
J. Szantyr – Lecture No. 13 – Theoretical Principles 

and Modelling of Turbulence
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Mathematical description of the turbulent motion of fluids is done by 

means of Reynolds equations. Reynolds has assumed that in the 

turbulent flow all characteristic parameters, including velocity and 

pressure of the fluid, may be presented in the form of sums of their 

mean values (more precisely: slowly varying values) and turbulent 

fluctuations, i.e.:

where U is the mean velocity of flow

and        is the turbulent fluctuation of velocityu
Osborne Reynolds 

1842 - 1912



Substitution of so defined velocities and pressure into the Navier-

Stokes equation leads to the explicit appearance of new surface 

forces, called the turbulent stresses:
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The above equations describe the flow of an incompressible fluid



The turbulent stresses, also known as Reynolds stresses, depend on 

the values of turbulent fluctuations of the  flow velocity, not on the 

fluid viscosity. It may be shown that they form a symmetric stress 

tensor. They constitute additional 6 unknowns in the Reynolds 

equation describing the turbulent flow. In order to reduce the number 

of unknowns and close the system of equations the appropriate 

turbulence models must be introduced. Reynolds equation forms 

the basis of the majority of commercial computer codes used in 

Computational Fluid Dynamics (CFD).
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Normal stresses:

Tangential (shear) stresses: vuyxxy
~~  

wuzxxz
~~   wvzyyz

~~  



The Boussinesq hypothesis (1877)

Boussinesq has assumed that the turbulent Reynolds stresses may be 

related to the tensor of mean rates of strain in the fluid in the similar 

way as the Newton fluid model relates the viscous stresses to this 

tensor. The difference is that in the case of turbulent stresses the 

proportionality coefficient is called the dynamic turbulent viscosity 

coefficient       .This coefficient is not the physical characteristic of 

the fluid, but the characteristic of the flow depending on turbulence.
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The Boussinesq hypothesis has a rational 

basis, because in the regions of high gradients 

of mean velocities the process of turbulence 

generation is the most intensive.
Joseph Boussinesq 

1842 - 1929



The symmetric rate of strain tensor, describing the deformation of 

a fluid element, has the following form:

xzxyxx  ,,

  yzyyyxD  ,,

zzzyzx  ,,

Where the respective components are described by the relations:
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Boussinesq has assumed that the turbulent viscosity 

coefficient is a scalar quantity, while the turbulent state of 

stress in the fluid is strongly asymmetrical and in order to 

provide an exact description the turbulent viscosity 

coefficient should be a tensor.

It may be said that the Boussinesq hypotheis creates a 

new fluid model – the turbulent fluid.



A general principle of formation of the turbulence models

The majority of turbulence models makes use of the Boussinesq 

hypothesis. Then the objective of modelling is determination of the 

turbulent viscosity coefficient. The value of this coefficient may be 

determined in the form:
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The objective of modelling is the form of the function f as well 

as the relations determining the values of arguments y in the 

required points of the flow domain. Depending on the number of 

these relations we may describe the corresponding turbulence 

models as zero-equation, one-equation, two-equation etc.



Zero-equation model – Prandtl’s mixing length

Mixing length originally was regarded as the hypothetical distance, 

at which the exchange of momentum due to turbulent stresses 

between neighbouring fluid elements is completed. Prandtl regarded 

it as the analogue of the mean free path in gases. Now we interprete 

it as the mean characteristic of a turbulent mixing of fluid.

In the two-dimensional flow we have:
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Where:          - mixing length      ml

Kinematic coefficient of 

turbulent viscosity

Shear stress

Ludwig Prandtl 

1875 - 1929



In the two-dimensional flow the value of the mixing length is 

determined by empirical formulae, for example:

Llm  09,0

Llm  16,0
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An ouflow:

A wake:

Channel of width 2L or 

a pipe of radius L

L – half width of the 

stream

L – half width of the 

wake

The zero-equation model may be developed for three-dimensional flows



Advantages of the zero-equation model:

-Easily applicable and „cheap’ in the sense of low computation cost

-Produces good results for thin shearing layers, outflows from 

orifices and wakes behind solid objects

-Well established – large experience in its application has been 

accumulated

Disadvantages of the zero-equation model:

-Does not take into account the „history” of the flow

-Does not take into account the kinetic energy of turbulence

-Fails in the cases of flows with separation and recirculation



One-equation model 

This model relates the kinematic coefficient of turbulent viscosity to 

the konetic energy of turbulence k. This energy is determined by means 

of an additional equation, which must be solved numerically together 

wityh the Reynolds equation and mass conservation equation.
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Physical interpretation of the equation for the turbulent kinetic 

energy is as follows:
A+B=C+D+E

A – local variation of k

B – convective variation of k

C – transport of k through diffusion

D – „production” of k through rate of strain

E – dissipation of the turbulent kinetic energy

The quantities                           are empirically determined 

constants
kkCl ,, 2

In comparison with the zero-equation model, the one-equation 

model enables taking into account the history of variation of the 

turbulent kinetic energy in the flow.



The two-equation model (1974)

The two-equation model introduces two additional equations: for 

turbulent kinetic energy k and for the velocity of its dissipation ε. These 

equations must be solved together with the Reynolds equations and the 

mass conservation equation. These two equations may be developed 

theoretically from the Navier-Stokes equation and Reynolds equation, 

but they require additional empirical coefficients. In the standard k-ε

model these equations have the following form:
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Physical interpretation of both equations is similar: A+B=C+D+E

A – local variation of k or ε

B – convective variation of k or ε

C – transport of k or ε through diffusion

D – production of k or ε through rate of strain

E – dissipation of k or ε

The following coefficients are empirically determined:

09,0C 0,1k 3,1 44,11 C 92,12 C
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Advantages of the two-equation model:

-The simplest „true” turbulence model

-Produces good results for many realistic, technologically  

meaningful flows

-One of the best verified models

Disadvantages of the two-equation models:

-More „expensive” than the mixing length model

-Poor results for several practically important flows, such as: 

vorticity-dominated flows, flows with very high shearing stresses 

etc.

Some of the disadvantages of the two-equation model (first of all its 

isotropy), may be eliminated by direct modelling of the Reynolds 

stressest (RSM – Reynolds Stress Modelling), which requires seven 

additional equations.



Seven equation model - RSM
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The seventh equation of the RSM  model is the relation for dissipation 

of the turbulent kinetic energy, identical as in the k-ε model:
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kinetic energy is used:
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Advantages of the RSM model

Disadvantages of the RSM model

Potentially the most general of the classical turbulence models

Requires only boundary and intial conditions

Delivers very accurate values of the mean velocity field and of 

Reynolds stresses for many complicated and simple flows

Requires very high computation time – 7 additional equations

It is not as thoroughly verified as the simpler turbulence models

In certain applications it works as poorly as other, simpler models



Example of application of different turbulence models to a 

practical computational problem

The problem requires determination of the velocity field in the wake 

behind a lifting foil, in three cross-sections located at 10, 70 and 330 

mm behind the trailing edge. Four turbulