of kr which is equivalent
to minimizing the function:

f(A) = |kzt(kr)− kz(kr, A)| (4.51)
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Figure 4.7: Relation between the wavenumbers. Note that |k| > |kt| due to numerical
dispersion.

or can be optimized for a certain range of wavenumbers kr = k cos(θ) (cf. Figure 4.7)
which is equivalent to minimizing the following function:

g(A) =

∫ θ0+∆θ

θ0−∆θ

|kzt(k cos(θ))− kz(k cos(θ), A)| dθ (4.52)

The minimization of either f(A) or g(A) may be performed by applying any from a
wide spectrum of numerical recipes. In the case of computations performed within this
study, a simple ‘fmin’ MATLAB function [70] for finding local minima of a user defined
single-variable function was applied. This routine was able to find optimized values of A
at virtually no numerical cost.

Before giving an example of application of the proposed technique, the following obser-
vation has to be made. The main difference between the theoretical dispersion relation
(4.49) and the discrete dispersion relation (4.47) is that satisfying the first relation en-
sures that the fields given by formulae (4.40)-(4.45) are solutions of our problem for the
entire domain, i.e. for any values or r, φ and z, while satisfying the second relation de-
termines solutions for a single value of I, i.e. for a single cylindrical surface I∆ = const..
Nevertheless, as shown in Chapter 6 containing numerical results for the discussed al-
gorithm applied to the problem of modeling a large hemispherical resonator, for a wide
range of values of I (referring to surfaces with radii ranging from 0.1R to R, where R is
the radius of the resonator), the computed values of A do not differ significantly and in
any case the effect of numerical dispersion is reduced. This means that the choice of I is
of secondary importance.

To illustrate the proposed technique we applied it to find optimized value of the A in
formula (4.28). The following set of input parameters has been used: ε = ε0, µ = µ0
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Figure 4.8: Wavenumber kz computed for different values of kr = k cos(θ) and two
different values of A. The vertical line indicates the angle between the wavevectors k and
kr for which the value of A has been optimized.
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Figure 4.9: Variation of the numerical phase velocity with the wave propagation angle
for the optimized and non-optimized values of A.
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(a hollow cylindrical cavity), ω = 2πf , where f = 59.375168 GHz, ∆R = ∆z = 1.5 ·
0.237 mm, n = 1. The A factor has been optimized for the value of the wavenumber
kr = k · cos(0.889 · π/2) =

√
k2 − k2

z , where k = ω/c = 2πf/c and kz = 2πN/L =
2π · 10 rad/(51.3 mm), where L is the length of the cavity and the value of I = 113,
which corresponds to the cavity radius R = 40.17 mm.

For the listed parameters the optimized value of A equals 1.008009. Figure 4.8 shows
the values of the wavenumber kz, computed using the ‘continuous’ dispersion relation
(4.49) and the discrete dispersion relation (4.47) for the non-optimized and optimized
value of A. It is apparent that if A = 1 in the finite difference operator then values
of kz are significantly larger from the theoretical values kzt. This, in turn, causes the
numerical modes to propagate with phase velocity which is always less than c, as shown
in Figure 4.9. For the optimized value of A the error in computed wavenumbers kz is
significantly reduced for the shown range of propagation angles (and annihilated for the
kr = k·cos(0.889·π/2)). Consequently, also the error in phase velocity is very significantly
diminished. Clearly the effect of numerical phase velocity anisotropy, inherent to Yee’s
algorithm cannot altogether be eliminated using this approach.

It has been shown above that the proposed technique introduces a correction to the
discrete dispersion relation which allows a better approximation of the theoretical ‘con-
tinuous’ dispersion relation. The following section presents application of this technique
to modeling an electrically large hollow cylindrical resonator with a Finite Difference
Frequency Domain (FDFD) method.

4.1.4 Iterative scheme for reducing dispersion error in a cylin-

drical resonator: a numerical example

The aim of this series of numerical tests was to assess the applicability of the technique of
reducing numerical dispersion presented above and test an iterative scheme for reducing
numerical dispersion error (presented below). The modeled structure was a simple hollow
cylindrical resonator shown in Figure 4.10.

During the tests the resonant frequencies of the TE116 mode have been computed.
The theoretical frequency for this mode is: ft = 17.6803011514791 GHz. This refers to
λ ≈ 17 mm. One may note, that the dimensions of the resonator equal approximately
2.4λ × 3λ. Figure 4.11 shows the field plot of the Er component computed using the
IRAM-FDFD algorithm (with implicit matrix representation - cf. Section 4.1.1.2) with the
discretization grid: ∆r = ∆z = 1.442 mm = λ/12. For this discretization grid the com-
puted numerical resonant frequency equals f = 17.48441386145861 GHz. Consequently,
the relative error in computing the resonant frequency is significant and equals 1.11%. If
now a correction of the finite difference scheme, discussed in Section 4.1.3 is applied this
error may be reduced. The value of A factor (cf. equation (4.28)) optimized for the the-
oretical frequency ft and the applied discretization grid equals: A = 1.01133318543985.
Introducing this modified value of A into the constructed discrete operator yields a new
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Figure 4.10: Schematic of a hollow cylindrical resonator. At the boundary δΩ the Perfect
Electric Conductor (PEC) condition has been applied.

Figure 4.11: Rms Er field plot for the TE116 mode in a homogeneous cylindrical resonator
(cf. Figure 4.10). The discretization grid applied: ∆r = ∆z = 1.422 mm = λ/12.

matrix eigenproblem. The corrected resonant frequency computed as an eigenvalue of the
discussed matrix equals f̃ = 17.68041080944422 GHz. Now, the relative error between f̃
and ft equals 0.0006% instead of more than 1%!.

This spectacular error reduction has been obtained for the value of A optimized exactly
for the theoretical frequency which is known in this case. Clearly, in all practical situations
situation the resonant frequency to be found is (by definition) unknown. Nevertheless,
the correction technique may be still applied. Table 4.4 shows a number of computed
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Optimization Value of A Computed Relative
frequency [GHz] factor frequency [GHz] error [%]
- 1.00000000000000 17.48441386145861 -1.1079
17.2382939769208 1.01106733874854 17.67581308125628 -0.0254
17.3382939769208 1.01119712304638 17.67805767786787 -0.0127
17.4382939769208 1.01132768160268 17.68031564133214 0.0001
17.5382939769208 1.01145901482931 17.68258697358160 0.0129
17.6382939769208 1.01139396076993 17.68146186865034 0.0066
17.6803011514791 1.01133318543985 17.68041080944422 0.0006

Table 4.4: The table shows values of coefficients A optimized for different frequencies close
to the theoretical resonant frequency ft = 17.68030115147906 GHz of the TE116 mode
and respective computed resonant frequencies for the same mode. The first row shows
the frequency computed for non-optimized value of A. The last row shows the value of
A optimized for the theoretical resonant frequency. The last column shows the relative
error between computed and theoretical resonant frequencies. Discretization parameters:
∆r = ∆z = 1.422 mm = λ/12.

Optimization Value of A Computed Relative
frequency [GHz] factor frequency [GHz] error [%]
- 1.00000000000000 17.48441386145861 -1.1079
17.48441386145861 1.01138815606153 17.68136149647179 0.0060
17.68136149647179 1.01132331826806 17.68024016426026 -0.0003

Table 4.5: The table shows an iterative scheme of reducing error due to numerical dis-
persion. The resonant frequencies for the TE116 mode computed in one step are used
in the next step to find the optimized value of A. The last column shows the relative
error between computed and theoretical resonant frequencies. Discretization parameters:
∆r = ∆z = 1.422 mm = λ/12.

values of A, optimized for frequencies that are close to the theoretical resonant frequency
ft. For these values of A the resonant frequencies of TE116 are computed using IRAM-
FDFD algorithm. It is clear that, although the values of A have been optimized for
frequencies only approximating ft, in all cases a very substantial improvement in the
computed results has been obtained.

This observation leads to proposing the following iterative scheme of reducing the error
due to numerical dispersion. If the approximation of the resonant frequency for a given
mode is unknown, then an approximate value of this frequency may be computed using
IRAM-FDFD and non-optimized value of A, i.e. A = 1. The approximate frequency may
then be used to optimize the value of A and IRAM-FDFD method may be run with this
optimized value of A. This step may be iterated as many times as needed. Table 4.5 shows
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Optimization Value of A Computed Relative
frequency [GHz] factor frequency [GHz] error [%]
- 1.00000000000000 17.63133404107683 -0.2770
17.63133404107683 1.00281701766091 17.68046874620936 0.0009

Table 4.6: The table shows an iterative scheme of reducing error due to numerical dis-
persion. The resonant frequencies for the TE116 mode computed in one step are used
in the next step to find the optimized value of A. The last column shows the relative
error between computed and theoretical resonant frequencies. Discretization parameters:
∆r = ∆z = 0.711 mm = λ/24.

such a scheme for the example discussed. One notes that already the second step gives a
substantial improvement of the results and only 3 steps are needed to reduce the relative
error to less than 0.001%. An analogous iterative scheme has been shown in Table 4.6
for a refined discretization grid ∆r = ∆z = 0.711 mm = λ/24. Here only two steps are
needed to reduce the error to less than 0.001%. By comparing the tables one also notes
that applying a single optimization of A for a coarser grid gives more accurate results
than applying a more refined grid. For the fine grid (∆r = ∆z = 0.711 mm = λ/24), the
matrix is approximately 4 times larger than for the coarse grid (which implies roughly
four-time increment in the cost of computing matrix-vector product and the number of
iterations performed by the solved) and consequently it is faster to run the algorithm
with a coarse grid twice than to run the algorithm with a fine grid just once (cf. Table
6.16.

The above results indicate that the proposed technique of reducing the effect of numer-
ical dispersion may be effectively applied to enhance quality of the obtained numerical
results. Chapter 6 presents further numerical results validating the discussed technique in
the case of a significantly more complicated structure of a large hemispherical resonator.

4.1.5 Implicit operator projection in FD methods

Although, as shown in the previous section, the memory cost of storing the matrix op-
erator constructed using the FD technique generally equals O(N) rather than O(N2),
where N is the matrix size this cost may become significant with the increasing number
of discretization points. It has been shown that for the 2D FDFD discretization the
number of matrix elements to be stored equals approximately 11N . (cf. [94]) This cost
may be significantly reduced if the matrix is not stored explicitly. This, in turn, can
be achieved if the Krylov subspace methods are applied, in which information on the
operator is passed only via the the Av product.

The idea behind implicit representation of the matrix operator has already been intro-
duced in Section 4.1.1 using the example of a 2D discrete Laplace operator.
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This section develops a method of computing the matrix-vector product with an im-
plicitly stored operator for the discrete operator S from equation (4.24). If the input
vector v is given in the following form:

v = [v r&v z]T ≡ [v r
1, v

z
1, . . . , v

r
N , v z

N ]
T (4.53)

then equations (4.22) and (4.23) provide an algorithm for computing the S v vector. If
the vector components v r and v z have a meaning of the the r and z components of the
electric flux density, respectively, then the algorithm may be summarized in the following
steps:

1. Compute the φ component of the electric field intensity:

div r = ε−1
φ

(
DφdivDr v r +DφdivDz v z

)

2. Compute the components of Hz and Hr associated with Eφ:

div z := HrrotEφdiv r

div r := HzrotEφ div r

3. Compute the Hφ component using Er and Ez:

vtemp r := HφrotEr εr
−1v r +HφrotEz εz

−1v z

vtemp z := vtemp r

4. Compute the components of ω2Dr and ω2Dz associated with Hφ:

w r = ErrotHφvtemp r

w z = EzrotHφ vtemp z

5. Compute the components of Hz and Hr associated with Er and Ez correspondingly:

vtemp r := HzrotEr εr
−1v r

vtemp z := HrrotEz εz
−1v z

6. Compute Hz and Hr:

div r := div r + vtemp r

div z := div z + vtemp z
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7. Compute the components of ω2Dr and ω2Dz associated with Hz and Hr, respec-
tively:

div r := ErrotHz div r

div z := EzrotHr div z

8. Add the components of ω2Dr and ω2Dz:

w r := w r + div r

w z := w z + div z

It is important to stress at this point that the matrices involved in the above com-
putation e.g. DφdivDr are not stored explicitly. Instead, the finite difference operations

performed on the input vector elements are implemented, just as shown on a simple ex-
ample presented in Section 4.1.1.2. Consequently, the only significant storage needed to
complete the above matrix-vector product consists of: 1) the workspace of four vectors
of length N : v , w , vtemp and div , 2) storage for the elements of the permittivity tensor
↔
ε which may equal up to 3N . (In case of isotropic media this cost reduces to N.)

The computational complexity of the algorithm presented above equals O(N) where N
is the matrix (or vector) size. The memory storage needed to perform the matrix-vector
product equals roughly 4N+3N , as compared to 11N+2N in the case when matrix S is
stored explicitly. This means almost a two-time reduction of the required memory storage
with an unchanged computational complexity of the algorithm. Moreover, application
of the implicit projection scheme, implies that the projection of the operator may be
performed simultaneously with the iterative solution of the eigenproblem.

4.2 Eigenfunction expansion based methods

The previous sections discussed the methods of finite-dimensional mapping of operators
arising in modeling of 2D and 3D problems, based of the Finite Difference Frequency
Domain technique. Below a different approach is applied based on representing fields as
series of eigenfunctions (or basis functions). The considerations focus on applying the
described technique to operators arising in modeling two dimensional systems.

4.2.1 Method of moments and the Galerkin algorithm

The method of finite-dimensional mapping described in this section is based on the rep-
resentation of an operator by its products with chosen basis or testing functions spanning
a given functional space. This approach is known from the Method of Moments or its
most important version – the Galerkin method, using explicit scheme of projecting the
input operator.
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4.2.1.1 Explicit projection of the operator

Let us start the description of this discretization method with discussing the finite rep-
resentation of functions. Let the domain X of a given operator T be a functional Hilbert
space with a properly defined scalar product and {hi}∞i=1 be a complete orthonormal set
of functions in the space X. According to the definition of completeness every function
u ∈ X is convergent to its Fourier series, being the expansion of u in terms of the basis
functions:

lim
n

||u−
n∑
i=1

(u, hi) hi|| = 0 (4.54)

Consequently, any function from the space X is represented by a sequence of the Fourier
coefficients {fi}∞i=1 = {(u, hi)}∞i=1. Truncating this sequence to a finite number of terms
gives a wanted finite mapping of the function u:

u = [(u, h1), (u, h2), . . . , (u, hn)]
T (4.55)

The method of discretization of the operator T immediately follows from the above
representation of the functions. Defining the elements of the n× n matrix T = [cij]

n
i,j=1

as:

cij = (Thj , hi) (4.56)

we obtain a finite-dimensional linear operator being a mapping of the operator T which
has the following property:

T u = Tu = [(Tu, h1), (Tu, h2), . . . , (Tu, hn)]
T (4.57)

As already mentioned, the representation of the operator involving the matrix of
scalar products given by the equation (4.56) is used by the method of moments in which
this matrix is constructed explicitly. Unfortunately this may bring about a series of
negative effects. Firstly, the matrix (4.56) may be dense and its explicit storage may
require n2 memory locations. Secondly, the matrix-vector product T u can involve O(n2)
operations which may cause the computation time in the methods which are based on
this representation to blow up for the increasing problem size n. (This effect is widely
known e.g. for the Galerkin method used with the QR algorithm (cf. [95] or Chapter 6).

4.2.1.2 Implicit projection of the operator

The question which emerges is whether it is possible to find an orthonormal basis (a
complete set of functions) in the Hilbert space X such that either the storage cost of
the discretized operator or the cost of calculating the discussed matrix-vector product
may be significantly reduced even if the matrix T (cf. equation (4.57)) is dense. The
answer is positive for a certain class of functional Hilbert spaces chosen for the operator’s
domain. This wide class, being the most important one in a variety of application fields,
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may be defined as the space of square integrable functions defined over a bounded region
Ω, namely the L2(Ω) space, with the scalar product defined as follows:

(u, v) =

∫
uv∗dΩ (4.58)

If, without significant loss of generality (cf. [84]), we shall limit our discussion to
the case of the L2 space defined over a two-dimensional bounded rectangular region
Ω = ([0, b] × [0, a]) ∈ R2 then the orthonormal bases which have the desired feature are
the trigonometric complete sets of functions:

hxij = Aij sin

(
iπx

b

)
cos

(
jπy

a

)
(4.59)

or

hyij = Bij cos

(
iπx

b

)
sin

(
jπy

a

)
(4.60)

where Aij and Bij are properly defined normalization constants. If we represent magnetic
field in terms of the above basis, the Perfect Electric Conductor (PEC) condition will be
satisfied at the boundary of the region [0, b]× [0, a]. If we consider e.g. a two-dimensional
vector field u = (ux, uy), where ux, uy ∈ L2([0, b] × [0, a]), then u may be represented
e.g. by the following series:

ux =
∑
ij

cxijh
x
ij

uy =
∑
ij

cyijh
y
ij

If the above series are truncated then the emerging finite approximation of the function
u is a vector of the Fourier coefficients:

u = [cx11, c
x
12, . . . , c

x
mn, c

y
11, c

y
12, . . . , c

y
mn]

= [(ux, hx11), (u
x, hx12), . . . , (u

x, hxmn), (u
y, hy11), (u

y, hy12), . . . , (u
y, hymn)] (4.61)

The most significant observation about the above vector is that it is simply a vector
of samples of the two-dimensional Fourier transform of the function u = (ux, uy). Conse-
quently, keeping in mind that the inner products are given by the integrals (4.58), the ap-
proximations of the vector elements may be numerically found using the two-dimensional
Discrete Fourier Transforms (DFTs). In turn, the two-dimensional DFTs may be very
efficiently computed by applying the Fast Fourier Transform (FFT) algorithm, proposed
first by Cooley and Tukey (cf. [20]). The following section shows how this observation
may be used to reduce both cost of calculating the T u product as well as cost of storing
the operator matrix by applying the implicit, instead of explicit, matrix representation.
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4.2.2 Calculation of the inner products and implicit operator
projection

According to the previous section computing of the T u product may be viewed as
calculating the inner products (in a finite-dimensional space) of (Tu, hxij) and (Tu, hyij)
with the given vector of Fourier coefficients (4.61). This kind of approach enables one to
develop a procedure of computing the T u product which does not require the explicit
storage of the dense matrix T [96]. Thanks to this both memory and computational cost
may be reduced. The discussed operation may be performed in the following steps:

1. Using the given Fourier coefficients (4.61) calculate the values of the function u for
a discrete set of points from the Ω spatial domain by computing a two-dimensional
backward FFT.

2. Calculate the values of the Tu function at the gridpoints of the domain Ω using
the previously calculated values of u.

3. Compute the inner products (the Fourier coefficients) (Tu, hxij) and (Tu, hyij) by
performing a two-dimensional forward FFT.

The above scheme has been illustrated in Figure 4.12 for the function u ≡ H being a
two-dimensional vector field. In the Figure, the function H = (Hx, Hy) is represented in
the DFT domain by 200 Fourier coefficients, which corresponds to 10 expansion functions
in every spatial direction for both Hx and Hy. (Referring to the equations (4.59) and
(4.60) the indices run as follows: i = 1, 2, . . . , 10 and j = 0, 1, . . . , 9.) Then, the discrete
values of the function H (i.e. the actual field distribution) are computed using two 2D
backward FFTs. In the example we obtain two 256×256 arrays of samples of the function
H in the 2D spatial domain. Then, the operation T on H gives a matrix of samples of
the TH function which is subsequently transformed using forward 2D FFTs to obtain
the desired Fourier coefficients. One should note at this point an important relation
which links the discussed discretization (based on finite expansion series) and the Finite
Difference (FD) method. In the Step 2 of the above scheme one calculates the values of
the Tu function at the discrete gridpoints in entirely the same way as in the FD method.
The additional Steps (1 and 3) are required to move back and forth between the spatial
domain and the DFT domain.

It is important to note that computational procedure shown in Figure 4.12 performs a
projection onto a 10×10 space of Fourier coefficients from a much larger (256×256) space
and the actual operation of T on u is performed in a ‘large’ space domain. The function
is oversampled in the space domain, which means that a reduced number of Fourier
coefficients is calculated using more samples than necessary. Applying oversampling,
i.e. a finer grid in the spatial domain reduces the effect of numerical dispersion (cf. Figure
4.6 in Section 4.1.3). This allows one to compute the first e.g. 100 Fourier coefficients
with greater accuracy, while omitting all the other, containing larger (and often very
serious) numerical errors. In this way the effect of numerical dispersion is reduced, while
maintaining relatively small problem size, associated with a ‘compact’ representation of
functions in the DFT domain.
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Figure 4.12: Calculation of the matrix-vector product for the DFT domain operator
formulation is performed in a series of steps: A – rearranging a 1D vector in the form
of two 2D matrices, B – performing two 2D backward FFTs, C – performing linear
transformation T of the two fields in the space domain, D – performing two 2D forward
FFTs, E – rearranging the fields in the form of a 1D vector.

The other question is: What is the numerical complexity of the algorithm? If Kx and
Ky denote the lengths of the Fast Fourier Transforms, i.e. the number of sample points in
the spatial domain in the x and y directions, respectively and the numbers of expansion
functions used to represent the functions in the DFT domain equal Nx and Ny in the
respective directions then the cost of performing the steps 1 and 3 in the calculation of the
matrix-vector product equals O(4NxKy logKy+4KyKx logKx). (The cost of performing
a one-dimensional FFT of the length N is O(N logN). – cf. [11]). Denoting K = Kx ·Ky

and N = Nx ·Ny, this cost may be estimated at a level O(K logK) since the length of the
FFTs (the number of sampling points in the spatial domain) should be proportional to the
number of expansion functions. The next issue is estimating the cost of the Tu product
(step 2), where function u is represented by N samples in the spatial domain. It is hard to
give a non-conservative bound for this cost in the case of a general linear operator. Still,
if only differential operators are considered (just as in the previous section) then this cost
is given by O(N). It is now seen that the overall cost of calculating the matrix-vector
product in this representation equals O(K logK).
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One may ask what are the advantages of this representation as compared either to the
FD finite-dimensional mapping in which the matrix-vector product could be calculated
within the linear time cost or the classical Galerkin representation involving a dense
matrix.. Clearly, in the DFT representation only the step 2 involves a similar number of
computations as the entire matrix-vector product in the FD discretization. The advantage
of the DFT representation may be seen if one compares the dimensions of the resulting
discrete operators. The size of the vectors in the DFT domain equals K which, due to
the oversampling (needed to reduce the dispersion error in the discrete spatial domain),
is usually considerably smaller than the vector size resulting from the FD mapping.
(e.g. For the FFT length which equals 256, the number of applied expansion functions
usually equals 20, 40 or at most 60. Consequently in two dimensions the problem size
equals e.g. 3600 in the DFT space as compared to approximately 66000 in the spatial
domain.) So, the DFT representation usually reduces the problem size which influences
the execution time the program solving the discrete eigenvalue problem. Summing up, if
the DFT representation is applied, the extra time spent on calculating in matrix-vector
products is then regained by spending less time on solving the eigenproblem.

Referring to the memory complexity, this method needs relatively little space to cal-
culate the matrix-vector product. The memory requirements include the space necessary
to store the samples of the function u = (ux, uy) in the spatial domain whose size equals
2NxNy = 2N and the space needed to perform Fourier transforms. In the Winograd
version of the FFT algorithm (cf. [120] or [91]) the extra workspace needed to perform
the one-dimensional transform will equal approximately 3Nx (3Ny). If the space needed
to store the input/output vectors of Fourier coefficients is taken into account then the
overall memory complexity equals: O(2K+2N+6

√
N) (assuming that Nx = O(Ny)). In

this estimation the cost of storing the operator matrix T is not taken into account as the
implicit storage is assumed. Clearly, if this matrix is stored explicitly (as in the classical
Galerkin approach), the memory requirements may increase dramatically to O(n2 + 2n)
(dense matrix representation).

Last, but not least, it should be pointed out, that analogously as for the FD case, the
implicit representation of the discrete operator presented above allows one to perform
projection of the operator simultaneously with the Av operation. This means that if a
Krylov subspace method is selected to solve the discrete problem, then the projection
may be embedded into the actual solution process [96]. As shown in Chapter 6, this fact
has serious implications, referring to performance of numerical solvers.

4.3 Hybrid methods

Previous sections presented finite-dimensional projection techniques based on either the
Finite Difference Frequency Domain (FDFD) algorithm or eigenfunction expansion method.
Below a hybrid discretization algorithm is presented joining FDFD and eigenfunction ex-
pansion representation of fields and operators. It concentrates on proposing a method
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applicable to a full 3D problem that uses finite difference approximation in two dimen-
sions and eigenfunction expansion in the third dimension.

The main goal of the proposed technique is to reduce the size of the resulting dis-
crete eigenproblem and reduce the spectral radius of the emerging discrete operator. As
shown in Section 4.1.2 application of finite difference approximation in all three spatial
dimensions, necessary to model a general 3D system e.g. defined in cylindrical coordinate
system, results in the operator matrix which has a very large size as well as relatively large
spectral radius (compare Table 4.3). For instance, if we consider modeling a cylindri-
cal resonant cavity with a formulation involving e.g. two electric field components using
28× 128× 36 (r − φ− z) finite difference discretization grid then the resulting problem
size equals approximately 258040. The spectral radius of the discrete operator matrix
equals ≈ 3 · 1027. The method proposed in the following section tries develop a more
efficient projection scheme, which will allow a considerably more compact representation
of the discrete operator and significant reduction of the spectral radius of the operator.

4.3.1 Joint FDFD and eigenfunction expansion discretization
for 3D problems

So far methods of finite-dimensional mapping valid either for 2D problems or 3D problems
reducible to 2D problems (e.g. due to rotational symmetry of the structure) have been
discussed. This section presents a discretization method valid for 3D systems defined
over cylindrical coordinate system which, unlike in sections 2.1.2 or 4.1.2, do not need be
homogeneous in the φ direction (do not need to possess rotational symmetry).

Although such systems may still be described by two field components (cf. Section
2.1.2), e.g. Dr and Dz components of the electric flux density, the simple representation:

Dr(rj , φ, zi) = �Dr
i,j,n0

e(−jn0φ) (4.62)

from Section 2.1.2 may no longer be applied. Instead one should assume the following
form of the fields:

Dr(rj , φ, zi) = Dr
ij1 + (−1)Nφ−1Dr

ijNφ

+

Nφ/2∑
l=2

(
2Dr

ij(2l−2) cos((l − 1)φ)− 2Dr
ij(2l−1) sin((l − 1)φ)

)
(4.63)

Dz(r̂j , φ, ẑi) = Dz
ij1 + (−1)Nφ−1Dz

ijNφ

+

Nφ/2∑
l=2

(
2Dz

ij(2l−2) cos((l − 1)φ)− 2Dz
ij(2l−1) sin((l − 1)φ)

)
(4.64)

The above equations establish functional representation for the fields in the φ direc-
tion. A finite series is associated with every FD grid point in the r − z plane. In this
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Figure 4.13: Yee’s mesh in the r − z plane in cylindrical coordinates.

way the finite difference projection in r and z directions is joined with the eigenfunction
expansion, known from the method of moments, in the φ direction. In the above formulae
rj, zi, r̂j and ẑi define the grid points on the Yee mesh (cf. Figure 4.13):

rj = j∆r +∆r/2, r̂j = j∆r

zi = i∆z +∆z/2, ẑi = i∆z (4.65)

where: i = 1, . . . , Nz, j = 1, . . . , Nr and Nz and Nr determine the number of discretiza-
tion points in the z and r directions.

It will be shown below that also this hybrid representation allows one to develop implicit
representation of the discrete operator and consequently, the finite-dimensional projection
may be performed simultaneously with the Au operation. The implicit representation of
the discrete operator also allows one to reduce the required memory storage. If explicit
matrix representation were used the resulting matrix would have either a high bandwidth
(which would deteriorate parallel performance of the solver – cf. Chapter 5) or quasi 5-
diagonal block structure with non-zero blocks being dense matrices. This would imply
significant increment in both memory and computational cost.

One may note that equations (4.63) and (4.64) are in fact inverse real Discrete Fourier
Transforms (DFTs) in the φ direction with Fourier coefficients Dr

ijn and Dz
ijn for fixed i

and j. The discrete representation of the electric field components which follows is:

D r =
[
Dr

1,1,1, . . . , D
r
Nz ,1,1, . . .D

r
Nz,Nr ,1, . . . , D

r
1,1,M , . . . , Dr

Nz,Nr ,M

]T
(4.66)

D z =
[
Dz

1,1,1, . . . , D
z
Nz ,1,1, . . .D

z
Nz ,Nr ,1, . . . , D

z
1,1,M , . . . , Dz

Nz,Nr ,M

]T
(4.67)

where M ≤ Nφ. Clearly, the number of discretization points in the φ direction does not
have to (or even should not) equal the number of Fourier coefficients used to represent
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the appropriate fields. Usually, in order to reduce the effect of numerical dispersion (and
enhance the accuracy of computing of the Fourier coefficients), the oversampling in the
spatial domain is applied so that M < Nφ. If this is the case, then M is assumed to be an
odd number and in equations (4.63) and (4.64) it is imposed that for n = M +1, . . . , Nφ:

Dr
ijn = Dz

ijn = 0

One should also note that, with Fourier coefficients given by (4.66) and (4.67), per-
forming the inverse real DFT of length Nφ (using e.g. the FFT algorithm) gives values of
Dr and Dz at discrete grid points defined by (4.65) and for φ = φk = (k − 1)∆φ, where
k = 1, . . . , Nφ and ∆φ = 2π/Nφ.

Below an implicit definition of the discrete electromagnetic operator is given, based on
the presented hybrid representation of the functional space. In fact, the algorithm for
computing the matrix-vector product is developed, which implicitly defines the discrete
operator for which an eigenproblem is then solved. The derivation of the algorithm is
analogous as in Section 4.1.5 and also applies results from Section 4.2.2.

Given discrete field components Dr and Dz defined by the vectors (4.66) and (4.67) the
discrete representation of Dφ is computed in the proposed algorithm using the divergence
equation discretized in r and z directions using FD method:

1

∆r
[rjDr(rj , φ, zi)− rj−1Dr(rj−1, φ, zi)] +

r̂j
∆z

[Dz(r̂j , φ, ẑi+1)−Dz(r̂j, φ, ẑi)] = − ∂

∂φ
[Dφ(r̃j , φ, z̃i)] (4.68)

where:

r̃j = j∆r z̃i = i∆z +∆z/2 (4.69)

Substituting Dr(rj , φ, zi) and Dz(r̂j, φ, ẑi) with the finite series (4.63) and (4.64) and
integrating the above equation in the φ direction yields:

Dφ(r̃j, φ, z̃i) = Aijφ+Bij sin(Nφφ/2) +

Nφ/2∑
l=2

[2Cijl sin((l − 1)φ) + 2Dijl cos((l − 1)φ)]

(4.70)

where:

Aij =
1

∆r

[
rj−1D

r
i,j−1,1 − rjD

r
i,j,1

]
+

r̂i
∆z

[
Dz
i,j,1 −Dz

i+1,j,1

]
(4.71)

Bij =
2

Nφ∆r

[
rj−1D

r
i,j−1,Nφ

− rjD
r
i,j,Nφ

]
+

2r̂i
Nφ∆z

[
Dz
i,j,Nφ

−Dz
i+1,j,Nφ

]
(4.72)
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Figure 4.14: Yee’s mesh in the r−φ plane in cylindrical coordinates for the case Nφ = 8.

Cijl =
1

(l − 1)∆r

[
rj−1D

r
i,j−1,(2l−2) − rjD

r
i,j,(2l−2)

]
+

r̂i
(l − 1)∆z

[
Dz
i,j,(2l−2) −Dz

i+1,j,(2l−2)

]
(4.73)

Dijl =
1

(l − 1)∆r

[
rj−1D

r
i,j−1,(2l−1) − rjD

r
i,j,(2l−1)

]
+

r̂i
(l − 1)∆z

[
Dz
i,j,(2l−1) −Dz

i+1,j,(2l−1)

]
(4.74)

From the above equations it follows that, given coefficients Aij, Bij , Cij and Dij , we
may compute the values of the field component Dφ at the discrete points (r̃j, φk, z̃i),
where φk = (k − 1)∆φ. As we apply the Yee mesh, so the values of the magnetic field
are defined over a dual or ‘staggered’ grid, as compared to the grid used to evaluate the
electric field (cf. Figure 4.14). Consequently, we will also need the values of Dφ field
component at the grid points (r̃j, φ̃k, z̃i), where φ̃k = (k − 1)∆φ + ∆φ/2. In order to
compute these values we transform equation (4.70) in the following way:

Dφ(r̃j , φ̃k, z̃i) = Aijφ̃k +Bij cos(Nφφk/2) +
NΦ/2∑
l=2

{2 [Cijl sin((l − 1)∆φ/2) +Dijl cos((l − 1)∆φ/2)] cos((l − 1)φk) (4.75)

−2 [−Cijl cos((l − 1)∆φ/2) +Dijl sin((l − 1)∆φ/2)] sin((l − 1)φk)}
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where φk = (k − 1)∆φ. The main reason for applying the above equation is that values
of Dφ at grid points of the ‘staggered’ grid (with φ = φ̃k) may be computed using inverse
Discrete Fourier Transforms defined over the ‘primary’ grid with φ = φk.

In the next steps of the proposed algorithm of computing the matrix-vector product,
the values of the components of magnetic field intensity are computed using one of the
Maxwell’s curl equations. By applying analogous techniques as those presented above one
finds: Hr(rj, φ̃k, zi), Hφ(rj, φk, ẑi) and Hz(rj , φ̃k, zi). The last step involves computation
of the Fourier coefficients of ω2Dr and ω2Dz. This step involves performing forward
DFTs, using the values of previously computed magnetic field components.

The procedure outlined the previous paragraph is systematically summarized below.
If the input vector D (cf. equations (4.63) and (4.64)) is given in the following form:

D = [D r&D z]
T =
[
D 1

r , D
1
z, . . . , D

N
r , D N

z

]T
(4.76)

then the steps of the algorithm of computing the matrix-vector product using the implicit
operator representation are as follows (note the analogy with algorithm presented in
Section 4.1.5):

1. Compute Eφ(r̃j, φ̃k, z̃i) from the Fourier coefficients of Dr and Dz and store the
result in div r. This step involves NrNz inverse real FFTs.

2. Compute the components of Hz and Hr at the grid points (rj , φk, zi) and (rj, φ̃k, zi)
respectively associated with Eφ. Store the results in div r and div z.

3. Compute Er(rj, φk, zi) and Ez(r̂j , φk, ẑi) from the Fourier coefficients of Dr and Dz

and store the result in wtemp r and wtemp z. This step involves NrNz inverse real
FFTs.

4. Compute Hφ(rj, φk, ẑi) using Er(rj , φk, zi) and Ez(r̂j , φk, ẑi). Store the result in
vtemp r.

5. Copy vtemp r to vtemp z.

6. Compute the ‘parts’ of Fourier coefficients for ω2Dr and ω2Dz associated with Hφ,
using Hφ(rj , φk, ẑi). Store the result in w r and w z. This step involves 2 · NzNr

forward FFTs.

7. Compute the Fourier coefficients for Er and Ez from Er(rj , φk, zi) and Ez(r̂j, φk, ẑi).
Store the result in wtemp r and wtemp z. This step involves 2 ·NzNr forward FFTs.

8. Compute the components of Hz and Hr at the grid points (rj , φ̃k, zi) and (rj, φ̃k, zi)
respectively associated with Er and Ez, correspondingly. Store the result in wtemp r

and wtemp z. This step involves 2 ·NzNr inverse FFTs.
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9. Compute Hz(rj, φ̃k, zi) and Hr(rj, φ̃k, zi):

div r := div r + wtemp r

div z := div z + wtemp z

10. Compute the Fourier coefficients for Hz and Hr respectively using Hz(rj, φ̃k, zi)
and Hr(rj, φ̃k, zi). Store the results in div r and div z. This step involves 2 · NzNr

forward FFTs.

11. Compute the ‘parts’ of Fourier coefficients for ω2Dr and ω2Dz associated with Hz

and Hr respectively by using the previously computed Fourier coefficients for Hz

and Hr. Store the result in div r and div z.

12. Add the two parts of the Fourier coefficients for ω2Dr and ω2Dz:

w r := w r + div r

w z := w z + div z

As computation of the Fast Fourier Transform of length Nφ involves O(Nφ log2(Nφ))
operations, the overall computational complexity of the algorithm presented above equals
O(K) log2(Nφ), where K = 2NzNrNφ is the size of the spatial domain. (The matrix
(vector) size equals N = 2NxNrM .) One may note that this complexity is higher than
the linear complexity observed for matrices obtained using the FDFD technique. The
memory storage needed to perform the matrix-vector product consists of the workspace
needed to store vectors v (N), w (N), div (K), vtemp (K) and wtemp (K) plus a
negligible storage needed to implement the performed linear operations, where K is the
number of samples in the spatial domain (size of the spatial domain). Additionally, the

diagonal permittivity tensor
↔
ε requires up to 3K memory locations. Consequently, the

memory cost equals roughly 2N + 6K.

4.3.1.1 Spectral radius of the discrete operator

Referring to the spectral radius of the implicitly represented discrete operator it is de-
termined by: 1) the parameters of the discretization grid in r − z plane: ∆r = ∆z,
2) the number of Fourier coefficients M (cf. equations (4.63) and (4.64)) used to rep-
resent the functions in the φ direction. Once again the estimation (4.25) may be used.
Still, in this case nmax = M (and not nmax = Nφ/2). One may note that even if a fine
grid is applied in the spatial domain in order to reduce the negative effects of numerical
dispersion, application of the expansion-based representation allows one to reduce the
negative effects associated with a large spectral radius. Consequently, the convergence
of the iterative solvers is improved in this way. For example, if a four fold oversampling
is applied, e.g. M = 64 and Nφ = 256, then the above hybrid method gives a discrete
operator with a spectral radius which is 4 times smaller than for the operator obtained
using FD mapping in all three spatial dimensions.
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Projection Problem Operator Memory Cost of Spectral
method type represen cost computing radius

-tation Av product

FDFD 2D explicit 7N O(N) medium

EE 2D implicit 2K + 2N + 6
√
N O(K log(K)) small

EE 2D explicit 2N +N2 O(N2) small
FDFD 3D→2D explicit 13N O(N) medium
FDFD 3D→2D implicit 7N O(N) medium
HYBRID 3D implicit 2N + 6K O(K log(Nφ)) medium
FDFD 3D explicit > 13N O(N) large

Table 4.7: Comparison of memory and computational costs associated with differ-
ent finite-dimensional mapping techniques. In the table the problem type denoted as
‘3D→2D’, refers to problems reducible to 2D problems. N denotes the problem size, K
is the overall number of samples in the spatial domain, Nφ is the number of samples in
the φ direction, EE refers to Eigenfunction Expansion-based algorithms.

4.4 Comparison of FDFD and eigenfunction expan-

sion finite-dimensional mapping techniques

This section presents a comparison of selected numerical properties of discrete operators
obtained using different finite-dimensional mapping techniques presented in this chapter.

First, the following general remark should be made about the two discussed classes of
finite-dimensional mapping techniques: i.e. FDFD-based methods and algorithms using
functional expansions. In order to meet the requirements of large scale modeling both
approaches try to deal with the errors due to numerical dispersion.2 Still, in order
to avoid excessive memory and computational cost (which in fact may also preclude
a certain method from modeling large scale problems) different techniques have to be
applied to this end. For the FDFD-based methods an inexpensive technique of correcting
the effects of numerical dispersion is introduced, which does not increase the size of the
solved numerical problem. On the other hand, methods using eigenfunction expansion
techniques apply oversampling in the spatial domain, so that operations in that domain
are performed using a refined grid while the size of the solved eigenproblem remains
unchanged.

Referring to memory costs related to the representation (storage) of the discrete op-
erators as well as costs of computing the matrix-vector product for different proposed
finite-dimensional projection techniques, they are collected in Table 4.7. It may be noted
that the costs of computing the matrix-vector product in methods applying eigenfunction

2In the case of algorithms using functional expansions the dispersion error arises only in implicit
schemes, which operate both in space and transform domains – cf. Section 4.2.
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expansion techniques are generally higher than in method applying the FDFD technique
only. Still, due to the fact that often the problem size is smaller for the former meth-
ods than for the latter ones the computation time may become faster in the first case.
(This particularly applies if FD discretization is applied in all three spatial dimensions.)
Another general conclusion which can be drawn, is that if memory cost becomes cru-
cial (which often happens in large scale modeling) then application of implicit operator
representation results in important memory savings.

Summing up, the presented finite-dimensional projection methods meet the goals set
forth in the beginning of this chapter. They appear to be well suited for solving large
scale operator problems due to the following general features:

• The memory cost associated with storage of the resulting discrete operator is low
(i.e. linear and not e.g. quadratic).

• The cost of computing the Av product involving the discrete operator is linear or
linear-logarithmic (also less than quadratic).

• The projection methods include techniques reducing the effects of numerical dis-
persion allowing significant reduction of errors in large scale problems without in-
creasing the size of the solved problem (and the spectral radius of the discrete
operator).

• All the methods make use of implicit projection strategy which allows one to per-
form projection of the operator simultaneously e.g. with solution of the discrete
eigenproblem while using Krylov subspace methods.

The mentioned features of the proposed projection techniques are truly advantageous
while dealing with complicated, large scale eigenproblems. Consequently, the proposed
projection techniques should provide a proper base for developing high performance al-
gorithms. So far, we were focusing on the requirements such as low memory and compu-
tational complexity or reduced spectral radius to be satisfied by the proposed algorithms.
Deliberately we have not touched the last of the goals pointed out in the beginning of
this chapter, i.e. efficient parallelization in scalable systems. This means that we need
to assure that proposed numerical techniques satisfy additional requirements related to
parallel processing in scalable supercomputer systems, if they are to be applied to solving
the most complicated large scale problems. The following chapter is entirely dedicated
to consider these important issues.
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Chapter 5

Solving large scale operator
eigenproblems in scalable parallel
systems

The previous chapters defined a number of requirements which have to be satisfied by
a numerical algorithm if it is to be applied to solving complex, large scale electromagnetic
eigenproblems. Various issues crucial to a broadly understood efficiency of the algorithm
and accuracy of the computations have been discussed. Based on these guidelines a few
low-cost methods of finite-dimensional projection methods have been proposed meeting
the requirements of large scale modeling. These methods may be used jointly with modern
iterative Krylov subspace methods to solve electromagnetic boundary value problems.

Nevertheless, even if low-cost, efficient numerical methods are used certain most com-
plex problems may only be modeled using massively parallel processing, i.e. the multiple
power of a large number of processing elements working in a parallel supercomputer
architecture. This chapter addresses issues of high performance parallel computing in
the context of large scale electromagnetic modeling and tries to present factors which
determine the applicability of the discussed numerical techniques in parallel processing
environment. They refer either to finite-dimensional projection techniques or methods of
solving discrete operator eigenproblems. A number of technical issues is described dur-
ing the following discussion. Still, in author’s opinion their presentation is necessary for
understanding the problems arising in parallel computing using scalable supercomputer
systems.

The following section discusses some aspects of finite-dimensional mapping which play
an important role if the algorithms involving discrete operators and functions are to
be implemented in scalable parallel systems. The general conclusions drawn from this
discussion substantiate the choice of the operator projection methods (already presented
in Chapter 4) applied to build parallel solvers for large scale operator eigenproblems.

87
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Later on in this chapter, parallel design and implementation of the algorithms of solv-
ing electromagnetic operator eigenproblems described in Chapter 2 is presented. The
implementations of the iterative solvers are discussed jointly with the parallel designs of
matrix-vector products for the projection schemes discussed in Chapter 4, as to provide
a complete description of methods which can be used to solve eigenproblems for a wide
class of electromagnetic operators.

The parallel solvers presented in this chapter include:

• IRAM-FDFD solvers, based on the IRAM iterative process and the Finite Differ-
ence (FD) discretization of the input operator, presented in Section 4.1, valid for
modeling of 2D structures or 3D structures homogeneous in φ direction.

• IRAM-FFT solver, based on the IRAM iterative process and the implicit discrete
representation of the operator, applied jointly with the FFT algorithms to enhance
the efficiency of the method. (cf. Section 4.2)

• IRAM-HYBRID solver, based on IRAM and the hybrid method of implicit operator
projection based on FDFD and eigenfunction expansion techniques, as described in
Section 4.3.1.

The base for the implementation of all the parallel solvers is the P ARPACK library,
described in Section 8 and offering portable parallel implementation of the IRAM itera-
tive algorithm, ready for use in distributed memory systems. The tasks which have to
parallelized independently include:

• The matrix-vector product operation for the matrix operator discretized using the
FD mapping technique with an explicitly or implicitly stored operator matrix.

• Two-dimensional backward and forward Fast Fourier Transforms.

• The matrix-vector product in the IRAM-FFT algorithm which requires calculation
of the appropriate inner products, involving computation of 2D FFTs.

• The matrix-vector product for the IRAM-HYBRID technique.

5.1 Discussion of discretization aspects in scalable

parallel systems

Before presenting any particular parallel implementations associated with some finite-
dimensional mapping strategy it is worthwhile to make a few remarks on the relations be-
tween the efficiency of parallel matrix computations and the choice of a finite-dimensional
mapping technique for a given operator.
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Let us first define the main parameters for measuring performance of a given parallel
algorithm. One of the main goals of parallel processing is reducing the wall-clock com-
putation time. Consequently, the most substantial quantity which we usually want to
assess is the speedup of computations versus the number of applied processing elements.
The speedup is usually defined as:

Srelative =
T1

TP
(5.1)

where T1 is the execution time of the parallel program on one processor and TP is the
execution time of the same parallel program on P processors. The above definition is
known as a definition of a ‘relative speedup’, because it takes as a reference the single-
processor execution time of the investigated parallel algorithm. The absolute value of
the speedup is obtained if T1 from formula (5.1) is taken as the execution time of the
best-known sequential algorithm. Another parameter, closely related to speedup is the
efficiency of a parallel program:

Erelative =
Srelative

P
(5.2)

where P is the number of processing elements involved in the computation. The two
above parameters most clearly determine the gain from applying parallel processing to
solve a given computational problem.

Another important reason for applying parallel processing is the possibility of dis-
tributing problem data, which may not fit into memory of a single, sequential computer,
across a large number of local memories of the processing elements. In this way, thanks
to parallel processing, one may apply a given algorithm to more complicated, ‘large scale’
problems of numerical modeling.

The essential factors which affect performance of a solver in a parallel system and may
be directly controlled during design of a numerical algorithm include:

• parallel domain decomposition (or parallel mapping), determining which part of data
(e.g. of matrix elements) will be stored by which processing element and which parts
of data (often related to geometrical subdomains of the problem domain) will be
processed by specific processors (cf. Figure 5.1),

• data and computation locality, which determines what computations may be per-
formed by each processing element (PE) using its own data, without the necessity
to refer to data stored by other PE.

• inter-processor communication, determining the scheme and amount of data to be
exchanged between the processors in order to complete the computations,

• load balancing which refers to the differences in the amount of processing performed
by each of the PEs involved in the computation. Clearly, the more balanced is the
workload among the processors, the better overall performance may be achieved.
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PE1 PE2 PE3 PE4

Figure 5.1: A sample parallel decomposition of a computational domain across processing
elements (PEs) for a problem of modeling of a dielectric waveguide.

Designs of the numerical methods performing various matrix calculations, such as com-
puting the matrix-vector product, matrix-matrix product or deriving matrix transposi-
tion, are determined primarily by the format of the input matrix operator. Application
of these algorithms in the environment with multiple processing elements (PEs) requires
developing suitable parallel mapping techniques of both data and computations to the
processors in order to achieve the main goal of parallel processing, i.e. minimization of
the total execution (wall-clock) time. Although these parallel mapping techniques cer-
tainly depend on the representation of the input matrix operators and the specifics of the
matrix computations to be parallelized, the basic two strategies will certainly be applied:
1) Place the computational tasks on different processing elements in order to enhance
concurrency, 2) Place the computational tasks which make use of the same data on the
same processor to increase the locality.

These strategies may sometimes turn out very conflicting which would require trade-
offs in design of the parallel mapping techniques. At the same time, an inadequate
exploitation of any of these strategies will usually reduce or even eliminate the gain in
performance of the numerical algorithms implemented in a parallel environment. This fact
is particularly true for scalable parallel systems where often a large number of processing
elements is involved in the computations.

Let us consider the simplest, still up to now the most important parallel mapping tech-
nique, i.e. the static domain decomposition technique. In this mapping method all the
data (e.g. matrix or vector elements or a grid in the spatial domain) as well as compu-
tational tasks are distributed among the processing elements in an fixed manner. In the
method the properties of the domain being decomposed determine whether a computa-
tional task may be efficiently mapped to the available processing elements. Concentrating
on the techniques of distributing matrix operators let us discuss the specifics of parallel
decomposition for some classes of matrices:
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1. Matrices with a block structure. In this case an ideal locality of data and computa-
tions (within a single PE or a group of PEs) may be achieved if all the elements of
a given block in the matrix are local to a single processor or a group of processors.
The most favorable case occurs if the number blocks of the matrix is a multiple of
the number of PEs and all the blocks have equal sizes. Then all data (e.g. neces-
sary to perform the matrix transposition) may be stored locally and the amount of
computations may be perfectly balanced across the processors. The problems with
balancing the computations will occur if the sizes of the blocks are not equal and/or
the number of processors does not correspond directly to the number of the matrix
blocks. In this case, the assignment of matrix blocks to PEs has to take into ac-
count the numerical complexity of the operations performed on each block in order
to obtain balancing of the workload. (Still, the workload balancing may cause an
imbalance in the local storage requirements.) The question that emerges is: Which
operators may be discretized to produce an operator matrix with a block structure?
The first group of such operators are scalar operators acting on multidimensional
vector fields. Separating the field components in a finite-dimensional representation
may give a block structure of the resulting matrix. The other group of operators
may be defined as operators modeling short-range, local interactions in a number
of disjoint subsystems. Applying e.g. the Finite Difference (FD) discretization may
then result in a block-structured matrix or a banded matrix. [43]

2. Banded matrices also have a very favorable structure while investigating their par-
allel distribution using domain decomposition method. In most cases the amount
of non-local data which is used by the processing elements is of order O(b2) or O(b)
(depending on the mapping and computational task), where b is the matrix band-
width. If the bandwidth is small relatively to the matrix size then the majority
of necessary data is stored locally by each PE and most of the computations in-
volve only local data. Banded matrices are frequently obtained by using the Finite
Difference (FD) discretization scheme. The FD technique has also the advantage
of producing a highly regular matrix with an even distribution of its non-zero ele-
ments. This has a very positive impact on workload balancing which may be easily
achieved by applying regular domain decomposition. Figure 5.2 presents a matrix
obtained from discretizing the 2D Laplace operator with FD technique. The Fig-
ure also shows that one may easily control the matrix bandwidth by changing the
ordering of the grid (the ordering of matrix rows and columns). The importance of
bandwidth is also illustrated in Figure 5.3 which shows speedup for parallel compu-
tation of the matrix-vector product for a matrix constructed from FD discretization
of 2D Laplace’s operator. The matrix of size N = 40000 had highly regular struc-
ture and the bandwidth of 200. If we apply an inter-processor communication
scheme, which does not take into account the banded character of the matrix, the
speedup is very poor. (This is the speedup we should expect to obtain if a naive
parallelization strategy is applied for computations involving non-banded matri-
ces). The speedup improves considerably if we use an optimized inter-processor
communication scheme, exploiting the structure of the matrix. The details of the
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mentioned schemes are discussed in Section 5.3.
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Figure 5.2: Reducing the bandwidth of a discrete 2D Laplace operator by changing the
grid ordering.

3. Sparse, non-banded matrices are the class of matrices which may be encountered
if the Finite Element Method (FEM) is used to discretize the operator’s domain.
Figure 5.4 shows a typical form of a matrix obtained using the FEM. It presents
the matrix for a 2D Laplace operator on a coarse mesh. Although, as seen in the
figure, the matrix is sparse, the irregular distribution of their non-zero elements may
result in problems while seeking an efficient parallel mapping using static domain
decomposition. The first problem is that potentially large amount of non-local
data has to be used by each processing element in order to perform parallel matrix
operations. One of the solutions to this situation is designing specific procedures of
accessing or communicating non-local data in order to avoid bottlenecks and reduce
the number of non-local data accesses. The other problem is the irregular non-zero
element distribution which may cause an imbalance in the workload across the PEs.
Summing up, in the case of sparse, non-banded matrices the static parallel domain
decomposition schemes may turn out unsuitable if high performance in a scalable
parallel execution environment is to be achieved (cf. the previous example – Figure
5.3).
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Figure 5.3: Speedup in the parallel execution of a matrix-vector product, involving a
Finite Difference sparse matrix for non-optimized and optimized inter-processor commu-
nication. The matrix size equaled N = 40000 and its bandwidth equaled 200. The tests
have been performed in the IBM SP2 parallel system.
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Figure 5.4: A matrix obtained from discretization of the 2D Laplace operator using the
Finite Element Method on a coarse mesh.

4. Dense matrices appear when entire domain or entire subdomain expansion dis-
cretization techniques are used. (The example of such technique – the Method of
Moments representation will be described in one of the following sections of this
chapter.) The parallel decomposition of dense matrices may potentially result in
very large amount of non-local data which has to be accessed by the processing
elements while performing such operations as e.g. matrix transposition. There is
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usually little that can be done to avoid a great deal of computations involving non-
local data. Still, in order to maintain high level of parallel performance one may
increase the computation time involving solely local data as compared to the time
spent on accessing or using non-local data by applying appropriate scaling of the
problem size. Unfortunately this cannot be done if the complexity of operations in-
volving non-local data is higher than the numerical cost of the local computations.
The positive feature while dealing with dense matrices is that the workload balance
may be achieved by applying a simple regular domain mapping scheme.

Summing up, the characteristics of different types of matrices obtained in various
methods of finite-dimensional mapping of linear operators may affect favorably or ad-
versely the performance of parallel algorithms involving operating on distributed matri-
ces. Within the limits of the static domain decomposition parallel mapping techniques
the positive features of matrices to be distributed include block structure, sparsity of
the matrix, relatively narrow matrix bandwidth, while the negative ones include irregu-
lar non-zero element distribution in sparse matrices or dense non-zero element packing.
Some of these negative factors may even preclude the static domain decomposition tech-
nique if an efficient parallelization of a given computational problem is to be achieved.
In this case different parallel mapping techniques have to be applied. At this point the
following mapping schemes may be mentioned:

• load balancing algorithms which include: probabilistic load balancing orcyclic map-
ping – the static methods which exploit structure of the computations and data to
distribute the domain of computations and may be used e.g. to problems involving
matrices with an irregular distribution of non-zero elements or irregular distribu-
tion of computations; dynamic load balancing in which the parallel mappings change
during execution of the algorithm – this method may be applied e.g. in the multigrid
algorithms (cf. [10], [85]).

• task scheduling algorithms which explore the potential for functional parallel decom-
position of the computational tasks and may be applied to obtain parallel mapping
of problems with FEM-based discretization, multigrid approach, etc.

A much broader discussion of parallel mapping strategies with various case study
presentations may be found in a book by Foster [43] or the materials from the Edinburgh
Parallel Computing Centre [76] (in which mainly static domain decomposition techniques
are described).

This section presented general issues concerning parallel mapping techniques of discrete
matrix operators and related computational tasks. In the above description, some poten-
tial problems occurring during parallel mapping of different classes of matrices obtained
during projection of linear operators were discussed. In the above approach we tried to
answer whether a suitable parallel mapping may be found for a given type of matrix.
Still, these general guidelines may be applied in a somewhat inverse approach. This sec-
ond approach consists of exploring the possible parallel mapping techniques for a given
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parallel system architecture before selecting projection and finite representation scheme
for a given input linear operator. In this way the finite-dimensional representations of
operators which will not fit any efficient parallel mapping technique may be immediately
excluded.

With this general conclusions and guidelines one may now turn to discussion of more
specific and to a certain extent technical issues related to parallel design of selected
numerical methods.

5.2 Parallel design of the Arnoldi factorization

This section discusses parallel design features of the basic Arnoldi factorization proposed
in this library by Maschhoff and Sorensen ( [69]). This design has been applied to
develop P ARPACK (Parallel Arnoldi Package) library (described in Appendix B), which
is a portable collection of routines providing parallel implementations of the Implicitly
Restarted Arnoldi Method (IRAM).

If, once again, the formula for the Arnoldi factorization is examined:

AV k = V kH k + f ke
T
k (5.3)

where the symbols have the same meaning as in Section 3.2.1, then the parallelization
scheme illustrated in Figure 5.5 may be described as follows:

A

= +

HV Vk k fk k eT
k

Figure 5.5: Parallel block data distribution during the Arnoldi factorization.

• the k × k upper Hessenberg matrix H k is replicated on every processor,

• the matrix V k is block-distributed across a one-dimensional processor grid,

• f k and workspace are distributed accordingly,

• parallel data distribution in the input matrix A is chosen by the user. Still, as
the outcome of the matrix-vector product has to be distributed analogously as the
matrix V k, the decomposition of the matrix will typically be commensurate with
this block distribution.
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According to the conclusions obtained in Section 3.2.1.3, the memory storage re-
quirements for the applied data distribution equal nlocO(l) +O(l2) per processor, where
nloc ≈ n/P (P equals the number of processors) and l = k + p equals the sum of the
number of eigenvalues to be found and to be filtered-out.

A crucial aspect of parallel implementation in distributed memory systems is the size
of messages communicated between the processors during the execution of the algorithm.
Referring to P ARPACK (cf. Appendix B) and Arnoldi factorization there are only two
communication points. One of them is computation of the norm of the distributed vector
f k and the other is the orthogonalization of f k to V k using the MGS algorithm, where
the global scalar products of a given vector with the columns of the matrix V k have to be
computed. In the MPI implementation these global norms and sums are calculated using
a global reduction procedure MPI Allreduce(.). For a single iteration in the Arnoldi
factorization, the overall size of elements communicated across the processors is extremely
low and is of order O(Pk), where P denotes the number of processors and k equals the
number of eigenvalues to be found.

A certain kind of trade-off may be observed in the parallelization strategy applied in the
IRAM iteration. As all the operations on the upper Hessenberg matrix H k are replicated
on each processor, the communication of the results is not needed. Nevertheless, this
introduces some redundancy to the algorithm that may lead to a serial bottleneck as the
size k of the matrix increases. This may eventually cause the lack of scalability of the
method.

According to the results obtained in Section 3.2.1.3 the numerical complexity of the
parallel version of a single update in a p-step IRAM algorithm equals O(p2nloc) or (if
p = O(k)) O(k2nloc) per processor, where nloc is the local dimension of the problem.

Clearly, in the above estimations the costs of performing the parallel matrix-vector
operation and storing the operator matrix, which largely depend on the choice of finite-
dimensional mapping method, have been excluded. This problem will be addressed in
the following sections.

5.3 Parallelization of the FDFD methods

This section presents implementations of two parallel eigensolvers based on the Implicitly
Restarted Arnoldi Method (IRAM), for operators discretized using the Finite Difference
Frequency Domain method. First of the solvers implements the operator problem dis-
cussed in 4.1.1, applicable to modeling waveguiding structures, while the other one im-
plements the operator eigenproblem defined for 3D electromagnetic systems possessing
rotational symmetry (cf. Section 4.1.2).

The implementations are based on calling the P ARPACK library routines (cf. Ap-
pendix B) which perform the IRAM iteration. Consequently, according to the description
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Figure 5.6: Schematic of a block distribution among the processors of a quasi five-diagonal
sparse matrix and the corresponding vector. The figure shows that in order to calculate
the matrix-vector product with such distribution the grayed parts of the vector v need
to be communicated between the processors (processes).

of P ARPACK from Appendix B, the implementation of the solver follows the reverse
communication scheme shown in Figure A.1. Therefore, the implementation of the solver
may concentrate on only two aspects: 1) Defining parallel data distribution, which in-
cludes distribution of the vectors and the discrete operator and 2) Implementing the
parallel operation of matrix-vector product which corresponds to the applied parallel
data distribution.

5.3.1 Implementation of the matrix-vector product in parallel

This section concentrates on describing the parallel implementation of the matrix-vector
product involving discrete operator used in modeling 2D waveguiding structures. As
discussed in Section 4.1.1 the matrix obtained in the FDFD mapping applied is a highly
sparse matrix with very regular structure. Consequently, a simple parallel block data
distribution scheme may be applied. In this distribution each of the processors (processes)
stores a specific range of rows of the operator matrix and a corresponding range of
elements of the input vectors. This has been illustrated in Figure 5.6.

The matrix presented in the Figure shows the discretized differential operator discussed
in Section 4.1.1. With most of the non-zero elements located on five diagonals, the pre-
sented distribution minimizes the inter-processor communication necessary to compute
the matrix-vector product. The regions of the input vector v which have to be commu-
nicated between the pairs of neighboring processors have been shown in the Figure as
grayed regions. In our example, as the matrix (and the vector) size equals 39700, the
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number of the vector elements to be communicated between each pair is approximately
400, which equals the doubled number of discretization points in the x direction. This
fact is explained, if one recalls the ordering of field samples in the input vector:

H =
[
Hx

1,1, H
y
1,1, . . . , H

x
Nx,1, H

y
Nx,1

, . . . , Hx
Nx,Ny

, Hy
Nx,Ny

]T
(5.4)

where Nx and Ny are the number of discretization points in x and y direction respectively.
Then the finite (central) difference operator corresponding to the first derivative in the y
direction is reflected in the operator matrix by off-diagonal elements located at a distance
of 400 elements from the main diagonal. Note that ordering:

H =
[
Hx

1,1, . . . , H
x
Nx,Ny

, Hy
1,1, . . . , H

y
Nx,Ny

]T
(5.5)

is unsuitable in the context of parallel processing, as due to the coupling of both field
components in the initial operator it would result in a matrix with a dramatically in-
creased bandwidth, which would imply significantly increased inter-processor communi-
cation costs.

If an explicit matrix storage is used then, in order to reduce the memory storage
cost of the matrix, the following ‘hybrid’ type of storage is applied. The five diagonals
(containing 95% of the non-zero elements) are stored separately in the 5 × n matrix
and the remaining 5% of the elements are stored in the Compressed Sparse Row (CSR)
format. (The irregularities in the structure of the matrix are due to boundary conditions
– cf. Section 4.1.) Assuming that 5n ≈ 0.95nnz, where n is the matrix size and nnz
is the number of non-zero matrix elements, the resulting storage requirements equal
approximately 0.95nnz + 2 · 0.05nnz + n + 1 = 1.05nnz + n + 1 elements. In a more
sophisticated approach the implicit matrix representation is applied, which does not
require storage of matrix elements. Still, even if stored implicitly, the discrete operator
retains its properties e.g. its bandwidth.

As already mentioned, in order to complete the operation of the matrix-vector product
with each of the processing elements computing the local part of the outcome some non-
local elements of the input vector need to be communicated. The number of vector
elements to be communicated equals the bandwidth of the matrix (understood as the
maximum difference between the row indices for non-zero elements located in the same
column). It the example this bandwidth equals 400. Consequently, only 400 elements
have to be communicated as to enable every processor to compute its part of the matrix-
vector product (cf. Figure 5.6). In consequence, no collective communication routines
are necessary and a simple two-step inter-processor communication scheme shown in
Figure 5.7 may be used. This figure shows how the necessary parts of the input vector
v are communicated using a series of simple blocking send and receive procedures. In
our example the overall size of the data communicated between the processors equals
approximately (P − 1) · 0.01n elements, as 400 = 0.01 · 40000 ≈ 0.01n. This means the
size of communication equals one-hundredth of the vector size. Clearly, the presented
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Figure 5.7: Two-step communication scheme used in the parallel matrix-vector product
calculation.

scheme of communication may be applied to arbitrary banded matrices provided that
b < (2 · n/P ), where b is the bandwidth of the matrix of size n, block-distributed among
P processors. If this condition is not satisfied more complicated schemes have to be
applied involving not only pairs of neighboring processors.

5.3.2 FDFD operator matrix customized for parallel data dis-

tribution

The previous section presented a parallel design of the matrix-vector product in the
case of the matrix obtained with the FDFD discretization method. The description
referred to the discrete operator obtained from differential operator given by (2.42) used
for modeling 2D waveguiding structures. The second of the parallel eigensolvers using
IRAM and FDFD method implements the operator problem defined by equations (A.16)
and (A.17) which may be used to model 3D systems with rotational symmetry and for
which boundary conditions are commensurate with the grid defined by the cylindrical
coordinate system.

The parallel design of the matrix-vector product is entirely analogous as in the case
of the previously discussed solver, including the inter-processor communication scheme
shown in Figure 5.7. This is due to a similar pattern of distribution of non-zero elements
of the operator matrix. The left picture in Figure 5.8 shows an example of a matrix
obtained by discretizing operator S given by equation (2.52).

In this case, the form of the matrix may be further customized as to improve the reg-
ularity of the distribution of the matrix non-zero elements and, in consequence, enhance
the balancing of parallel data distribution and facilitate parallel computation.
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Figure 5.8: Modification of the initial operator matrix by inserting all-zero rows and
columns.

One may note, that due to boundary conditions the regular 11-diagonal structure of
the matrix (observed for rows corresponding to grid points located far from the bound-
ary) is spoiled by the applied e.g. homogeneous Dirichlet boundary conditions. There
are still 11 non-zero elements in a row, but they are located at various distances from
the main diagonal (– a tapered end appears). To overcome this problem one may apply
the idea based on inserting into the initial matrix rows and corresponding columns con-
taining only the zero elements. The inserted elements correspond to the points in the
discretization grid zeroed due to the applied boundary conditions. In the initial approach
the elements are excluded from the discrete representation of field, while in the modified
approach they are included in this representation. The main consequence of applying the
mentioned modification is the further regularization of the matrix structure. Recalling
the example of 2D Laplace operator from Figure 4.5 one notes that the matrix rows and
columns corresponding to the zeroed grid points are removed. In the proposed approach,
instead of excluding the rows and columns they are simply replaced by all-zero rows and
columns. One has to note that by inserting all-zero rows and columns zero eigenvalues are
introduced to the operator spectrum. In general, this may deteriorate convergence of the
Krylov subspace methods (cf. [100]). Still, the numerical experiments show that for the
considered class of problems, the performance of the Implicitly Restarted Arnoldi Method
(IRAM) is not affected if we apply the discussed technique of matrix regularization.

Figure 5.8 shows the form of the initial matrix (on the left) and the modified matrix
with inserted zero rows and columns (on the right). While the bandwidth of both matrices
is the same, the number of non-zero matrix diagonals approaches the value of bandwidth
for the first case and equals exactly 11 for the second matrix. This situation occurs for
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any size of the given matrix.

It has also to be stressed that in the case of operators and boundary conditions which
are more sophisticated than the basic 2D discrete Laplace’s operator with homogeneous
Dirichlet boundary conditions the simple insertion of zero rows and columns is no longer
a valid approach. Instead, the appropriate boundary conditions are imposed during
construction of the discrete operator. This may be conveniently performed within the
implicit projection scheme, which allows one to force given homogeneous/inhomogeneous
Dirichlet/Neumann conditions on appropriate elements of the input vector during the
matrix-vector product operation. For instance, if we consider the operators HzrotEφ

and HzrotEr from the left hand side of equation (4.21) we apply the desired boundary
conditions by e.g. zeroing operator entries corresponding to elements located on the top
and side boundary walls, respectively. So, in each of the ‘partial’ operators the appro-
priate boundary conditions are imposed separately (i.e. no vector elements are globally
zeroed while performing the matrix-vector product).

Clearly, if the information on the discrete operator is passed to the solver only via the
matrix-vector product (as in the case of Krylov subspace methods) this implicit scheme
may be applied during numerical solution and, consequently, the appropriate conditions
may be imposed ‘on the fly’. One recalls that including vector elements corresponding
to points located on the boundary, where Dirichlet condition is imposed is redundant are
causes a slight increment in the size of the problem being solved. Nevertheless, a signifi-
cantly simpler parallel algorithm of computing the matrix-vector product emerges. First
of all, the sequential part of the algorithm executed by each of the processors is simplified.
Secondly, in this case only 10 vector elements (instead of the entire bandwidth of ele-
ments) need to be communicated between each pair of neighboring processing elements.
This trade-off allows one to obtain higher performance of the numerical solver.

5.4 Parallel design of methods using eigenfunction

expansion techniques

This section presents a design of parallel algorithm which uses the projection technique
based on eigenfunction expansion, presented in Section 4.2 in order to solve the given
operator eigenproblem using the Implicitly Restarted Arnoldi Method, implemented in
the P ARPACK library (cf. Appendix B). The salient feature of the applied projection is
that the operator is represented implicitly, resulting in reduced storage requirements and
allowing much more efficient implementation of the matrix-vector product operation. In
fact, as shown below due to this implicit representation the projection of the operator is
embedded in the eigenproblem solution process.

In the same way as in the previous section, the implementation of the solver is based on
the reverse communication scheme (presented in Figure A.1) in which calls to P ARPACK
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Figure 5.9: Schematic of parallel data distribution in matrix-vector product design for the
DFT-based operator and function representation. The dashed lines mark the block data
distribution pattern among the processors. Calculation of the matrix-vector product is
performed in a series of steps: A – rearranging a 1D vector in the form of two 2D matrices,
B – performing two parallel 2D backward FFTs, C – performing linear transformation T
of the two fields in the space domain, D – performing two parallel 2D forward FFTs, E
– rearranging the fields in the form of a 1D vector. Compare also Section 4.2.2.

library routines (mainly the pdnaupd() routine) performing the Arnoldi factorization are
followed by calls to user-supplied routines calculating the matrix-vector product.

The following section presents the parallel implementation of the matrix-vector prod-
uct jointly with the description of the parallel distribution of the elements of the input
vector.

5.4.1 Parallel implementation of the matrix-vector product us-

ing two-dimensional Fast Fourier Transform

Assuming that the domain of the given linear operator T is the space of 2D vector fields
�H = (Hx, Hy) where Hx, Hy ∈ L2([0, b] × [0, a]) the following representation for the
functions in this domain has been defined in Section 4.2.1:

H = [cx11, c
y
11, c

x
12, c

y
12, . . . , c

x
mn, c

y
mn]

= [(Hx, hx11), (H
y, hy11), (H

x, hx12), (H
y, hy12), . . . (H

x, hxmn), (H
y, hymn)] (5.6)
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Figure 5.10: Idea of the parallel backward two-dimensional FFT algorithm design. The
scheme of performing a forward 2D FFT is entirely analogous. In the above example the
field components are represented in the transform domain by 10 Fourier coefficients in
each direction. Due to applied oversampling these field components are represented on a
256× 256 grid in the spatial domain.

whereH is a finite representation for the vector field �H = (Hx, Hy), cxij and cykl are Fourier
coefficients defined by appropriate inner products and {hxij} and {hykl} form orthonormal
bases in the L2([0, b]× [0, a]) functional space.

As described in Section 4.2.2, calculating the matrix-vector product in the case of the
discussed representation may be performed using an efficient method which dramatically
reduces the computational cost of this operation, as compared to the classical approach
used in the Galerkin Method (GM). In this unorthodox approach the operation of calcu-
lating matrix-vector product involves three steps: 1) calculating the backward 2D FFTs,

2) calculating the T �H product in the spatial two-dimensional domain and 3) calculating
forward 2D FFTs. This has been illustrated in Figure 5.9. This Figure also shows the
main idea of parallelization of this matrix-vector product, which is based on block dis-
tribution of the input elements of the vector H , given by the equation (5.6). In other
words, each processor stores a range of rows of the matrices of coefficients [cxij ] and [cyij ].
The number of rows stored by each processors is balanced, as to assure a similar workload
for all the processors. After completing the computation of the matrix-vector product
each processor stores the same range of rows of the Fourier coefficient matrices for the
T �H field.

In Figure 5.9, it may also be noted that after computing the two-dimensional backward
FFTs, the elements of the matrices Hx and Hy are block distributed by columns and not
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by rows. This is the effect of the parallel design of the two-dimensional FFT algorithm.
Let us look in more detail at the parallel algorithm of computing the backward two-
dimensional FFT. The schematic of this operation has been shown in Figure 5.10. The
computation involves three steps:

1. As the matrices (from which only one was shown for simplicity) of the Fourier coeffi-
cients are distributed by rows, each processor computes a backward one-dimensional
FFT in the x-direction for a locally stored range of rows.

2. In order to perform the backward one-dimensional FFT in the y-direction the pro-
cessors need to have access to a full range of coefficients from specified columns.
Consequently, a parallel transposition of the distributed matrices obtained after
completing the backward FFTs in the x-direction has to be performed. This oper-
ation involves mainly the inter-processor communication, as each processor has to
send (P − 1) blocks of the locally stored part of the matrix and has to receive also
(P − 1) different blocks from other processors. In the MPI implementation of the
solver this operation may be performed by using a high-level collective communi-
cation routine MPI Alltoall(.) (or MPI Alltoallv(.) for non-equal sizes of the
transmitted matrix blocks) which sends from all the processors to all the proces-
sors the specified blocks of data. Clearly, this operation may also be performed by
using simple send and receive operations by scheduling these operations appropri-
ately. Still, if the high-level message-passing routine is applied, the programming
complexity is passed to the library implementation. Another advantage of such an
approach is that we may achieve better performance if a native implementation of
the MPI library, which optimizes collective communication routines for a specific
interconnection network topology, is applied in a given testing platform. In the ac-
tual implementation this approach has been successfully used, producing a highly
efficient parallel routine as shown in Chapter 7.

3. After the transposition each processor computes a one-dimensional FFT in the
y-direction for a locally stored range of columns.

This completes the parallel operation of computing the two-dimensional FFT. One
may ask whether the elements of the output matrices should be block distributed among
the processors by rows rather than by columns. The answer is negative. The main reason
is that there is no need to perform an extra transposition operation (which involves a
considerable amount of inter-processor communication) in order to obtain a parallel block
distribution by columns. As may be seen from Figure 5.9, after computing the backward
2D FFT and performing the T �H operation a forward 2D FFT is performed. During
the forward 2D FFT the parallel block distribution by rows is restored. The forward
FFT involves analogous steps as those shown in Figure 5.10, namely: 1) Computing one-
dimensional FFTs in the y-direction, 2) Performing a parallel matrix-transposition using
the MPI Alltoallv(.) routine, 3) Computing one-dimensional FFTs in the x-direction.

By reversing the order of computing one-dimensional FFTs, two unnecessary (and
costly) transposition operations are avoided. The numerical tests performed by the author
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comparing the two versions of the algorithm for computing the matrix-vector product –
the one described above and the older serial implementation which performed additional
transpositions (applied e.g. in [78]) show that for a single-processor execution the first
algorithm was by about 30% faster than the second serial algorithm. Even the overheads
due to initiating the MPI communication and additional computations needed to establish
the parallel data distribution scheme did not prevent the parallel algorithm from running
faster on one processor than the second algorithm. This fact implies that the execution
times of the solver, given in [78] may be further reduced by up to 30%.

So far nothing has been told about the operation T �H performed in the spatial domain
during the matrix-vector product. This step is entirely dependent on the form of the
operator T. Still, in many applications this operation may be completed in a linear
time with respect to N = Nx · Ny, where Nx and Ny denote the FFT lengths in the
x- and y-directions respectively. More details are given in the next chapter, presenting
applications of the proposed eigensolvers.

5.4.2 Numerical and memory complexity of the method

In this section the numerical and memory complexity of a single p-step update of the
IRAM algorithm involving the FFT-based matrix-vector product will be investigated.
Applying the results from Section 3.2.1 and Chapter 3, Section 4.2 one may estimate the
overall memory storage needed by the parallel solver as the sum of the storage needed by
the IRAM procedure ((N/P )·O(k)+O(k2)) and the memory required in the matrix-vector
product computation (O(2K/P + 2N/P + 6

√
K)), where P is the number of processors,

k is the number of eigenvalues to be found (p = O(k)), K = Kx · Ky, where Kx and
Ky denote the FFT lengths in the x- and y-direction respectively and N is the problem
size. (N = Nx ·Ny, where Nx and Ny denote the number of expansion functions used to
represent the functions in the respective spatial dimensions.)

The numerical complexity of a single update involves the time cost of performing the
Arnoldi factorizations (O(p2N/P )) and the cost of computing p matrix-vector products
which equals O(pK/P logK). The overall cost is given by the formula:

O((p2N + pK logK)/P ) = O((k2N + kK logK)/P ) (5.7)

with all the symbols having the same meaning as above.

Another aspect which has to be addressed is the size of messages communicated in
the algorithm which in this case is dominated by the size of the messages communicated
during the matrix-vector product computation. In a single matrix-vector product the
communication occurs during the two transposition operations. The size of the commu-
nicated data equals O((KxNy + KyNx)(P − 1)/P ) elements. Consequently in a k-step
IRAM algorithm the communication size equals:

O(p(KxNy +KyNx)(P − 1)/P ) = O(p
√
KN(P − 1)P ) (5.8)
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Figure 5.11: Parallel data distribution applied to a cylindrical domain in the IRAM-based
hybrid eigensolver.

assuming that Ky = O(Kx) and Ny = O(Nx).

5.5 Parallel design of the IRAM eigensolver exploit-

ing the hybrid projection method in 3D space

Once again the Implicitly Restarted Arnoldi Method (IRAM) implemented in the paral-
lel P ARPACK library is used to solve the problem for the discrete operator developed
in Section 4.3.1. The projection method applied to construct the implicitly represented
operator is a hybrid technique based on FD discretization in the r − z plane and eigen-
function expansion in the φ direction. The parallel distribution of the problem domain
is shown in Figure 5.11. Each of the processing elements (PEs) stores data enclosed in
a cylindrical ring: [ri, ri+1] × [0, 2π]× [zmin, zmax]. If the number of discretization points
in the r, φ and z directions equals respectively Nr, Nφ and Nz then the local size of the
problem for each processing elements equals roughly Nz ·Nφ ·Nrloc, where Nrloc ≈ Nr/P
and P is the number of processors.

The proposed parallel data distribution implies that very little inter-processor com-
munication is required to compute the matrix vector product S v (S is the operator
developed in Section 4.3.1). Unlike in the case of the algorithm presented in the previous
section where computation of 2D FFTs involved serious communication, the computation
of 1D Fast Fourier Transforms in the φ direction for the currently discussed method does
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not require any inter-processor communication at all. Also in the case of applying finite
difference operator in the z directions (referring to derivatives in the z direction) to vec-
tor elements no communication is required. The only operation when the inter-processor
communication is required is applying the finite difference operators in the r direction
(corresponding to derivatives in the r direction) to the vector elements. Consequently,
Nz elements have to be communicated between each pair of the neighboring processors.
The overall communication size equals P ·Nz which is considerably less than the problem
size N = Nz ·Nφ ·Nr.

The memory and computational cost for the algorithm may be easily assessed if the
results from Section 4.3.1 are exploited. The memory cost equals 5Nloc ≈ 5N/P and the
computational complexity equals O(Nloc log2(Nφ)) = O(N log2(Nφ)/P ).
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Chapter 6

Application and validation of the
algorithms

The previous chapters discussed a number of key factors determining the computational
cost and performance of methods of solving operator boundary value problems in the
context of large scale numerical modeling. Different requirements, to be satisfied by the
numerical techniques, have been pointed out and according to them a number of low
cost numerical algorithms have been proposed. This chapter aims at constructing nu-
merical methods for solving selected ‘real life’ electromagnetic problems. Before we turn
to describing specific numerical procedures, capable of solving certain electromagnetic
boundary value problems, we should define what are the general performance character-
istics of the solvers we want to obtain. These characteristics may be summarized in terms
of an ‘ideal algorithm’.

An ‘ideal numerical algorithm’ for solving electromagnetic boundary value problems
can be characterized by the following features:

• Linear (O(N)) memory and computational complexity.

• As small as possible problem size N .

• Accuracy adequate for a given electromagnetic application.

• Good scalability in parallel distributed memory systems.

According to the conclusions drawn in all the previous chapters, the ‘ideal algorithm’
is clearly the algorithm which is best suited for large scale electromagnetic modeling,
reaching high, scalable performance if applied to complicated problems of computational
electromagnetics.

Below we construct numerical solvers composed of different ‘bits’ already developed
in Chapters 2, 3, 4 and 5, i.e. we apply derived operator formulations, presented eigen-
problem solution algorithms and proposed projection techniques, together with discussed
parallelization strategies to arrive with numerical techniques suitable for solving specified
problems.

109
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We will try to answer whether and/or to what extent the designed techniques meet
the characteristics of an ‘ideal algorithm’ defined above. This will also show whether the
developed techniques are adequate to be used in large scale electromagnetic modeling.
Below we present the results of performed numerical tests which validate the proposed
solvers. The discussion of parallel performance is postponed until Chapter 7.

6.1 Modeling waveguiding structures

This section focuses on presenting application of the proposed numerical techniques to
finding modes in dielectric waveguides. The operator eigenproblems for waveguiding
structures to be used in this part of the work have been formulated in Section 2.1.1.
They provide examples which generate medium-size computational problems, as com-
pared to problems presented in Section 6.2. Nevertheless, even for these relatively simple
modeling examples, advantages of the proposed algorithms over some classical meth-
ods may be observed (cf. Section 7.4). The common feature of these eigenproblems is
that the operator eigenvalues are squared propagation constants and the corresponding
eigenfunctions are transverse magnetic or electric field intensities. The discussion below
concentrates on the formulations involving transverse magnetic field, still it applies to
entirely analogous formulation for transverse electric field.

The waveguiding structures used to validate the numerical algorithms are shown in
Figure 6.1 and include a slab waveguide (A), image guides (B, C) with discontinuous
permittivity profiles as well as an open structure of an elliptical guide (D) with a contin-
uous permittivity profile ε(x, y).

6.1.1 Application of the IRAM-FDFD solver

The first of the operators to be considered is a vector non-symmetric differential operator
derived in Section 2.1.1 (cf. equation (2.42)):

T(·) = ∇2
t (·) + k2

0ε(x, y)(·) +
1

ε(x, y)
[∇tε(x, y)× (∇t × (·))] (6.1)

where ∇t(·) =
(

∂
∂x

, ∂
∂y

)
(·), k0 is the wavenumber in the free space and ε(x, y) is the per-

mittivity profile of a waveguide in the x−y plane. The domain of the operator is defined
as the space of 2D vector fields �H = (Hx, Hy), where Hx and Hy are square integrable
functions defined over a bounded rectangular region containing the cross-section of the
examined waveguiding structure. In the presented formulation, the eigenfunctions of the
operator T correspond to the transverse magnetic field and its eigenvalues correspond to
squared propagation constants β2.

If operator (6.1) is treated with the FD discretization method, then the IRAM-FDFD
solver, described in Sections 4.1.1 and 5.3 may be applied. The numerical tests validating
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Figure 6.1: Cross-sections of the waveguiding structures used during validation tests. All
dimensions are given in millimeters. At the boundaries δΩ the Perfect Electric Conductor
(PEC) conditions are assumed – cf. Section 2.1.

the IRAM-FDFD algorithm have been performed for rectangular waveguides with discon-
tinuous permittivity profiles. For these problems the PEC (Perfect Electric Conductor)
conditions have been applied at the boundary δΩ (cf. Section 2.1). Table 6.1 shows the
normalized propagation constants β/k0 for an image guide with a discontinuous permit-
tivity profile (structure C in Figure 6.1), computed using the IRAM-FDFD solver. The
values are compared to those computed using a classical algorithm based on the dense
matrix constructed with the Galerkin Method (GM) whose eigenvalues are found with
the QR method [50]. (The algorithm is referred in the table as GM-QR.)

Although the IRAM-FDFD and GM-QR algorithms apply entirely different strategies
for operator discretization and different methods of computing eigenvalues the errors
for eigenvalues obtained by the IRAM-FDFD method stay at an acceptable level. In
fact, we do not know which propagation constants are computed with greater accuracy,
as we do not know whether e.g. the 200 × 100 FD discretization grid provides a more
accurate finite representation of the input operator than the 20 × 20 matrix of Fourier
coefficients, constructed by the Galerkin Method, also representing the same differential
operator. In the considered case the problem solved by the IRAM-FDFD algorithm
equaled N = 39750 ≈ 2× 200× 100.

6.1.2 Application of the basic IRAM-FFT solver

The other finite-dimensional representation of the operator (6.1) which may be used
is based on the Method of Moments (eigenfunction expansion). This approach has been
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IRAM-FDFD GM-QR Relative
(200× 100) 20× 20 error [%]
2.3058 2.3110 0.23
1.5840 1.5947 0.67
0.49398+0.32770j 0.51314+0.27998j 1.41
0.49398j-0.32770j 0.51314-0.27998j 1.41
1.1297j 1.1278j 0.17
1.2639j 1.2571j 0.54

Table 6.1: Comparison of the normalized propagation constants β/k0 computed using
the IRAM-FDFD algorithm and the QR method with the matrix constructed using the
Galerkin Method. The structure used in the tests was an image guide (structure C in
Figure 6.1). Other test parameters: f=15 GHz, NEV=8 (number of eigenvalues to be
computed), NCV=40 (size of the constructed Krylov subspace) (IRAM-FDFD). The rela-
tive error was computed using the formula: E = 100|βIRAM−FDFD−βGM−QR|/|βGM−QR|.

widely discussed in Section 4.2 and the solver implementing the method applying implicit
operator projection (below referred to as IRAM-FFT algorithm) has been described in
Section 5.4.

The first class of applications of the IRAM-FFT algorithm to be considered are waveg-
uiding structures with continuous (and infinitely smooth) permittivity profiles ε(x, y). In
this case the gradient of ε(x, y) appearing in the definition of the operator (6.1) has a
standard mathematical meaning and consequently computation of Fourier integrals (in-
ner products) has also a standard functional meaning and may be performed by applying
the numerical algorithm defined in Section 4.2.

During the validation tests, the structure modeled with the basic IRAM-FFT algorithm
was an elliptical waveguide with continuous permittivity profile (structure D in Figure
6.1). The tested structure was an elliptical waveguide with the semi-axes ratio ax/ay =
2/1 and the permittivity profile given by the function:

ε(x, y) = ε0ε
[
1− ((x/2a)2 + (y/a)2

)α/2]
(6.2)

where α is the permittivity profile exponent.

Non-radiative modes in an open structure were modeled by taking the screening walls
sufficiently far away from the guide (at the distance of 20ax from the center of the
waveguide). The results presented in Table 6.2 show a comparison of the propagation
constants (for different profile exponents α) computed using Iterative Eigenfunction Ex-
pansion Method (IEEM) [78] and obtained by the author using the IRAM-FFT method.
The table shows non-dimensional normalized propagation constants Z computed with
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α IEEM [78] IRAM-FFT Difference [%]
2 0.4894 0.4907 0.27
4 0.6254 0.6258 0.06
6 0.6740 0.6742 0.03
8 0.6976 0.6978 0.03
10 0.7112 0.7114 0.03

Table 6.2: A comparison of the normalized propagation constants Z computed in the
IEEM method and the IRAM-FFT algorithms for the fundamental mode in the elliptical
waveguide with a continuous permittivity profile (structure D in Figure 6.1), for different
permittivity profile exponents α (cf. formula 6.2). In the tests: V = 3, NEV=1, NCV=20,
FFT length=256, number of expansion function used to represent functions = 75 (in every
spatial direction).

the following formula:

Z =
β2/k2

0 − 1

ε− 1
(6.3)

In the tests the normalized frequency V , given by formula: V = k0 · 2ax ·
√
ε− 1 equaled

3, the number of expansion functions equaled 75 in x and y directions and the respective
FFT lengths equaled 256. Consequently, the size of the problem solved by the IRAM
algorithm equaled N = 2 · 752 = 11250, while in the spatial domain the grid consisted of
2 · 2562 = 131072 points. It is apparent that the obtained results agree almost perfectly,
confirming that the IRAM-FFT algorithm may be successfully applied to deal with the
discussed class of structures.

6.1.3 Coping with discontinuous permittivity profiles in the
DFT representation.

As pointed out in the previous sections, if the eigenfunction expansion representation is
to be applied it is necessary to find out whether this representation is suitable for all the
operators in the form given by Equation (6.1). As described in the previous chapters, in
the finite-dimensional mapping technique based on eigenfunction expansion the operator
is represented by certain inner products – the Fourier coefficients, such as (Thxij, h

y
kl)

(cf. Section 4.2). These coefficients are in fact 2D definite integrals whose values are
computed numerically by using the Discrete Fourier Transform (DFT). Using the DFT
we calculate approximate values of these integrals using a regular grid of samples of the
integrated 2D function. The numerical error in the integration depends on the class of
the integrated function. If the form of the operator T given by formula (6.1) is examined,
one may note the term ∇tε(x, y). If the permittivity profile is a C1 class function then the
operation T on an arbitrary function from the C2 class results in a continuous function.
In this case, as shown in the previous paragraphs, the DFT-based representation of the
operator provides an adequate finite approximation of the operator.
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TRM [78] IEEM-FFT [95] GM-QR IRAM-FFT
1.2353 1.2352 1.2344 1.2339
1.0833 1.0756 1.0813 1.0818
1.0648 1.0622 1.0648 1.0641
0.41570 0.41563 0.41146 0.41412

Table 6.3: Comparison of the normalized propagation constants β/k0 calculated for a
few low order modes in a slab guide (structure A in Figure 6.1) with a discontinuous
permittivity profile. In the tests the frequency f equaled 15 GHz, the number of expansion
functions used equaled 10 in the x (horizontal) direction, the FFT length equaled 256,
NEV=4, NCV = 20 (IRAM-FFT - cf. the list of symbols).

If the permittivity profile is a discontinuous function the situation is very different.
Now, the ∇ε term may correctly be considered only within the theory of distributions.
Consequently, a modified scheme of computing Fourier integrals should be applied in-
stead of the basic algorithm presented in Section 4.2.2. Before presenting this modified
technique, applied to a waveguiding structure with a rectangular core, one more example
will be given. The example presented below shows that for simple waveguiding structures
the basic IRAM-FFT may still be used.

The structure to be modeled is a slab waveguide (cf. structure A in Figure 6.1). In this
case the value of gradient of a discontinuous permittivity profile at the grid points close to
discontinuity was simply approximated by the value computed with the standard central
difference scheme. (So, for the grid points located closest to the discontinuity, ∂ε/∂x was
approximated by (ε − 1)/2∆x.) Table 6.3 shows the values of normalized propagation
constants β/k0 computed for this structure with the basic IRAM-FFT algorithm. The
results are compared to the corresponding eigenvalues computed with three different
algorithms: 1) the Transverse Resonance Method (TRM) which is regarded as one of the
most accurate algorithms for finding propagation constants, suitable while dealing with
certain relatively simple waveguiding structures; 2) the Galerkin Method (GM-QR) in
which the operator is represented explicitly by the appropriate inner products (Fourier
integrals) computed analytically and the eigenvalues are computed with the QR method;
3) the Iterative Eigenfunction Expansion Method using FFT integration (IEEM-FFT –
cf. [78], [95]) using eigenfunction expansion technique and a specific iterative process in
order to find operator eigenvalues. Although the number of expansion functions used in
discrete representations of functions and operators is very small and equals 10 in the x
(horizontal) direction (for IEEM-FFT, IRAM-FFT and GM-QR algorithms) a very good
convergence of results is obtained. It may easily be found that the relative differences
between the corresponding eigenvalues do not exceed 1%. This is probably because there
is a low contrast between permittivities inside and outside the waveguide core (ε/ε0 = 2.5).

A different series of tests performed for the same simple waveguiding structure com-
pared the values of normalized propagation constants computed with the Galerkin Method
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Figure 6.2: Relative difference in the values of normalized propagation constants β/k0

computed for a slab guide (structure A in Figure 6.1) using the IRAM-FFT solver and the
Galerkin Method (GM) as a function the length of the FFT applied in the IRAM-FFT
algorithm. During the tests the frequency f equaled 15 GHz, the number of expansion
functions used equaled 10 (in the x direction), NEV=5, NCV=20 (IRAM-FFT). The
errors were computed for the first 5 eigenvalues found by the methods.

(GM-QR) and the IRAM-FFT algorithm for different lengths of the Fourier Transforms,
applied in the IRAM-FFT method and ranging from 128 to 2048. The results of these
tests are shown in Figure 6.2. As one could expect the relative differences between the
computed eigenvalues become smaller as the FFT length increases. This means that the
approximations of inner products computed using the FFT algorithm approach the val-
ues of the inner products computed analytically in the Galerkin Method with application
of a more refined discretization grid (determined by the FFT length).

The favorable situation described above changes if a more complex waveguiding struc-
ture is considered, e.g. an image guide with a discontinuous permittivity profile (struc-
ture C in Figure 6.1) for which the contrast between permittivities inside and outside
the waveguide core is larger (ε/ε0 = 9.0) than in the former case. In this case, substan-
tial problems appear with the simple IRAM-FFT algorithm. The eigenvalues found by
the IRAM-FFT algorithm for the vector operator T (compare equation 6.1) differ very
significantly (by 10-20%) from the corresponding eigenvalues found using the Galerkin
Method [95]. The situation may improve considerably if a modification of the IRAM-FFT
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Figure 6.3: Schematic of a dielectric waveguide with a rectangular, discontinuous per-
mittivity profile ε(x, y).

algorithm described below is applied.

6.1.3.1 Application of numerical integration

The modification of the basic IRAM-FFT algorithm is presented for the class of dielec-
tric waveguides with one or more rectangular cores. For simplicity of the considerations
it is assumed here that the geometry of the system is as shown in Figure 6.3. The per-
mittivity profile ε(x, y) for the structure shown in the figure is a discontinuous function
which is given by the following formula:

ε(x, y) = (ε− 1)h(x2 − x)h(x− x1)h(y2 − y)h(y − y1) + 1 (6.4)

where h(x) denotes the Heaviside function. Only the derivatives in a generalized sense
exist for ε(x, y):

∂

∂x
ε(x, y) = (ε− 1)h(y2 − y)h(y − y1) (δ(x− x1)− δ(x2 − x)) (6.5)

where δ(x) denotes the Dirac distribution.

Obviously applying ‘sampling’ to a distribution is impossible. Consequently calculating
the Fourier integrals by using the Discrete Fourier Transform does not have any correct
mathematical meaning in this case, which results in severe numerical errors which are
indeed observed in many applications (including the currently discussed one) if this kind
of approach is applied.

The solution which may be proposed is a modification of the solvers which use the
discussed implicit representation of operators (e.g. IRAM-FFT). The modification refers
to the method of calculating the matrix-vector product which implicitly contains the
form of the operator. The proposed method is a hybrid algorithm which uses both DFT
(FFT) and numerical integration to calculate the matrix-vector product. The method
starts with decomposing the initial operator T given by the equation (6.1):

T = L − F (6.6)
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where:

L(·) = ∇2
t (·) + k2

0ε(x, y)(·) (6.7)

F(·) = 1

ε(x, y)
[∇tε(x, y)× (∇t × (·))] (6.8)

Denoting as Fx and Fy the projections of the vector operator F into x- and y- directions,

the inner products (Fx
�Ht, h

x
ij) and (Fy

�Ht, h
y
kl) for the structure shown in Figure 6.3 are

given by the following 1D integrals:

(
Fx

�Ht, h
x
ij

)
=

∫ x2

x1

2(ε− 1)

(ε+ 1)

[(
∇t

�Ht(x, y)
)
hxij(x, y)

]y=y1
y=y2

dx (6.9)

(
Fy

�Ht, h
y
kl

)
=

∫ y2

y1

2(ε− 1)

(ε+ 1)

[(
∇t

�Ht(x, y)
)
hykl(x, y)

]x=x1

x=x2

dy (6.10)

where the term 2(ε − 1)/(ε + 1) is obtained while integrating the permittivity profile,
under the assumption that the Heaviside function is given by the formula:

h(x) =




0 x < 0
0.5 x = 0
1 x > 0

(6.11)

The above linear integrals may be computed using any standard method of numer-
ical integration. If we denote by Lx and Ly the obvious projections of the operator L
(cf. equation (6.7)) then the steps of the hybrid algorithm calculating the inner products(
Tx

�Ht, h
x
ij

)
and
(
Ty

�Ht, h
y
kl

)
may be given as follows:

1. Given the Fourier coefficients {cxij} and {cykl} compute the values of the vector field
�Ht = (Hx, Hy) in the spatial domain by applying backward 2D FFTs.

2. Apply numerical integration (NI) to compute the following inner products:

gxij = (Fx
�Ht, h

x
ij) gykl = (Fy

�Ht, h
y
kl)

3. Derive the Fourier coefficients (LxHx, h
x
ij) i (LyHy, h

y
kl) using the 2D FFT algo-

rithm.

4. Compute the final Fourier coefficients:(
Tx

�Ht, h
x
ij

)
= (LxHx, h

x
ij) + gxij

(
Ty

�Ht, h
y
kl

)
= (LyHy, h

y
kl) + gykl

where Tx and Ty denote the projections of the initial operator T onto x- and y-
dimensions.
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GM-QR IRAM-FFT-NI Relative
20× 20 20× 20 error [%]

FFT length 2048
2.3110 2.3132 0.10
1.5947 1.5951 0.03
0.85624 0.85142 0.56
0.51314+0.27998j 0.51403+0.27986j 0.16
0.51314-0.27998j 0.51403-0.27986j 0.16
0.69140j 0.70192j 1.52
1.1278j 1.1276j 0.02
1.2571j 1.2568j 0.03

Table 6.4: Comparison of the normalized propagation constants β/k0 for several low
order modes, computed using the modified IRAM-FFT algorithm (IRAM-FFT-NI) and
the Galerkin Method. The structure used in the tests was an image guide (structure C
in Figure 6.1). Other test parameters: f=15 GHz, NEV=8, NCV=40. The relative error
was computed using the formula: E = 100|βIRAM − βGM |/|βGM |.

This algorithm is validated by computing the propagation constants for the image guide
shown on picture C in Figure 6.1. Application of the basic IRAM-FFT procedure for this
case resulted in unacceptable numerical errors. Table 6.4 and Figure 6.4 show the results
for the modified algorithm (IRAM-FFT-NI) compared to eigenvalues computed using the
GM-QR algorithm. One may note that the computed propagation constants stay very
close to each other (especially for lower-order modes). The results confirm the usefulness
of the investigated IRAM-FFT-NI algorithm in modeling structures with discontinuous
rectangular permittivity profiles, such as the tested image guide (cf. structure C in Figure
6.1).

Apart from the obvious advantage of being able to deal with discontinuous permit-
tivity profiles, the above algorithm has also a very substantial drawback of increasing
the computational complexity of the matrix-vector product algorithm by O(

√
KN) (in

the worst case this means the increment of the complexity to O(K3/2), as compared to
O(K logK)), where K is the product of the DFT lengths in the x- and y-dimensions
and N is the problem size (the product of the number of expansion terms used to ap-
proximate functions in the x- and y-dimensions). This drawback may be eliminated by
applying FFT integration instead of numerical integration at a cost of imposing certain
restrictions on the geometry of the modeled system. This issue is addressed in the next
section.

6.1.3.2 Application of 1D FFT integration

If one takes a look at the formulae (6.9) and (6.10) it becomes clear that, because
hxij and hykl are composed of trigonometric functions, the integrals appearing on the right
hand side of these formulae may be computed using one dimensional sine and cosine DFTs
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Figure 6.4: Comparison of selected real normalized propagation constants β/k0 computed
using the modified IRAM-FFT algorithm (IRAM-FFT-NI) and the Galerkin Method for
different FFT lengths applied. The structure used in the tests was an image guide
(structure C in Figure 6.1). Other test parameters: f=15 GHz, NEV=8, NCV=40. The
relative error was computed using the formula: E = 100(βIRAM − βGM)/(βGM).

(e.g. Fast Fourier Transforms). Still, this may be done only if the grid points are located
exactly along the discontinuity, i.e. the values of fields are defined for points located on
the material discontinuity. In other words the material discontinuities as well as structure
boundaries must be aligned with the discretization grid in the spatial domain. (If this
is not the case the DFTs may still be used, but computation of the discussed integrals
should then involve interpolation procedures necessary to compute field values at the
discontinuity.)

The algorithm of computing the matrix-vector product in this case is the same as in the
previous section, except Step 2 where the values of gxij and gykl are computed by applying
FFT integration instead of standard numerical integration. The consequence of this fact
is that the overall numerical complexity of the algorithm is linear-logarithmic, i.e. equals
O(K log(K)) as compared to the computational complexity of O(K3/2) for the previous
version of the algorithm. This in turn, has a positive impact on the performance of the
solver.
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IRAM-FFT2 IRAM-FFT-NI GM-QR Relative
40× 20 40× 20 20× 20 difference [%]
2.3209 2.3209 2.3140 0.30
1.6039 1.6039 1.5970 0.44
0.85224 0.85224 0.86023 0.93
0.53456+0.28183j 0.53456+0.28183j 0.51740+0.27472j 3.18
0.53456-0.28183j 0.53456-0.28183j 0.51740-0.27472j 3.18
0.70161j 0.70161j 0.69346j 1.18
1.1263j 1.1263j 1.1277j 0.13
1.2588j 1.2588j 1.2589j 0.01

Table 6.5: Comparison of the computed normalized propagation constants β/k0 for three
different algorithms: IRAM-FFT2, IRAM-FFT-NI and GM-QR. For the first two algo-
rithms the FFT length equaled 256 in every spatial direction. The propagation constants
have been computed for the frequency f = 15 GHz.

Table 6.5 shows propagation constants computed for the waveguiding structure B from
Figure 6.1. This structure is a slightly modified structure C, in which the permittiv-
ity discontinuities have been moved to the closest grid line (i.e. each of the boundaries
of the core is shifted by at most ∆x/2 or ∆y/2, where ∆x = a/Nx and ∆y = b/Ny

(a = 15.8 mm, b = 7.9 mm, Nx and Ny are FFT length in the x and y directions re-
spectively). The results are obtained using the two modified IRAM-FFT algorithms: the
first, using the FFT 1D integration (IRAM-FFT2) and the second using the numerical
integration (IRAM-FFT-NI). The computed propagation constants are identical to nu-
merical precision. The results are compared to the values computed with the GM-QR
algorithm.

Table 6.6 shows a relative performance of the two algorithms while solving the problem
discussed above. One may note that although the number of implicit updates and matrix-
vector products is the same in both cases, the IRAM−FFT 2 solver is significantly faster
than the IRAM − FFT − NI solver. The computation of the matrix-vector product is
almost three times faster for the first solver. This provides a rationale for applying FFT
integration instead of numerical integration method.

6.1.3.3 Application of different operator formulations

This section describes a different approach in order to cope with the discontinuities
of the permittivity profiles than presented in the two above paragraphs. The main diffi-
culty which appeared in the previously presented methods was associated with the initial
definition of the electromagnetic differential operator and consisted in the necessity of
computing ∇ε, i.e. a gradient of a discontinuous permittivity profile. (cf. equation (6.1))
Consequently, this gradient could not have been computed using finite difference approxi-
mation. Instead a correction involving computation of an integral along the discontinuity
had to be introduced. The correction was associated with either increasing the numerical
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Integration Number of Number of Total Total
method at the implicit Av Av time
discontinuity restarts operations time [s] [s]
IRAM − FFT 2 25 758 66.18 76.59
IRAM − FFT −NI 25 758 184.89 194.69

Table 6.6: Comparison of the execution time of the two modified IRAM-FFT algorithms
using different integration algorithms at the discontinuity of permittivity profile. The
tests have been performed in the IBM SP2 system.

complexity of the algorithm (in the case of the method using numerical integration) or
restricting the allowed geometries of a waveguiding structure (in the case of the method
using FFT integration).

The problem of modeling discontinuities in algorithms using implicit operator projec-
tion may be approached using a different strategy. The main idea behind it is to avoid
direct computation of permittivity gradients in the spatial domain, by applying a different
operator formulation. This formulation (derived in Section 2.1.1 – cf. (2.29)) allows one
to develop a scheme, in which the arising discontinuities (due to the problem geometry)
are in fact ‘hidden’ on the side of the DFT domain and do not show directly in the spatial
domain. The price which has to be paid for using this more sophisticated scheme (derived
below) is a greater complication of the algorithm (although the theoretical computational
complexity remains low, i.e. linear-logarithmic) and degradation of some properties of the
resulting discrete operator.

We start the derivation with operator equation (2.29), obtained in Section 2.1.1. This
operator equation may be written in the following compact form:

B−1A �Ht = β2 �Ht (6.12)

where �Ht = [Hx, Hy]T and

A(·) = LThh(·) (6.13)

and

B−1(·) = −ẑ × LTeeẑ × (·) (6.14)

If {hxmn}, and {hymn} are functions given by equations (4.59) and (4.60) forming an
orthonormal basis, then the fields are represented as follows:

Hx =
∑
m

∑
n

cxmnh
x
mn Hy =

∑
m

∑
n

cymnh
y
mn (6.15)

So, a discrete representation of fields typical of eigenfunction expansion techniques is
applied.
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The essential point of the proposed algorithm is the method of computing the following
integrals:

∫ (
Πx · A�F

)
hxmndΩ

∫ (
Πy · A�F

)
hymndΩ (6.16)∫ (

Πx · B−1 �F
)
hxmndΩ

∫ (
Πy · B−1 �F

)
hymndΩ (6.17)

where Πx and Πy denote the operators of projection onto x and y directions respectively

and �F = [F x, F y]T is a vector field, where F x and F y denote functions also given by the
Fourier expansions:

F x =
∑
m

∑
n

cxmnh
x
mn F y =

∑
m

∑
n

cymnh
y
mn (6.18)

(At this point we try to abstract from the physical meaning of �F .)

The computation of the integrals (6.16) and (6.17) may be performed in the following
manner. We start with writing down explicit form of the differential operators involved:

Πx · B−1(·) = ωε0εΠx(·) + 1

ωµ0

∂

∂x

[[
∂

∂x
,
∂

∂y

]
· (·)
]

(6.19)

and

Πy · B−1(·) = ωε0εΠy(·) + 1

ωµ0

∂

∂y

[[
∂

∂x
,
∂

∂y

]
· (·)
]

(6.20)

Then, the formula for the first of the integrals (6.17) may be written as follows:

∫ (
Πx · B−1 �F

)
hxmndΩ =

∫
ωε0(ε− 1)F xhxmndΩ

+

∫
ωε0F

xhxmn +
1

ωµ0

(
∂

∂x

[
∂F x

∂x
+

∂F y

∂y

])
dΩ (6.21)

Making use of representation (6.18) and the orthogonality of basis functions one gets:

∫ (
Πx · B−1 �F

)
hxmndΩ =

∫
ωε0(ε− 1)F xhxmndΩ

+ ωε0c
x
mn −

1

ωµ0

[(mπ

b

)2

cxmn +

(
mnπ2

ab

)
cymn

]
(6.22)

An analogous formula is obtained for the second of the integrals:
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∫ (
Πy · B−1 �F

)
hymndΩ =

∫
ωε0(ε− 1)F yhymndΩ

+ ωε0c
y
mn −

1

ωµ0

[(
mnπ2

ab

)
cxmn +

(nπ
a

)2

cymn

]
(6.23)

As one may note, the above formula contains an ‘analytical part’ and an integral
which may be computed numerically, e.g. by performing a 2D forward FFT. One should
also note that the domain of integration is reduced only to the region of the waveguide
core, as outside the core one has: ε− 1 ≡ 0. This fact allows one to reduce significantly
the cost of computing this Fourier integral. One also notes that the above integrals do
not require computation of the gradient of permittivity profile ε.

The computation of the integrals (6.16) may be performed analogously. The explicit
form of the involved operators is given as follows:

Πx · A(·) = ωµ0Πx(·)− ∂

∂y

(
1

ωε0ε

[
− ∂

∂y
,
∂

∂x

]
· (·)
)

(6.24)

Πy · A(·) = ωµ0Πy(·) + ∂

∂x

(
1

ωε0ε

[
− ∂

∂y
,
∂

∂x

]
· (·)
)

(6.25)

Making use of representation (6.18) and the orthogonality of basis functions one gets:
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)
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hxmndΩ (6.26)

In order to eliminate the appearing partial derivative the above formula is further
transformed by applying Green’s theorem (or simply integration by parts in the one-
dimensional case):
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a

))
dΩ (6.27)

Once again, in the above integral the domain of integration is limited to the waveguide
core and the integral may be computed using a 2D sine FFT. We note that using the
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above formula one may enclose the information on the permittivity discontinuity at the
core-cladding interface inside the Fourier coefficients, without the necessity of evaluating
the derivative of ε at the interface.

An analogous result is obtained for the second of the integrals:

∫ (
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y
mn +

1

ωε0

(
mnπ2

ab

)
cxmn −

1

ωε0

(mπ

b

)2

cymn

+

∫
1

ωε0

[
ε− 1

ε

] [
∂Fy
∂x

− ∂Fx
∂y

]

×
(
−mπ

b
Bmn sin

(mπx

b

)
sin
(nπy
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Knowing how to compute integrals (6.16) and (6.17) one is ready to formulate the
algorithm of computing the matrix-vector product, which implicitly defines the discrete
operator obtained from operator equation (6.12).

The steps of the algorithm for computing the matrix-vector product in this case are
summarized in the following steps:

1. Compute the ‘analytical parts’ of integrals (6.27) and (6.28):

axmn = ωµ0c
x
mn +

1

ωε0

(
mnπ2
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)
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(nπ
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cxmn (6.29)

aymn = ωµ0c
y
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2. Using Fourier coefficients cxmn and cymn compute:

F x =
∑
mn

cxmnh
x
mn F y =

∑
mn c

y
mnh

y
mn (6.31)

with 2D inverse FFTs.

3. In the spatial domain compute:
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[
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]
(6.32)

4. Using 2D forward sine FFTs compute the integrals:
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(6.33)



Chapter 6 Application and validation of the algorithms 125

and

bymn =
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5. Compute the Fourier coefficients of the functions Πx · A �Ht and Πy · A �Ht:

dxmn = axmn + bxmn (6.35)

dymn = aymn + bymn (6.36)

6. Compute the ‘analytical parts’ of integrals (6.22) and (6.23):
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7. Using Fourier coefficients dxmn and dymn compute:

F̃ x =
∑
mn

dxmnh
x
mn F̃ y =

∑
mn d

y
mnh

y
mn (6.39)

with 2D inverse FFTs.

8. In the spatial domain compute:

ωε0(ε− 1)F̃ x (6.40)

ωε0(ε− 1)F̃ y (6.41)

9. Using 2D forward sine FFTs compute the integrals:

b̃xmn =

∫
ωε0(ε− 1)F̃ xhxmndΩ (6.42)

b̃ymn =

∫
ωε0(ε− 1)F̃ yhymndΩ (6.43)
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10. Compute the Fourier coefficients of the functions Πx · B−1A �Ht and Πy · B−1A �Ht:

c̃xmn = ãxmn + b̃xmn (6.44)

c̃ymn = ãymn + b̃ymn (6.45)

where:

Πx · B−1A �Ht =
∑
m

∑
n

c̃xmnh
x
mn Πy · B−1A �Ht =

∑
m

∑
n

c̃ymnh
y
mn (6.46)

As already mentioned, the above algorithm defines an implicit representation of the
operator B−1A from equation (6.14). This means that the finite-dimensional opera-
tor projection (of operator B−1A is performed simultaneously with computation of the
matrix-vector product C v , where C denotes here the projection of B−1A. One may
note that Step 3, performed in the spatial domain is limited to operations within the
waveguide core, as outside the core ε− 1 ≡ 0. The same refers to the integral computed
in Step 9. This allows one to reduce the computations in the spatial domain only to the
region of the waveguide core.

The algorithm presented above may be used jointly with the Implicitly Restarted
Arnoldi Method (IRAM) in order to find numerically eigenvalues and eigenfunctions of the
given operator. The performed validation tests included finding propagation constants
for modes in structure C from Figure 6.1. Table 6.7 shows the normalized propagation
constants β/k0 computed using the discussed algorithm (IRAM-FFT*). For comparison
the results of computations are also given for the IRAM-FDFD algorithm. In the case
of the first algorithm the number of expansion functions used to represent the fields
equaled 40 in x direction and 20 in y direction, while for the second algorithm the
80 × 40 FD discretization grid has been applied. One may observe that the results are
in relatively good accordance. It is important to stress here that the basic IRAM-FFT
algorithm discussed in Section 6.1.2 would result in unacceptable ≈ 10% − 20% errors.
For instance, the propagation constant for the dominant mode, computed using the basic
IRAM-FFT algorithm was 2.5406, which means that the relative error equals in this case
approximately 10% (cf. Table 6.7).

While investigating numerical properties of the discussed algorithm one may easily find
that both the computational and memory complexity are the same as for the IRAM-FFT
algorithm using the basic algorithm of computing matrix-vector product. (cf. Section
4.2.2) Still, compared to IRAM-FFT method algorithm IRAM-FFT* requires computa-
tion of twice as many Fast Fourier Transforms.
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IRAM-FFT* IRAM-FDFD Relative
40× 20 80× 40 error [%]
2.2907 2.3059 -0.66
1.5969 1.5845 0.78
0.81459 0.80937 0.64
0.45661-0.33488j 0.49408-0.32459j 7.20
0.45661+0.33488j 0.49408+0.32459j 7.20
0.71145j 0.73155j -2.75
1.1282j 1.1289j -0.06
1.2551j 1.2615j -0.51

Table 6.7: Comparison of the computed normalized propagation constants β/k0 for two
different algorithms: IRAM-FFT* and IRAM-FDFD. For the IRAM-FFT* algorithm the
FFT length equaled 256 in every spatial direction. The propagation constants have been
computed for the frequency f = 15 GHz.

Expansion No. of implicit No. of Av Spectral
functions restarts operations radius
20× 10 7 212 3.744D+01
40× 20 15 459 1.477D+02
80× 40 37 1122 6.326D+02

Table 6.8: Number of implicit IRAM updates and Av operations performed in order to
obtain convergence to the wanted eigenvalues for different number of expansion functions
used to represent the fields. During the computations FFT length equaled 256.

The significant differences of numerical properties between the eigensolver using the
first of the operator formulations (IRAM-FFT) and the currently discussed formulation
(IRAM-FFT*) concern the spectral radius of the matrix for which the problem is being
solved. As already pointed out, the value of a spectral radius of a matrix has a substantial
impact on the speed of convergence of the eigensolver. This is verified by data shown in
Table 6.8. This table presents the number of IRAM implicit restarts and Av operations
which have to be performed in order to obtain results shown in Table 6.7. The data are
shown for different number of expansion functions used to represent the fields. A visible
correlation between the amount of computation and the spectral radius of the operator
matrix (computed as the eigenvalue with the largest modulus) is observed.

Another table (Table 6.9) compares the spectral radii of the operator matrices con-
structed with the two discussed operator formulations using finite-dimensional projection
methods embedded in the IRAM-FFT algorithm. The table shows results for three dif-
ferent waveguiding structures shown in Figure 6.5. In the figure, structure 3 is the same
image guide as shown in Figure 6.1C, structure 1 is a hollow waveguide and structure 2 is
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Figure 6.5: Cross-sections of the waveguiding structures used to investigate the spectral
radius of the operator constructed in the IRAM-FFT* algorithm. All dimensions are
given in millimeters.

Structure IRAM-FD IRAM-FFT-NI IRAM-FFT*
80× 40 40× 20 40× 20

1 2.048D+02 2.832D+02 2.687D+02
2 2.040D+02 2.832D+02 2.885D+02
3 2.047D+02 2.832D+02 6.127D+02

Table 6.9: Spectral radii of matrices used to model the three waveguiding structures
shown in Figure 6.5. During the tests: FFT length equaled 512, and frequency f = 15
GHz.

a waveguide completely filled with dielectric material with relative permittivity ε = 9. As
shown in Table 6.9 for the formulation applied in the previous section (IRAM-FFT-NI)
the spectral radius of the matrix remains the same for all the modeled structures. In
turn, for the algorithm using current operator formulation (IRAM-FFT*), the spectral
radius is significantly increased for the structure with a discontinuous permittivity profile.
While the problem has had been investigated in sufficient detail, it is suspected that this
effect is due to the fact that the problem implemented in IRAM-FFT* algorithm involves
a fourth-order differential operator, while IRAM-FFT-NI solver implements the problem
for the second-order differential operator.

Clearly, the increased spectral radius deteriorates the rate of convergence of the IRAM-
FFT* solver, which becomes lower than for the IRAM-FFT-NI (or IRAM-FFT2) solver.
Moreover, as shown in Table 6.10 the spectral radius of the matrix constructed implicitly
by the IRAM-FFT* algorithm varies with the FFT length applied to perform the Discrete
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Structure FFT length FFT length FFT length
= 256 = 512 =1024

1 2.687D+02 2.687D+02 2.687D+02
2 3.495D+02 2.885D+02 2.731D+02
3 6.326D+02 6.127D+02 6.108D+02

Table 6.10: Spectral radii for the matrices implicitly constructed using IRAM-FFT*
method used to model different waveguiding structures shown in Figure 6.5. The table
shows data for different FFT lengths applied during computation.

Fourier Transforms (except the case of the hollow waveguide). Summing up, application
of the more complicated operator formulation, as discussed in this section allows one to
model waveguiding structures with discontinuous permittivity profiles (with no restric-
tions concerning the geometry of the permittivity profile) at the cost of a deteriorated
convergence rate.

6.2 Modeling electromagnetic resonators

The previous sections presented the application of the discussed numerical techniques
to modeling dielectric waveguides. Due to relatively small dimensions of the structures
and 2D character of the problems the resulting computational problems may be qualified
as small- or medium-sized. Below we present examples of applications of the proposed
algorithms to modeling electrically large electromagnetic resonators, particularly open
hemispherical resonators. In this case, the resulting problems are characterized by very
large 2D and 3D domains, operator matrix sizes of order 105 and difficulties with accuracy
of discretization, providing truly challenging computational tasks for today’s algorithms
and computer systems.

Modeling of electromagnetic properties of resonant cavities has numerous applications
in microwave technology, e.g. microwave filter design, as well as other engineering and
scientific disciplines, such as material science, e.g. in characterization of properties of dif-
ferent materials, including high temperature superconductors and semiconductors work-
ing in microwave or millimeter wave frequency range [1], [27], [54], [60], [65]. In the latter
case the system shown in Figure 6.6 is used for measurements. The sample of inter-
est is placed on the flat mirror and high-order modes, such as TEM00q, where q > 20
are excited in a resonator structure. Then, the resonant frequencies of these modes are
measured in order to determine the response of the structure loaded with an investigated
material. It has to be stressed that very high accuracy results are needed in the presented
application. Although in many cases the parameters of the sample may be modeled an-
alytically with sufficient accuracy using paraxial wave propagation approximation [53],
this method fails if the measured sample is relatively thick, consists of many layers or
one wants to investigate effects related to finite sample size or a non-ideal mirror shape.
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Figure 6.6: Open resonator structure loaded with a dielectric disc.

In all the mentioned cases numerical treatment has to be applied.

Still, modeling of the described open resonator problem is a challenging computational
problem which until recently remained intractable. This has been caused by the following
reasons:

• The accuracy of the numerical solution has to be comparable to the analytical one
and the solution method should be versatile in order to allow one to investigate
effects not modeled by paraxial approximation.

• The structure is electromagnetically large, i.e. its dimensions are large compared
to the wavelength λ of the excited modes. Even if, due to rotational symmetry of
the structure, the problem is reduced to two dimensions, the size of computational
domain equals typically a few hundred λ2.

• The resonator spectrum is very dense (e.g. 20 modes per 1 gigahertz), which causes
problems with mode identification.

• The location of the mode to be computed on a mode chart ranges from 1000th to
5000th position, far from the fundamental mode, which alone makes extraction of
this eigenvalue a very challenging problem.
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• Huge size of the corresponding discrete problem causes serious problems related to
numerical cost of computations.

• Numerical dispersion arising if finite difference (e.g. Finite Difference Time Domain
or FDFD) methods are applied causes severe degradation in the accuracy of com-
putations, which is unacceptable e.g. in modeling of properties of new materials.

The above factors clearly indicate that the presented problem of modeling of high or-
der modes in resonant cavities belongs to complex, large scale electromagnetic problems
and requires application of special methods which reduce the cost of computations, en-
hance the accuracy of computations and allow finding desired modes from the resonator
spectrum.

In the past, attempts have been made using methods such as Boundary Element
Method (BEM) [15] and FDTD [54]. In the cited works, FDTD provided only quali-
tative results for low order modes, while BEM generated a dense matrix problem which
was very costly to solve. This section shows how the advanced techniques proposed in
the previous chapters allow one to deal effectively and efficiently with this class of large
scale computational problems.

Below the two algorithms:

1. IRAM-FDFD: based on IRAM, finite difference frequency domain operator projec-
tion in cylindrical coordinate system (presented in Section 4.1.2), implicit operator
representation (presented in Section 4.1.5), and using algorithm of correcting nu-
merical dispersion proposed in Section 4.1.3.

2. IRAM-HYBRID: based on IRAM and hybrid operator projection using FDFD and
eigenfunction expansion in three dimensions (presented in Section 4.3.1).

are applied to modeling cylindrical and hemispherical electromagnetic resonators,
using operator formulation developed in Section 2.1.2 with appropriately defined PEC
boundary conditions. The structures to be modeled include an open hemispherical res-
onator with rotational symmetry and cylindrical resonator lacking rotational symmetry.
By solving the appropriate operator boundary value problems one obtains resonant fre-
quencies of the resonators and the corresponding modal fields.

Before we turn to presenting numerical results, it is worthwhile to discuss the numerical
techniques which allow one to extract high order modes (eigenvalues) from the dense
spectrum of the emerging discrete operators. This question is addressed in the following
section.
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Figure 6.7: Schematic of an open hemispherical resonator loaded with a dielectric mate-
rial.

6.2.1 Finding higher modes in resonators: Chebyshev polyno-
mial filtration

To illustrate the problem, one may consider a task of finding the resonant frequency of
e.g. the quasi-TEM0,0,20 mode in a hemispherical resonator shown in Figure 6.7 using the
IRAM-FDFD algorithm. The frequency to be found equals approximately ft = 57.691
GHz. The eigenvalue to be found equals: ω2 = (2∗π∗ft)2 = 1.3139 ·1023 rad2/m2 . If the
discretization grid size equals λ/12 in both r- and z−directions, then the resulting oper-
ator matrix has the size of 18530. The spectral radius of the matrix equals 4.587e · 1024

and the eigenvalue corresponding to the resonant frequency of the lowest order mode is
5.8 · 1020. Consequently, assuming that the density of eigenvalues is the uniform along
the matrix spectrum, one finds that the resonant frequency of the quasi-TEM0,0,20 cor-
responds approximately to the 500-th eigenvalue of the matrix. Since the eigenvalue is
located far from both ends of the matrix spectrum the Krylov subspace methods (such
as IRAM) cannot find efficiently as many as 500 eigenvalues with the smallest modulus.
(This would require construction of an orthonormal basis in a Krylov subspace of order
500 or more, which is inefficient due to a very high cost of orthogonalization process.)
Therefore it is necessary to modify the spectrum of the matrix operator, so that eigen-
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Er Ez

Figure 6.8: Normalized rms Er and Ez field plots for the quasi-TEM0,0,20 mode in a
homogeneous hemispherical resonator (cf. Figure 6.7 - the dielectric filling is removed in
this case). The discretization grid applied: ∆r = ∆z = 1.5 · 0.237 mm = λ/12.

values from the desired range are moved towards any of the ends of the matrix spectrum.
This can be achieved by applying polynomial filtering, based on Chebyshev polynomials
and designing bandpass digital filters. This technique is described in detail in Appendix
C. It transforms the spectrum of the matrix so that the eigenvalues located around a
given central frequency of the filter form the hi-end of the matrix spectrum and conse-
quently may be found by searching the ‘largest modulus’ eigenvalues with IRAM. Below,
results of validation tests for the proposed algorithms, using the mentioned polynomial
filtering technique, are presented.

6.2.2 Large hemispherical resonators: numerical results

This section describes the tests validating the IRAM-FDFD algorithm, using technique
for correcting the effects of numerical dispersion for the case of hemispherical resonator
shown in Figure 6.7. Also, the case of a homogeneous resonator with no dielectric filling
is considered. Curved mirror were modeled by means of conformal technique and effec-
tive permittivity concept was applied to dielectric boundaries [26]. The numerical tests
aimed at finding the resonant frequency of the quasi-TEM0,0,20. The field plots for this
mode, computed using IRAM-FDFD algorithm for a homogeneous and inhomogeneous
hemispherical resonator have been shown in Figures 6.8 and 6.9, respectively.

In the first series of tests the basic algorithm, which does not include the technique
for reducing numerical dispersion, has been investigated. For the homogeneous resonator
and the discretization grid ∆r = ∆z = 1.5 · 0.237 mm = λ/15 the computed resonant
frequency of the quasi-TEM0,0,20 (Gaussian beam notation) equals f = 58.913499369858
GHz. The error relative to the theoretical frequency ft = 59.375168474867 GHz equals
0.777%. The results for different discretization grids are shown in Table 6.11. For
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Er Ez

Figure 6.9: Normalized rms Er and Ez field plots for the quasi-TEM0,0,20 mode in an
inhomogeneous hemispherical resonator (cf. Figure 6.7). The discretization grid applied:
∆r = ∆z = 1.5 · 0.237 mm = λ/12.

FD Matrix Resonant frequency Relative error
grid size [GHz] [%]
λ/15 32770 58.913499369858 -0.777
λ/20 73780 59.168570954669 -0.348
λ/30 165100 59.266261667606 -0.183
λ/∞ – 59.375168474867 0.000

Table 6.11: Error due to numerical dispersion in the FDFD algorithm on Yee’s mesh for
an empty hemispherical resonator. The table entry denoted λ/∞ gives the theoretical,
reference resonant frequency.

the finest grid applied the error is still 0.183%. In the case of the resonator with
the dielectric filling and the same discretization grid the computed resonant frequency
equaled f = 57.02053612372188 GHz. The error relative to the theoretical frequency
ft = 57.69091347456410 GHz equals 1.163%. The results for different discretization grids
are shown in Table 6.12. In this case the smallest error equals 0.196%.

The values of relative errors obtained for the applied grids are still too large for the
numerical method to be used in practical measurements. This problem may be solved by
further refinement of the grid, but this appears to be impractical since it increases (already
large) matrix size and slows down the convergence of the IRAM solver. Consequently,
a different strategy, based on technique of correcting the effects of numerical dispersion
(proposed in Section 4.1.3) should be applied, in order to improve the properties of the
numerical solver. This strategy is discussed in the following paragraph.
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FD Matrix Resonant frequency Relative error
grid size [GHz] [%]
λ/15 32770 57.02053612372188 -1.163
λ/20 73780 57.45054906432008 -0.417
λ/30 165100 57.57789349284087 -0.196
λ/∞ – 57.69091347456410 0.000

Table 6.12: Error due to numerical dispersion in the FDFD algorithm on Yee’s mesh for a
hemispherical resonator with dielectric filling (cf. Figure (6.9)). The table entry denoted
λ/∞ gives the theoretical, reference resonant frequency.

Grid A Resonant frequency Relative error
[GHz] [%]

λ/15 1.00800933665862 59.378210357138 -0.005
λ/20 1.00354468643016 59.375151192199 -0.00003
λ/∞ – 59.375168474867 0.00000

Table 6.13: Dispersion-corrected results of the resonant frequency for the quasi TEM0,0,20

mode in a homogeneous hemispherical resonator.

6.2.2.1 Correction of numerical dispersion

In order to reduce the errors due to numerical dispersion the low-cost correction tech-
nique described in Section 4.1.3 has been applied in the IRAM-FDFD solver for the open
resonator problem.

Initially, the case of empty hemispherical resonator has been investigated. Table 6.13
shows resonant frequencies computed with IRAM-FDFD algorithm using values of A
optimized for the theoretical resonant frequency f0. The other optimization parameters
equaled kz = 2πN/L = 2π · 10 rad/(51.3 mm), where L is the length of the cavity,
kr = sqrt(k2 − k2

z), where k = 2πf0/c and the value of I corresponds to the cylindrical
plane with the radius R/10 (A certain rationale for this choice is that most of the power
of the modal field is enclosed in that cylindrical region (cf. Figure 6.8)). Comparing
the results with data shown in Table 6.11 one notes a substantial improvement in the
computed resonant frequencies. Table 6.14 shows resonant frequencies computed with
IRAM-FDFD using values of A optimized for different cylindrical planes. Although the
best results are obtained for R/10, in any case the reduction of numerical error with
respect to the non-optimized case is substantial.

Instead of performing optimization of the value of A for a fixed frequency one may
apply an iterative scheme introduced in Section 4.1.4 in order to enhance the quality of
the computed results. In this scheme (cf. Table 6.15) the computed resonant frequency,
providing an approximation for the exact resonant frequency, is used to find an optimized
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A Resonant frequency Relative Optimized
[GHz] error [%] for

– 59.37516847874867 0.000 –
1 58.91349971348569 -0.777 –
1.00800933665862 59.37821035713776 0.005 R/10
1.00777725841457 59.36474306226363 -0.018 R/5
1.00773735322444 59.36242819476590 -0.022 R/3
1.00771941522412 59.36138700979552 -0.0232 R/2
1.00771689609819 59.36124092386456 -0.0235 R

Table 6.14: Dispersion-corrected results of the resonant frequency for the quasi TEM0,0,20

mode in a homogeneous hemispherical resonator. The optimization has been performed
for different cylinder sizes. The discretization grid is ∆r = ∆z = 1.5 · 0.237 mm.

Optimization Value of A Resonant frequency Relative
frequency [GHz] [GHz] error [%]
- 1.00000000000000 58.91349971348569 -0.777
58.91349971348569 1.00814383806358 59.38601254832548 0.018
59.38601254832548 1.00800626897733 59.37803159008240 0.005

Table 6.15: Iterative reduction of the error due to numerical dispersion for the ho-
mogeneous resonator problem. The resonant frequencies for the quasi-TEM0020 mode
computed in one step are used in the next step to find the optimized value of A.
∆r = ∆z = λ/15 (N = 32770).

value of A in the next step, i.e. parameter A is found for the resonant frequency computed
in the previous iteration. From Table 6.15 one may note that just after 2 iterations the
result obtained with λ/15 grid for this scheme is approximately 10 times better (in terms
of relative error) than the result for the λ/30 grid (compare Table 6.11 or Table 6.16).

In order to assess whether it is efficient to use the discussed iterative scheme we have
compared the execution times of IRAM-FDFD algorithm for different grid sizes. Table
6.16 shows number of IRAM implicit update iterations and matrix-vector multiplications
needed to obtain convergence along with execution times (for parallel execution on 4
processors) for different grid sizes. The last row shows data for 2 subsequent iterations
of the IRAM-FDFD algorithm, corresponding to the iterative correction of the error due
to numerical dispersion. One notes that this scheme is more than four times faster than
the basic solver for the grid size λ/30, giving much better results.

The tests have also been performed for the case of hemispherical resonator loaded with a
dielectric sample (cf. structure in Figure 6.7). Table 6.17 presents resonant frequencies for
this case computed with IRAM-FDFD algorithm. The correction of numerical dispersion
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Problem Grid No. of No. of Av Execution Relative
size size updates operations time [s] error [%]
32770 λ/15 85 2216 1091.43 -0.777
73780 λ/20 107 2699 4690.47 -0.348
165100 λ/30 181 4418 8884.84 -0.183
32770 λ/15 170 4432 2197.78 0.018
2-iter.

Table 6.16: Comparison of the number of of implicit updates, matrix-vector operations
and execution times for the IRAM-FDFD algorithm, for different problem sizes. The last
row shows data for the 2 repetitions of the IRAM-FFT algorithm, performed in order
to reduce the dispersion error. The tests have been performed in the Cray T3E system
using 4 processors.

Grid A Resonant frequency Relative error
[GHz] [%]

λ/15 1.00806364207505 57.47324359009531 -0.37
λ/20 1.00356777087715 57.65191932766050 -0.07
λ/20 1.00401803934350* 57.67794770894802 -0.03
λ/∞ – 57.69091347456410 0.00

Table 6.17: Dispersion-corrected results of the resonant frequency for the quasi TEM0,0,20

mode in an inhomogeneous hemispherical resonator.

has been performed by using values of A optimized for the theoretical resonant frequency.
Comparing the results with data shown in Table 6.12 one notes a good improvement in
the computed resonant frequencies. It should be mentioned that the optimization of the
values of A has been performed for the cylindrical plane with the radius R/10. Once
again, the rationale for this choice is that most of the power of the modal field is enclosed
in that cylindrical region (cf. Figure 6.9). In Table 6.17 the value of A marked with an
asterisk(*) has been obtained using the following heuristic procedure. The two values of
A have been computed: one for a hollow resonator and one for a resonator completely
filled with dielectric material with relative permittivity ε = 10. The final value of A has
been computed as a weighted mean value of the two numbers, with weights reflecting the
proportion of the volume of dielectric filling to the volume of the entire resonator. One
notes that for this value of A results in a smaller relative error of the computed resonant
frequency.

Analogously as for the case of an empty hemispherical resonator, the values of pa-
rameter A are computed without referring to any fixed resonant frequency. Instead, the
iterative scheme discussed in the previous paragraph may be applied. Tables 6.18 and
6.19 show the results obtained in this way. The data in the second table refers to the
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Optimization Value of A Resonant frequency Relative
frequency [GHz] [GHz] error [%]
- 1.00000000000000 57.02053612372188 -1.17
57.02053612372188 1.00788431822189 57.46329577804698 -0.40
57.46329577804698 1.00800251347183 57.46994349600465 -0.38

Table 6.18: Iterative reduction of the error due to numerical dispersion for the inho-
mogeneous resonator problem. The resonant frequencies for the quasi-TEM0020 mode
computed in one step are used in the next step to find the optimized value of A, com-
puted with assumption that ε = 1. ∆r = ∆z = λ/15 (N = 32770).

Optimization Value of A Resonant frequency Relative
frequency [GHz] [GHz] error [%]
- 1.00000000000000 57.02053612372188 -1.17
57.02053612372188 1.00858350560113 57.50256536476118 -0.32
57.50256536476118 1.00872483204390 57.51050773068695 -0.31

Table 6.19: Iterative reduction of the error due to numerical dispersion for the inho-
mogeneous resonator problem. The resonant frequencies for the quasi-TEM0020 mode
computed in one step are used in the next step to find the optimized value of A, com-
puted as a weighted mean for the cases when ε = 1 and ε = 10. ∆r = ∆z = λ/15
(N = 32770).

scheme, in which A was computed iteratively as a weighted mean of A’s for the region
with ε = 1 and ε = 10. Apparently, application of the weighted sum gives slightly better
results. Nevertheless, it appears that for the discussed grid size (λ/15 outside the dielec-
tric, the error cannot be reduced to less than approximately 0.3%. This can be interpreted
in the following way: The grids inside and outside dielectric filling may be considered
as different grids, due to different permittivities, directly related to wave propagation
velocity. In fact, inside the dielectric sample the wave propagates in a grid which is rel-
atively much coarser than λ/15 (which is the grid size for the wave propagating outside
the sample). So, the numerical wave propagates in two grids characterized by different
velocity anisotropy, and consequently the phase error cannot be consistently canceled in
both regions. Further improvement of the results seems to require both refinement of the
FD grid and iterative correction of numerical dispersion.

6.2.3 Cylindrical resonator without rotational symmetry: nu-

merical results

So far the considerations focused on modeling large open resonators which possess ro-
tational symmetry (i.e. are homogeneous in the φ direction). As shown in the previous
chapters the problem of modeling these structures could be reduced to two dimensions,
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Figure 6.10: Schematic of the r−φ cross-section of a cylindrical resonator with a dielectric
filling, inhomogeneous in the φ direction.

which allowed one to efficiently solve the numerical problem. If the structure lacks ro-
tational symmetry, the problem domain may no longer be reduced to 2D. In this case
a full three-dimensional computational domain has to be considered, which has serious
implications on the size of the resulting discrete operator eigenproblem. If we consider
a finite difference scheme involving e.g. 150 grid points in r, z and φ directions (which
is typical for the discussed applications) the problem size (for the formulation involv-
ing transverse field components) will equal approximately 6.7 · 106, which means that
the problem will be extremely large and difficult to handle by any numerical treatment.
Consequently, a different strategy of finite-dimensional projection, resulting in a more
compact discrete representation has to be applied. This strategy is based on the hybrid
projection scheme proposed in Section 4.3.1, applying finite difference technique in r and
z directions and functional representation in φ direction. In this approach the number
of expansion functions applied to represent the respective fields is typically smaller than
the number of discretization points in the spatial domain (in the φ direction). In this
way the dispersion error is appropriately reduced, while avoiding excessive growth of the
problem size.

Below an example of application of the mentioned technique is presented. In this appli-
cation the hybrid projection method is implemented together with IRAM. The numerical
solver (denoted as IRAM-HYBRID) is used to modeling electromagnetic structures, such
as one shown in Figure 6.10. The Figure shows an r − φ cross-section of a cylindrical
resonator filled with a dielectric material which has a ‘disturbed’ geometry. Clearly, this
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ω2 ω2

coupled fields decoupled fields
3.40528869 · 1020 3.40485010 · 1020

3.40528869 · 1020 3.40091483 · 1020

Table 6.20: Squared resonant frequencies computed for a ‘symmetric’ cylindrical cavity
(coupled fields) and ‘disturbed’ cavity (decoupled fields) shown in Figure 6.10.
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Figure 6.11: Normalized rms Er and Ez field plots for the mode in the resonator shown
in Figure 6.10. The discretization grid applied: ∆r = ∆z = 6 · 0.237 mm, number of
expansion terms applied in φ direction = 20, FFT length = 256.

structure is inhomogeneous in the φ direction. It has been selected for tests in order
to investigate mode degeneration. In the case when the disturbance is removed, i.e. the
dielectric filling is a uniform cylinder with radius r1 = 20 mm, it is expected that degen-
erate, coupled modes appear in the resonator. Due to the small insertion which disturbs
the rotational symmetry of the structure, these modes should decouple into two separate
modes with slightly different resonant frequencies.

This effect may be modeled by using the IRAM-HYBRID algorithm, in which degen-
erate modes easily appear due to selected Fourier functional basis in the φ direction. The
degenerate eigenvalues have then a space of corresponding eigenvectors of dimension more
than 1. Table 6.20 shows the results of computations for the symmetric and ‘disturbed’
structures (the ‘disturbed’ structure is shown in Figure 6.10). In both cases the distance
between the flat mirrors equaled 51.3 mm and the screening walls were placed at the
distance R = 40.1 mm from the axis of the structure. The table shows the computed
values of squared resonant frequencies for decoupled modes for a selected low order mode.
The modal field distributions for these modes (in both ’coupled’ and ’decoupled’ case)
are very similar. One of them is shown in Figure 6.11.
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In the performed computations the number of Fourier expansion terms used in the
representation of fields in the φ direction equaled 21. The number of discretization
points in the r and z direction equaled 29 and 37, respectively. Consequently, the size
of the solved eigenproblem equaled N = 45066. The FFT length equaled 256, which
corresponds to 256 discretization points in the φ direction for the spatial domain. It
has to be stressed that identical results have been obtained if only 11 Fourier coefficients
have been used. (Then, the problem size equaled N = 23606.) This observation indicates
that a sufficient functional representation has been used. It also implies that important
savings can be made by applying the discussed hybrid projection scheme. One should
note that implicit projection scheme was used in the computation was used in this case
(i.e. operator matrix was never formed). Now, if instead of hybrid discretization, the finite
difference discretization were applied in all 3 spatial directions, with 256 grid points in
the φ direction, the size of the problem would equal approximately 600000. This would
imply significant increase in both memory storage requirements and computational effort
needed to solve this problem.

6.3 Summary

In this chapter a number of previously proposed numerical techniques have been applied
to solving selected problems arising in electromagnetic modeling. The solvers which have
been constructed may generally be characterized as follows:

• For all the methods the memory cost associated with solving the eigenproblems is
linear.

• The computational complexity is either linear (for solvers based entirely on FDFD)
or linear-logarithmic (for methods using functional expansions).

• The size of the discrete eigenproblems derived from initial electromagnetic problems
is kept as small as possible by using: 1) formulations involving reduced number of
variables, 2) cost-efficient projection method based on eigenfunction expansions in
2D, 3) hybrid projection technique for 3D problems.

• Adequate accuracy of the solvers is obtained by dealing with errors e.g. due to
numerical dispersion by 1) applying oversampling in the spatial domain (for eigen-
function expansion based algorithms), 2) introducing schemes correcting dispersion
error for FDFD based solvers.

The above features bring the presented solvers, based on proposed numerical tech-
niques, close to the case of an ideal algorithm, discussed in the beginning of this chapter.
Clearly, a number of trade-offs is observed, e.g. reducing problem size versus increas-
ing computational cost for algorithms based on eigenfunction expansions. Nevertheless,
the validation tests show that the postulates or goals set forth while systematically con-
structing the discussed algorithms were adequate, leading to efficient solvers, capable
of dealing with large scale electromagnetic problems. The results prove that satisfying
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the requirements, such as low memory and computational complexity or reducing size
of the discrete problems, provides means to construct effective and efficient numerical
solvers. The following chapter shows that the proposed techniques are also characterized
by good efficiency in parallel processing environments, which further extends their range
of applicability.



Chapter 7

Performance of the solvers –
numerical results

The previous chapter concentrated on presenting the scope of applications of the discussed
numerical algorithms in modeling of large scale electromagnetic systems. This part of
the study focuses on performance of the proposed solvers, assessed by investigating firstly
their scalability in distributed memory systems and secondly their rate of convergence.

The parallel performance tests have been carried out using mainly the 24-processor
Cray T3E system as well as the 15-node IBM SP2. Both supercomputers belong to
a class of scalable parallel distributed memory systems. A broad discussion of their
characteristics is presented in [94] and [95].

7.1 Parallel solvers using FDFD discretization

This section presents the results of performance tests of the parallel implementation of
the IRAM-FDFD solver, described in Section 5.3. The tests aim at assessing mainly
the speedup of computations achieved during parallel execution of the eigensolver. This
parameter provides most substantial information about the performance of the parallel
method, determining whether it may be efficiently used to model large scale problems.
The presented tests, performed in a parallel system, involve solving electromagnetic eigen-
problems widely discussed in the previous chapters. Consequently, the obtained results
are relevant to situations in which the proposed algorithms are applied to solving ‘real’
engineering or scientific numerical problems.

7.1.1 Parallel Arnoldi solver applied to modeling waveguiding

structures

The presentation of parallel performance of IRAM-FDFD solver starts with describing
numerical tests involving application of the method to modeling an image guide (structure
C in Figure 6.1). This operator problem has already been described in the previous

143
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Figure 7.1: Execution time of the parallel IRAM-FDFD solver as a function of the number
of processors involved in the computation. The tests were performed in the Cray T3E
system.

chapter (Section 6.1.1), therefore only parameters relevant to the performance of the
solver are given below. The essential input parameters defining the tests were as follows:

1. The size of the input matrix operator equaled N = 39700; the matrix was sparse
with 199538 non-zero elements; among the non-zero elements 95% were located in
the five diagonals: 0 (main diagonal), +2, -2, +199, -199; the bandwidth of the
matrix equaled 402.

2. IRAM parameters: NEV = 4 (number of eigenvalues to be found), NCV = 20
(number of additional eigenvalues to be filtered out). For some tests: NEV=15 and
NCV=40

3. The stopping criterion – the accuracy of computed eigenvalues equaled tol = 1.2 ·
10−16.

The following series of tests was performed in the Cray T3E parallel system. Both
the P ARPACK library (cf. Appendix B) and the solver code were compiled using the
following directive: f90 -O3 -X m xxx.f -o xxx -lsci -lmpi.
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Number Total time [s] Efficiency Total time [s] Efficiency
of PEs NEV=4, [%] NEV=15, [%]

NCV=20 NCV=40
1 225.26 100 631.42 100
2 118.27 95 326.33 97
4 59.38 95 180.10 88
8 30.70 92 90.56 87
16 16.15 87 51.05 77
24 12.52 75 37.99 69

Table 7.1: Selected total execution times of the parallel IRAM-FDFD solver as a function
of the number of processors involved in the computation. The table also shows parallel
efficiency of the solver. The tests were performed in the Cray T3E system.
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Figure 7.2: Speedup in the execution time while calculating the matrix-vector (OP*x)
product in the IRAM-FDFD solver in the function of the number of processors involved
in the computation. The tests were performed in the Cray T3E system. The dotted line
shows perfect linear speedup.

Figure 7.1 shows the total execution time of the parallel IRAM-FDFD solver vs. the
number of processors involved in the computation. For convenience, the same results
for selected numbers of processors have also been shown in Table 7.1 along with parallel
efficiency of the solver (cf. Section 5.1). Figures 7.2 and 7.3 show the speedups in the
execution time of the parallel calculation of the matrix-vector (OP*x) product and the
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Figure 7.3: Speedup in the total execution time of the parallel IRAM-FDFD solver as
a function of the number of processors involved in the computation. The tests were
performed in the Cray T3E system. The dotted line shows perfect linear speedup.

total time used by the solver. It may be noted that the speedup while calculating the
matrix-vector product is almost perfect. This very good result is the consequence of
achieving appropriate workload balancing across the processors as well as limited inter-
processor communication. These two goals could have been achieved using simple domain
decomposition method due to highly regular FDFD matrix structure and low matrix
bandwidth, respectively. It may also be observed that the speedup in total execution
time is lower as compared to the speedup for the matrix-vector product operation, which
means that overheads due to parallel execution are on the side of the parallel Arnoldi
solver. Still, the speedup reaches 18 for 24 processors involved in the computation which
is a fairly good result.

Another thing which may be noted in Figure 7.3 is a relatively unstable performance of
the solver for NEV=15 and NCV=40 (cf. list of symbols). This effect is due to a different
number of both Arnoldi update iterations and matrix-vector operations performed during
the execution of the algorithm with different number of processors applied. This phe-
nomenon does not occur for the parameters NEV=4 and NCV=20. Generally speaking, it
has been noted that a variable number of iterations occurs if the problem becomes larger
and if more iterations are necessary to obtain the convergence of the Arnoldi process.
Still, this does not explain the dependence of the number of iterations on the number of
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processors used. A possible explanation is that during the implicit updates and during
the initial iteration of the Arnoldi factorization the vectors submitted to the iterative
process are generated by each processor using only local data. In this case the global
form of these vectors can be different for different number of processors applied. Con-
sequently, the starting point of the iterative process before each implicit restart may be
different for different number of processors involved in the computation.
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Figure 7.4: Speedup in execution time of a single iteration of the IRAM-FDFD algorithm
and the single matrix-vector product computation for the case NEV=15, NCV=40. The
tests were performed in the Cray T3E system. The dotted line indicates the linear
speedup.

If now, for the case of NEV=15 and NCV=40, we compute the speedups in computation
time per single iteration of the algorithm we shall obtain much more stable results,
presented in Figures 7.4 and 7.5, which show a true speedup in computations due to
parallelization. In fact the discussed graph of the speedup is almost identical to the case
of NEV=4, NCV=20 (cf. Figures 7.2 and 7.3). The total parallel efficiency of a single
iteration of the solver equals approximately 75%, which agrees with the result for NEV=4
and NCV=20.

Another aspect of parallel execution which has been investigated for the discussed
parallel IRAM-FDFD solver is the workload balancing achieved for the applied parallel
data distribution scheme. Figure 7.6 shows the relative difference of the execution times
for the processors involved in a parallel computation. The investigated task was run
on 24 processors and the differences (in %) are related to the execution time for the
processor 1. It is apparent that the load balancing is almost perfect, with the largest
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Figure 7.5: Execution time of a single iteration of the IRAM-FDFD algorithm and the
single matrix-vector product computation in the function of the number of processors
applied for the case: NEV=15, NCV=40. The tests were performed in the Cray T3E
system.

relative difference in execution time equaling 0.4%. Consequently, it may be stated that
an appropriate parallel data distribution scheme has been applied in the solver.
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Figure 7.6: The per cent variation in execution times (as related to the execution time
for processor 1) on different processors involved in a parallel computation for the IRAM-
FDFD solver. The tests were performed in the Cray T3E system.
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7.1.2 Parallel Arnoldi solver applied to modeling resonators

This section presents performance tests for the IRAM-FDFD solver applied to modeling
resonators possessing rotational symmetry. In this case the operator matrix has a regular
11-diagonal form, customized for parallel distribution, as described in Section 5.3.2. Dur-
ing the numerical tests the matrix size equaled N = 165100, the number of eigenvalues to
be found NEV = 30 and NCV = 60 (cf. list of symbols). The stopping criterion equaled
tol = 1 · 10−6.
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Figure 7.7: Scalability of the IRAM-FDFD solver in the Cray T3E parallel system.
Matrix size N = 165100.

Figures 7.7 and 7.8 show, respectively, the speedup (per iteration) in the total execu-
tion time of the solver and speedup in computing the matrix-vector product. The total
execution time for the IRAM-FDFD solver vs. the number of processors has been shown
in Figure 7.9. The Figures show an almost perfect speedup of the considered parallel
solver in a distributed memory system. In this case the parallel efficiency of the solver
ranges from 100% to approximately 95%.

One may note that the speedup of the IRAM-FDFD solver applied to solving the
current matrix problem is better than the speedup obtained for the IRAM-FDFD method
applied to solving waveguiding problems, described in the previous section (compare
Figure 7.3). The reason for this may be either the form of the operator matrix involved
or the effect of scaling the problem. In the previous section the problem size equaled
about 40000, while now it equals approximately 160000. The bandwidths of the involved
matrices equal approximately 400 and 500, respectively. Consequently, relatively more
time is spent on inter-processor communication (whose amount is proportional to the
matrix bandwidth) in the first case than in the second case. This is most likely to be
the main cause of the lower parallel speedup in the first case. The effect of matrix
customization described in Section 5.3.2 is difficult to assess, due to the fact that if
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‘tapered end’ appears, then the matrix looses its regular 11-diagonal structure and a
different method of matrix-vector multiplication algorithm has to be applied.
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Figure 7.8: Scalability of the matrix-vector product in the Cray T3E parallel system for
the IRAM-FDFD solver. Matrix size N = 165100.
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Figure 7.9: Total execution time of the IRAM-FDFD solver in the Cray T3E parallel
system. Matrix size N = 165100.
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7.2 Eigenfunction Expansion based algorithms

The performance tests of the parallel IRAM-FFT solver using implicit representation of
operator and functional discrete representation (described in Section 5.4) have focused
on measuring the speedup achieved by the program in given parallel distributed memory
environments. All the following tests have been performed in the two scalable parallel
systems: the IBM SP2 and the Cray T3E.

The first of the figures in this section (Figure 7.10) shows the execution times for the
IRAM-FFT solver (number of the eigenvalues to be found NEV=8, size of the constructed
Krylov subspace NCV=40) for different Fast Fourier Transform lengths and different
number of expansion terms used to represent the functions in the input operator’s domain.
Analogous results are shown in Figure 7.11 for the tests performed in the Cray T3E
system.
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Figure 7.10: Total execution time of the IRAM-FFT parallel solver as a function of the
FFT length. The tests have been performed in the IBM SP2 system. (NEV=8, NCV=40)

Both plots show comparable performance of the parallel solver. It may be noted that
doubling the number of expansion terms (in every spatial direction) increases the total
execution time roughly 10 times. This effect is clearly attributed to approximately four-
fold increment in the computation time of the matrix-vector product and increment in
the number of IRAM iterations, due to larger spectral radius. The results of the tests
indicate that approximately two-fold increment in the number of iterations is observed,
which is consistent with what we could expect due to the increased spectral radius.

Figure 7.12 shows the speedup in the total execution time of a single iteration of the
IRAM-FFT solver in the Cray T3E platform. The best speedup may be observed in
the case when the number of expansion functions equals 256 in every direction and the
FFT length equals 1024 (in both directions). This indicates that applying a larger, more
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Figure 7.11: Total execution time of the IRAM-FFT parallel solver as a function of the
FFT length. The tests have been performed in the Cray T3E system.
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Figure 7.12: Speedup in the total execution time of a single iteration of the IRAM-FFT
parallel solver vs. the number of processors. The tests have been performed in the Cray
T3E system.

complex problem gives better performance. In other words, the solver scales well with
the problem size. The other positive result which may be noted is that as the ratio
between the number of expansion functions and the FFT length increases, the parallel
performance also improves. This means that although the percentage of time spent on
the matrix-vector product computation related to the total execution time increases and
also the size of inter-processor communication during the parallel transposition operation
becomes larger this does not cause a parallel communication bottleneck.

Figures 7.13 and 7.14 show the speedups in the execution time of a pair of operations:
a backward 2D FFT and a forward 2D FFT, as a function of the number of processors
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applied. This pair of operations is performed within each matrix-vector operation and
includes virtually all inter-processor communication, therefore it is a suitable measure for
assessing parallel performance of the solvers using implicit projection scheme based on
FFTs. The speedups were computed for the average time of a single pair of the mentioned
operations. It may be noted from Figure 7.14 that although the speedups are high, they
are lower than the total speedup of the IRAM-FFT solver, which is an opposite situation
as compared to the case of the parallel IRAM-FDFD solver.
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Figure 7.13: Speedup in the execution time of a pair of operations: a backward 2D FFT
and a forward 2D FFT, as a function of the number of processors applied. The tests were
performed in the IBM SP2 system.
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Figure 7.14: Speedup in the execution time of a pair of operations: a backward 2D FFT
and a forward 2D FFT, as a function of the number of processors applied. The tests were
performed in the Cray T3E system.
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Number of Size of the operator Total execution
expansion functions matrix time [s]
5× 10 115 70.74
10× 10 220 105.33
20× 10 430 192.09
40× 10 850 371.52
80× 10 1690 892.69
160× 10 3370 2216.21

Table 7.2: The total execution time (for one processor) of the IRAM-FFT solver for
different numbers of expansion functions used to approximate the 2D fields by the Fourier
expansions. The tests were performed in the IBM SP2 system (NEV=15, NCV=40, FFT
length = 256).

DFT Length Total execution time [s]
256× 256 444.68
512× 256 825.52
1024× 256 1611.83
1024× 512 4023.25
1024× 1024 9235.12

Table 7.3: The total execution time (for one processor) of the IRAM-FFT solver for
different discretization grids (FFT lengths). The number of expansion terms used to
approximate the 2D fields equaled 20 in every spatial direction. The tests were performed
in the IBM SP2 system.

In Tables 7.2 and 7.3 the total execution times (for a single-processor execution) of
the IRAM-FFT solver are shown for different number of expansion functions used and
different FFT lengths. The results confirm a rather stable behavior of the solver which is
reflected in the linear or linear-logarithmic type of time growth with the growing problem
size (N) or spatial domain size (FFT length). This type of growth may be contrasted with
drastic time increment observed in the Galerkin Method (GM) (using the QR algorithm
to find eigenvalues of the operator matrix) – compare Table 7.4. This last table shows the
substantial difference in performance of the classical method (the Galerkin Method) in
which an explicit representation of the input operator is applied producing a dense matrix
and the proposed IRAM-FFT method which uses implicit operator representation.

Another series of tests compared performance of the IRAM-based solvers using explicit
and implicit operator representation (cf. Section 4.2.1). Table 7.5 shows execution times
for two solvers: IRAM-FFT - discussed above, using implicit operator projection and
IRAM-GM - based on IRAM and using exactly the same operator discretization, as
IRAM-FFT, still constructing the dense operator matrix explicitly by calculating its
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Number of expansion Time [s] Time [s]
functions: GM-QR: IRAM-FFT:
10 * 10 1.61 8.85
20 * 20 304.92 19.94
30 * 30 4254.86 38.22

Table 7.4: Comparison of the execution times (on one processor) between the Galerkin
Method (GM) using QR solver and the IRAM-FFT solver. In case of the IRAM-FFT
method: FFT length = 256, NEV=4, NCV=20. The tests were performed in the IBM
SP2 system.

No. of Matrix genera- Total Total
expansion tion time [s] time [s] time [s]
functions IRAM-GM IRAM-GM IRAM-FFT
200 0.04 0.16 1.78
400 0.17 0.62 3.90
800 0.68 2.40 5.10
1600 2.75 13.96 11.53
3200 11.44 73.41 19.28
6400 46.17 521.53 40.06
7200 58.89 628.51 55.42

Table 7.5: Comparison of execution times of the IRAM-based solvers using explicit
(IRAM-GM) and implicit (IRAM-FFT) operator projection.

elements. In both cases exactly the same discrete eigenproblem is being solved, so the
number of implicit Arnoldi updates and matrix-vector products performed to obtain
convergence also remains the same. The results show that for very small matrix sizes the
solver using explicit matrix representation is faster than the solver using implicit matrix
representation. For N=1600 (2 times 20 × 40 expansion terms) the IRAM-FFT solver
becomes faster and for the matrix size N=7200 (2 times 60 × 60 expansion terms) its
total execution time is shorter than the time needed to construct the explicit form of the
matrix in the IRAM-GM algorithm! This result provides a clear argument in favor of
using implicit operator representation rather than explicit representation in case of large
scale operator eigenproblems.

7.3 Hybrid algorithms

This section presents results of parallel performance tests for the IRAM-HYBRID algo-
rithm applying hybrid method of finite-dimensional operator projection in a 3D space
defined in a cylindrical coordinate system. The algorithm has been described in Sections
4.3.1 and 5.5. Figure 7.15 shows the speedup in the execution time of a single iteration
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Figure 7.15: Speedup in a single iteration of the IRAM-HYBRID algorithm. Problem
size N = 45066. The tests have been performed in the Cray T3E parallel system.

Number of Total execution
processors time [s]
1 13781.23
2 6898.75
4 3488.98
8 1766.79
16 912.66
24 612.51

Table 7.6: Speedup in a single iteration of the IRAM-HYBRID algorithm. Problem size
N = 45066. The tests have been performed in the Cray T3E parallel system.

of the IRAM-HYBRID algorithm. In this case the global matrix problem size equaled
N = 45066. The number of eigenvalues to be computed NEV=10 (NCV=40). Table 7.6
shows the total execution times for the solver. Once again, due to highly regular struc-
ture of the FDFD matrix and limited matrix bandwidth, good workload balancing and
reduced amount of inter-processor communication have been achieved, which resulted in
a nearly linear speedup of the parallel solver. One should note that this is also due to the
fact that the Fast Fourier Transforms performed during matrix-vector product operation
are computed only in one spatial dimension, which does not require any inter-processor
communication.
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Figure 7.16: Comparison of single-processor execution times of IRAM-FDFD and IRAM-
FFT solvers for different number of eigenvalues to be found and different FFT lengths
applied. The tests have been performed in the Cray T3E system.

7.4 Comparison of performance of the proposed eigen-

solvers

In this section we shall present a short comparison of execution times of the IRAM-FFT
and IRAM-FDFD algorithms. In the comparison we investigate single-processor execu-
tion times for the considered methods, applied to solve the same problem (in physical
terms). The problem consists of finding propagation constants in one of the waveguiding
structures discussed in Chapter 6 (cf. structure C in Figure 6.1). The test parameters
were as follows: 1) For both algorithms the stopping criterion equaled 1.2e − 16. 2) In
the case of the IRAM-FDFD algorithm the 200× 100 discretization grid was used. 3) In
the case of IRAM-FFT method the number of expansion functions equaled 40 in both x-
and y- directions. The FFT lengths equaled 128, 256, 512 or 1024 in every direction. 4)
For both algorithms the size of the constructed Krylov subspace equaled 20 (NCV=20)
and the number of eigenfunctions to be found (NEV) equaled 1, 2 or 4. With this choice
of input parameters one may expect that the quality of approximations of eigenvalues
computed using the discussed solvers will roughly be the same.

The plot shown in Figure 7.16 presents the execution times for the IRAM-FDFD algo-
rithm and IRAM-FFT method (for different FFT lengths) as a function of the number
of eigenvalues to be found. One may note that the IRAM-FFT algorithm is faster if the
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Problem No. of No. of Total OP*x
NEV size updates OP*x time time

operations [seconds] [seconds]

IRAM-FFT (128× 128)
1 33024 142 2860 112.35 23.07
4 33024 168 5983 171.57 47.91

IRAM-FDFD (200× 200)
1 79600 61 1240 80.27 5.56
4 79600 121 4264 191.24 19.10

IRAM-FDFD (128× 128)
1 32512 34 700 18.42 1.31
4 32512 77 2688 50.02 5.03

Table 7.7: Comparison of the number of updates, the number of matrix-vector product
operations (OP*x) performed by the IRAM process and the execution times for IRAM-
FFT and IRAM-FDFD solvers. In the case of IRAM-FFT algorithm both FFT length
and the number of expansion functions used equaled 128. For IRAM-FDFD algorithm
the discretization grid equaled 200× 200 or 128× 128. In all cases: NCV=40 and NEV
= number of eigenvalues to be found.

FFT length equals 128 or 256. Still, if FFT length equals 512 then the IRAM-FDFD
algorithm appears to be twice as fast as the IRAM-FFT method. It should be stressed
here that the number of update iterations of the IRAM process did not change at all
with the changing FFT lengths in the IRAM-FFT algorithm. It means that the growth
in execution time while changing the FFT length is due solely to the increasing execution
time of calculating the inner products (cf. Section 4.2.2). Another interesting observa-
tion can be made about the presented results. It is apparent that the execution time
grows faster for the IRAM-FDFD algorithm than for the FFT-based algorithm with the
growing number of eigenvalues to be found. It is not known whether this tendency is
stable or for what range of parameters it occurs, as the computational complexity of the
IRAM-FDFD solver is lower than the cost of FFT-based algorithms. Still, due to smaller
size of the problem solved in the IRAM-FFT method (as compared to the IRAM-FDFD
method) the growth of the number of iterations of the IRAM process necessary to ob-
tain convergence is not so dynamic as in the IRAM-FDFD method and compensates the
higher complexity of the IRAM-FFT algorithm.

Table 7.7 shows a comparison of the number of update iterations and OP*x operations
for the IRAM-FFT and IRAM-FDFD algorithms if one and four eigenvalues are to be
computed. One may note that while for the IRAM-FFT algorithm the number of update
iterations increases by less than 20% (for NEV=4), it doubles for the IRAM-FDFD
algorithm. The increment in the number of matrix-vector products (inner products) to
be computed also changes more rapidly for the IRAM-FDFD algorithm. Consequently,
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the growth in execution time is also faster for the IRAM-FDFD compared to IRAM-FFT
solver. Lastly, it should be noted that the time spent on calculating the matrix-vector
product does not exceed 10% of the total execution time of the IRAM-FDFD solver,
while for the IRAM-FFT solver this percentage may range from about 20% to more than
90%. This fact is a consequence of transferring the complexity of the solver from the
IRAM iterative process to the operation of computing inner products (using 2D FFTs)
in the IRAM-FFT algorithm.

7.5 Summary

This chapter presented results of performance tests for the following parallel numeri-
cal solvers: IRAM-FDFD (using IRAM and Finite Difference-based projection), IRAM-
FFT (using IRAM and implicit projection based on eigenfunction expansions), IRAM-
HYBRID (using IRAM and hybrid type of operator projection, described in Section 4.3.1.
The following general observations can be made, summarizing the obtained results:

• All the parallel solvers are characterized by very good speedup in distributed mem-
ory scalable systems.

• The algorithms show good overall performance if applied to large scale computa-
tional problems.

• Using implicit operator projection schemes may be extremely advantageous in terms
of obtained performance while solving large problems.

• A comparable performance of IRAM-FFT and IRAM-FDFD algorithms has been
observed.
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Chapter 8

Conclusions

Previous chapters presented a discussion of a number of aspects arising in numerical
solving of operator Boundary Value Problems, which constitute one of the most im-
portant classes of problems in scientific computing. The main context of this discussion,
concerning methods of solving operator eigenproblems (in Chapter 3), techniques of finite-
dimensional operator projection (in Chapter 4) and scalable, parallel design problems (in
Chapter 5), was a broadly understood large scale electromagnetic modeling. This term
has been perceived throughout this work as modeling of electromagnetic systems which
are characterized by complicated geometry, complex material characteristics or relatively
large dimensions, so that application of classical numerical techniques is strongly limited
or simply impossible.

Within this study a number of new numerical algorithms have been constructed in
a systematic manner by imposing various requirements, defining admissible eigenprob-
lem solution methods, finite-dimensional operator projection techniques or parallelization
strategies. Special attention has been paid to the following factors, related to large scale
numerical modeling:

• Numerical complexity of algorithms solving discrete operator (matrix) eigenprob-
lems, which plays particularly important role if the problem sizes become very large
(e.g. over 105 unknowns)

• Memory storage requirements for a given discrete operator, often determining the
largest possible size of the problem domain to be modeled.

• Complexity of the finite-dimensional operator projection technique.

• Accuracy of operator approximation associated with the projection method.

• Properties of the constructed discrete operator, including its size and spectral ra-
dius, spectrum characteristics, sparse or dense character of the operator matrix (if
operator is represented explicitly).

Additionally, in the context of parallel processing, a few other factors characterizing a
numerical solver in scalable computer systems have been considered, including:
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• Properties of the operator matrix, particularly matrix bandwidth, sparsity and
regularity of distribution of non-zero elements, which have impact on:

• Amount of inter-processor communication needed to complete the computations

• Locality of parallel computations.

• Balancing of the workload across the processing elements.

The formulated general goals or requirements to be satisfied by the constructed algo-
rithms included:

• Assuring low memory and computational complexity of both projection and solution
algorithms.

• Providing adequate accuracy of approximation of the initial operator, associated
with the finite-dimensional projection method.

• Reducing the spectral radius of the discrete operator.

• Assuring high regularity and low bandwidth of the matrix associated with a discrete
operator.

With these general goals to be met, the highly efficient scalable iterative Krylov sub-
space methods (e.g. IRAM) of solving operator eigenproblems have been selected as a
basis for developing the following original numerical techniques:

• Implicit finite-dimensional projection techniques allowing substantial reduction of
memory cost associated with solving an eigenproblem.

• FDFD projection algorithms producing sparse, highly regular banded matrix oper-
ators allowing efficient parallel mapping and reduction of the size of inter-processor
communication.

• Techniques of regularization of operator matrix, allowing better load balancing and
parallel data distribution.

• Correction method used to reduce the effects of numerical dispersion (and conse-
quently reduce numerical errors) arising in large scale problems involving operators
constructed the FDFD projection method. The proposed technique does not in-
crease the size of the problem and does not increase significantly the numerical cost
of the method.

• Finite-dimensional projection techniques based on eigenfunction expansions which
generally result in problems with reduced size as compared to problems generated
by FDFDmethod and allow one to deal with problems of numerical accuracy e.g. by
applying oversampling.
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• Hybrid finite-dimensional projection method, allowing one to reduce problem size
and spectral radius while modeling 3D structures in cylindrical coordinates.

• Algorithm of accelerating convergence of Krylov subspace algorithms by applying
Chebyshev polynomials (after [74], [75]).

Additionally a number of formulations of electromagnetic eigenproblems which allow
reduction of 3D problems to 2D problems and reduction of the number of variables have
been derived.

As shown in Chapter 6, the presented techniques have been successfully applied to
model a number of electromagnetic systems including:

• dielectric waveguides,

• large cylindrical and hemispherical resonators.

The results of validation tests clearly indicate that relevant methods have been pro-
posed and used to model discussed electromagnetic problems. Due to a number of ad-
vanced techniques applied, including acceleration techniques or correction of numerical
dispersion, the complex large scale problem of modeling open hemispherical resonator has
been efficiently solved. Until recently, this problem remained intractable due to excessive
computational costs of classical, orthodox numerical methods.

As shown in Chapter 7, the proposed numerical methods are capable of solving large
scale problems very efficiently. This refers either to serial performance which is often
incomparably better as compared to performance of some classical techniques as well as
parallel performance. The tests performed in massively parallel distributed memory su-
percomputers applying the parallel implementations of the discussed algorithms indicate
their high efficiency and scalability in these processing environments. This considerably
broadens the scope of application of the proposed methods to modeling very large, ‘grand
challenge’ electromagnetic problems.

The results of both validation and performance tests clearly show that the goals set
forth during construction of the proposed numerical algorithms constitute in fact key
requirements for a good, high performance parallel numerical algorithm, applicable to
solving large scale electromagnetic problems. These requirements may be summarized
below in the form of the following guidelines:

• Apply low cost numerical algorithms of solving discrete operator eigenproblems.

• Avoid explicit representation of a discrete operator – use implicit operator schemes
allowing reduction of memory cost.

• Apply operator formulations which allow reduction of the number of variables.



164 High Performance Algorithms for Large Scale Electromagnetic Modeling

• Apply numerical techniques which enhance convergence and accuracy of the solu-
tions without increasing the problem size.

• Apply solution techniques which allow one to embed projection procedures into the
solution of a numerical problem.

• Apply finite-dimensional projection methods which accurately (in a certain sense)
approximate the initial operator and at the same time assure that the discrete
operator has a number of desired properties, including:

– Reduced spectral radius.

– Reduced bandwidth (enhancing locality of data and parallel computations).

– Regular pattern of distribution of non-zero elements (if explicit representation
of a discrete operator is used).

– Sparse character (in the case explicit representation).

Summing up, the presented results prove that methodologies and requirements iden-
tified in the thesis of this study provide means to construct high performance parallel
algorithms capable of dealing with large scale problems arising in electromagnetic model-
ing. The successful application of the proposed original methods to a number of electro-
magnetic problems arising in scientific and engineering domains indicates that the main
goal of this work has been achieved.
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the Finite Difference solver in two dimensions and the Chebyshev preconditioner which
have served as a basis for further developments of the methods and their parallel imple-
mentations, as well as for help concerning issues in modeling of hemispherical resonators.

I also acknowledge the support of the Academic Computer Centre TASK in Gdańsk
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Appendix A: Derivation of the
operator eigenproblem for resonant
cavities

This appendix presents an analogue of derivation of operator eigenproblem (2.51) pre-
sented in Section 2.1.2, using expanded forms of vector equations. The main reason of
presenting this ‘practical’ derivation, which basically repeats the steps presented in Sec-
tion 2.1.2 is that it provides a reference for developing (in Chapter 4) an algorithm of
computing a matrix vector product T v , where T is a discrete analogue of operator from
equation (A.18) (or (2.52)).

The derivation below refers to a simplified case when the permeability and permittivity
tensors are diagonal:

↔
ε = diag[εr, εφ, εz],

↔
µ = diag[µr, µφ, µz] (A.1)

The assumed form of both electric and magnetic field defined in (r, φ, z) coordinates
is:

�D(r, φ, z) = �Dn(r, z)e
(−jnφ) and �B(r, φ, z) = �Bn(r, z)e

(−jnφ) (A.2)

where n is an integer number.

One starts with Maxwell’s curl equations (2.3) and (2.4) expanded in cylindrical coor-
dinates:

1

r

∂Ez

∂φ
− ∂Eφ

∂z
= −jωµ0µrHr (A.3)

∂Er

∂z
− ∂Ez

∂r
= −jωµ0µφHφ (A.4)

1

r

∂(rEφ)

∂r
− 1

r

∂Er

∂φ
= −jωµ0µzHz (A.5)
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1

r

∂Hz

∂φ
− ∂Hφ

∂z
= jωε0εrEr (A.6)

∂Hr

∂z
− ∂Hz

∂r
= jωε0εφEφ (A.7)

1

r

∂(rHφ)

∂r
− 1

r

∂Hr

∂φ
= jωε0εzEz (A.8)

The divergence equation for electric flux density takes the following form:

1

r

∂(rDr)

∂r
+

1

r

∂Dφ

∂φ
+

∂Dz

∂z
= 0 (A.9)

Substituting the �D field in the form (A.2) into the above equation yields a formula
for Dφ

n:

Dφ
n =

−j

n

∂ (rDr
n)

∂r
− jr

n

∂Dz
n

∂z
(A.10)

In the same way one may transform equations (A.3)-(A.5):

−jn

r
Ez
n −

∂Eφ
n

∂z
= −jωµ0µrH

r
n (A.11)

∂Er
n

∂z
− ∂Ez

n

∂r
= −jωµ0µφH

φ
n (A.12)

1

r

∂(rEφ
n)

∂r
− −jn

r
Er
n = −jωµ0µzH

z
n (A.13)

where Er
n = (ε0εr)

−1Dr
n, E

φ
n = (ε0εφ)

−1Dφ
n, E

z
n = (ε0εz)

−1Dz
n.

Using equations (A.10)-(A.13) one may derive formulae for Hr
n, H

φ
n and Hz

n involving
only Dr

n and Dz
n field components. The formulae may then be substituted to the following

equations, derived from (A.6) and (A.8):

−jn

r
Hz
n −

∂Hφ
n

∂z
= jωε0D

r
n (A.14)

1

r

∂(rHφ
n)

∂r
− −jn

r
Hr
n = jωε0D

z
n (A.15)

where Hφ
n = (µ0µφ)

−1Bφ
n and Hz

n = (µ0µz)
−1Bz

n.
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Performing mentioned substitutions yields the following pair of equations:

ω2Dr
n =

c2

µz

[
n2

r2

1

εr
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n +

1
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∂

∂r

(
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εφ

(
1
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(A.16)
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(A.17)

The above set of equations may be written using compact operator notation:

TΘ = ω2Θ (A.18)

where Θ =
[
Dr
n Dz

n

]T
. As already pointed out, it is an analogue of equation (2.52),

also involving two field components Dr
n and Dz

n.
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Appendix B: The P ARPACK
library: The Arnoldi solver for MPP
platforms

This appendix presents a short description of the Parallel ARnoldi PACKage (P AR-
PACK) – a portable library implementing the Implicitly Restarted Arnoldi Method
(IRAM) for distributed memory parallel systems.

The P ARPACK software has been developed at Rice University (cf. [69]) and pro-
vides a versatile package of Fortran77 subroutines for solving either symmetric or non-
symmetric, real or complex matrix eigenproblems. The important feature of the Arnoldi
algorithm which has been exploited in the design of the library routines is that the method
does not require any explicit form of the input operator matrix to be used. Instead, all
the information on the considered operator is passed via the matrix-vector product. This
has been used by introducing the reverse communication interface. On one hand, this
interface enables the subroutines that perform the Arnoldi algorithm iteration to be inde-
pendent of the input matrix storage format and, on the other hand, it makes the user of
P ARPACK free to choose the most appropriate method of computing the matrix-vector
product for a specified input matrix operator. The general framework of a parallel pro-
gram calling P ARPACK routines in a reverse communication loop is shown in Figure
B.1 and constitutes a basis for the solvers presented in Chapters 5 and 6.

The central point of the presented program is a call to the pdnaupd() subroutine which
implements the IRAM algorithm for a non-symmetric real eigenproblem. This call is
preceded by the initialization of various parameters defining the problem, including: n

– the global problem size, nloc – the local problem size for a given processor (process),
nev – the number of eigenvalues to be found, bmat – type of the eigenproblem (stan-
dard/generalized), which – which part of the operator spectrum is to be considered (e.g.
eigenvalues with the largest real part or the largest modulus). The info parameter de-
termines whether an initial vector v1 will be submitted. If info=1 the initial vector is
stored in the resid parameter. Otherwise, the initial vector is random. The tol param-
eter determines the stopping criterion for the Arnoldi factorization. The algorithm stops
if the condition:

||Aui − uiλi||2 ≤ tol · |λi| (B.1)
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c --------- Parameter selection for pdnaupd() -------------

c

comm = MPI_COMM_WORLD ! Set the communicator

call MPI_Comm_size(comm, ! Determine the number of

nprocs, ierr) ! processors used

n = N ! size of the problem

nev = NEV ! number of eigenvalues to be computed

ncv = NCV ! number of orthogonal columns of V

nloc = n/nprocs ! Determine local size of the problem

bmat = ’I’ ! standard eigenvalue problem

which = ’LM’ ! find eigenvalues with largest magn.

tol = 1.e-8 ! set the desired accuracy

ido = 0 ! first call to reverse communication

info = 1 ! resid contains the initial vector

do 100 i = 1, nloc ! initialize resid as a vector

resid(i) = 1.d0 ! with 1’s as all elements

100 continue

iparam(1) = 1 ! exact shifts with respect to H

iparam(3) = 1000 ! maximum number of updates

iparam(7) = 1 ! Mode set to 1

c

c ------------------ Reverse communication loop ----------

c

200 continue

call pdnaupd(comm, ido, bmat, nloc, which, nev,

& tol, resid, ncv, v, ldv, iparam,

& ipntr, workd, workl, lworkl, info )

c

if (ido .eq. -1 .or. ido .eq. 1) then

c Compute matrix-vector product: A*v

call Av(nloc, workd(ipntr(1)), workd(ipntr(2))

go to 200 ! Loop back to call pdnaupd() again

endif

c --------------------------------------------------------

Figure B.1: Calling pdnaupd() P ARPACK subroutine, solving a non-symmetric real
eigenproblem in a reverse communication loop.

is satisfied for all λi. Parameters iparam(1) – iparam(8) define various options of the
algorithm including the maximum number of Arnoldi updates allowed or types of shifts
used in the polynomial filtering process. A detailed description of all the parameters of
P ARPACK routines may be found in [67].
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Another important design feature of the P ARPACK library is the possibility of ap-
plying the Single Program Multiple Data (SPMD) programming style, regarded the most
efficient and transparent in the parallel message-passing programming. This program-
ming technique allows one to write a single code (such as shown in Figure B.1) to be
executed on all the processors. Once again the reverse communication interface to the
P ARPACK subroutines allows the user to choose a convenient parallelization strategy
for the matrix-vector product operation.

Last but not least, the P ARPACK library offers portability across a wide range of dis-
tributed memory parallel systems (including networks of workstations) by implementing
its parallel routines using standard inter-processor communication libraries: the Message
Passing Interface (MPI) ( [77]) and the Basic Linear Algebra Communication Subpro-
grams (BLACS) ( [112]).
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Appendix C: Matrix preconditioning
using Chebyshev polynomials.

This appendix presents a method of matrix preconditioning applying Chebyshev polyno-
mials. The method provides means to modify the matrix spectrum in order to enable one
to find eigenvalues from a desired part of the spectrum (e.g. the center of the spectrum)
by using Krylov subspace methods, such as Arnoldi algorithm, basically suitable only for
computing several eigenvalues from either edge of the matrix spectrum. Consequently,
the method significantly broadens the range of applications of Krylov subspace based
eigensolvers to problem where higher order modes are to be found. At the same time it
accelerates the convergence of the solver, as indicated in [102].

In the presented method the preconditioning is based on filtering the spectrum with
an FIR bandpass digital filter. For a given center frequency f0, determined by the range
of eigenvalues to be found, a linear phase 80-th (or 60-th) order FIR filter with a flat
monotonically decreasing pass band and an equiripple stop band is designed using Remez
exchange algorithm. Figure C.1 shows an example of a frequency response of a filter
designed for the center frequency f0 = 57.59 GHz.

The design procedures for the FIR filters generally use the normalized ω domain, i.e.
ω ∈ [0, π]. Consequently, the filter has to be designed for the center frequency which
equals:

ω0 = arccos

(
f0 − c

ρ

)
(C.1)

where ρ is a spectral radius of the investigated matrix and c is the center frequency of the
matrix spectrum.1 Clearly, the entire frequency domain has to be transformed according
to the formula:

ω = arccos

(
f − c

ρ

)
(C.2)

1Both c and ρ may be found by computing numerically the matrix eigenvalues with the largest and the
smallest modulus, which may be performed at relatively low cost with any of the basic Krylov subspace
algorithms.
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Figure C.1: Example of the frequency response of a 80-th order FIR filter, designed for
the center frequency f0 = 57.59 GHz and the ripple in a stop band d = 0.001. This figure
has been adapted from Ph.D. Thesis by Jacek Mielewski [75].

The frequency response of the designed FIR filter of order (2k) can be written in the
form of the following series:

H(ω) =
k∑

n=0

bn cos(nω) (C.3)

where bn are coefficients related to the impulse response of the filter. Substituting (C.2)
to (C.3) yields:

H(f) =

k∑
n=0

bn cos

(
n arccos

(
f − c

ρ

))
=

k∑
n=0

bnTn

(
f − c

ρ

)
(C.4)

where Tn is the n-th order Chebyshev polynomial.

If A denotes a given matrix having a spectrum σ(A ), then by trivial observation the
matrix B = H(A ) has the spectrum:

σ(B ) =
{
H(λ) : λ ∈ σ(A )

}
(C.5)

where polynomial H(·) is given by (C.4). Suppose the frequency response for the designed
filter is as shown in Figure C.1 and all the eigenvalues of matrix A are included in the
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shown frequency range. Let us consider eigenvalues of matrix A located close to the
frequency point referring to the peak value (f0) of polynomial H(f). According to the
above formula, these eigenvalues of matrix A will transform to ‘very large’ eigenvalues
of matrix B . In other words they will relate (through polynomial transformation H(λ))
to largest modulus eigenvalues of matrix B . This relation becomes well established if we
note that the eigenvectors of A and B are identical. (Matrix eigenvectors are invariant
to the polynomial transformation of a matrix.)

As already discussed in Chapter 3, the Krylov subspace algorithms of solving operator
eigenproblems generally do not need the operator to be defined explicitly. This is the
consequence of the fact that the information on the operator is passed to the solver
only via the Av products, where v are subsequent iterates of the solver. Consequently,
application of the presented polynomial preconditioner given by (C.4) within the Krylov
subspace eigensolver does not require the matrix H(A ) to be constructed explicitly.

Computing the matrix-vector product H(A )v , where v is an arbitrary vector may

be performed using a trivial recursive algorithm. Given c and ρ and denoting as b̃i the
coefficients of the polynomial H(ω) in the basis {1, ω, ω2, . . . , ωk} so that:

k∑
n=0

b̃nω
i ≡ H(ω) (C.6)

the algorithm for computing the matrix-vector product takes the following form:

Algorithm 5: The Matrix-vector product with Chebyshev poly-

nomial preconditioning.

Step 1: w := v .

Step 2: w := b̃kw .

Step 3: For n = (k − 1) to 0 iterate:

Step 3.1: wtemp := Aw .

Step 3.2: wtemp := (wtemp − cw )/ρ.

Step 3.3: w := wtemp + b̃nv

As already mentioned, preconditioning (C.4) preserves matrix eigenvectors. If v i de-
notes an eigenvector of matrix H(A ) found in a numerical procedure, then the corre-
sponding eigenvalue of matrix A may be found by computing a Rayleigh quotient:

λi =
v H
i Av i

||v i||2 (C.7)
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where ||·|| denotes an Euclidean vector norm in Cn. Using the above formula one may find
the desired eigenvalues of matrix A by: 1) Finding eigenvectors of matrix B = H(A )
corresponding to the largest modulus eigenvalues; and 2) Compute eigenvalues of A ,
using the previously found eigenvectors.
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[57] T. Jab�loński, M. Sowiński, Analysis of dielectric guiding structures by the itera-
tive eigenfunction expansion method, IEEE Trans. Microwave Theory Tech. vol. 37,
pp. 63-70, Jan. 1989.

[58] R. Janssen, M. Dracopoulos, K. Parrott, E. Slessor, P. Alotto, P. Molfino, M. Nervi,
J. Simkin, Parallelisation of Electromagnetic Simulation Codes, IEEE Transactions
on Magnetics, vol. 34, no. 5, pp. 3423-3426, 1998.

[59] D. Jones, Methods in Electromagnetic Wave Propagation, vol. 1: Theory and Guided
Waves, Clarendon Press, Oxford, 1987.

[60] R. G. Jones, The measurement of dielectric anisotropy using a microwave open res-
onator, J. Phys. D: Appl. Phys., vol. 9, 1976, pp. 819-827.

[61] D. I. Kaklamani, A. Marsh, Solution of electrically large planar scattering problems
using parallel computed method of moments technique, Journal of Electromagnetic
Waves and Applications, vol. 9, no. 10, pp. 1313-1337, 1995.



184 BIBLIOGRAPHY

[62] M. Kamon, N. A. Marques, L. M. Silveira, J. White, Automatic Generation of Ac-
curate Circuit Models of 3-D Interconnect, IEEE Trans. on Components, Packaging,
and Manufacturing Technology – Part B, vol. 21, no. 3, pp. 225-240. Aug. 1998.

[63] D. S. Katz, T. Cwik, B.H. Kwan, J. Z. Lou, P.L. Springer, T.L. Sterling, P. Wang, An
Assessment of a Beowulf System for a Wide Class of Analysis and Design Software,
Advances in Engineering Software, vol. 29, no. 3-6, pp. 451-461, April-July 1998.

[64] G. Kondylis, F. De Flaviis, G. Pottie, M. Sironen, T. Itoh, Reduced FDTD for-
mulation (R-FDTD) for the Analysis of 30 GHz Dielectric Resonator Coupled to a
Microstrip Line, MTT-S Symposium Digest, Anaheim, CA, 1999.

[65] F. Königer, Measurement System for the Precise Determination of Dielectric Prop-
erties in the mm-Wave Range Based on Hemispherical Open Resonators, Frequenz,
43, 7-8, pp. 209-214, 1989.

[66] J. E. Labaric, D. Kajfez, Analysis of Dielectric Resonator Cavities Using the Fi-
nite Integration Technique, IEEE Trans. Microwave Theory Tech. vol. 37, no. 11,
pp. 1740-1747, Nov. 1989.

[67] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK USERS GUIDE: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Method, available
from: ftp.caam.rice.edu.

[68] I. Lenhardt, T. Rottner, Krylov subspace methods for structural finite element anal-
ysis, Parallel Computing, vol. 25, pp. 861-875, 1999.

[69] K. J. Maschhoff, D. .C. Sorensen, P ARPACK: An Efficient Portable Large Scale
Eigenvalue Package for Distributed Memory Parallel Architectures, Rice University,
1996, available at: ftp.caam.rice.edu.

[70] Matlab Reference Manual, The Math Works Inc., Aug. 1992.

[71] S. Matoba, R. Yokoyama, T. Nakazawa, A High Accuracy Eigenvalue Analysis for
Large Power Systems, POWERCON’98. International Conference on Power System
Technology, in proceedings, vol. 2, pp. 1388-1392, 1998.

[72] J. Mielewski, M. Mrozowski, Application of the Arnoldi Method in FEM Analysis
of Waveguides, IEEE Microwave and Guided Wave Letters, vol. 8, no. 1, Jan. 1998,
pp. 7-9.
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Copyright note

Niniejszym wyrażam zgodȩ na wykorzystanie wyników mojej pracy, w tym tabel i ry-
sunków, w pracach badawczych i publikacjach przygotowywanych przez pracowników
Politechniki Gdańskiej lub pod ich kierownictwem. Wykorzystanie wyników wymaga
wskazania niniejszej rozprawy doktorskiej jako źród�la.
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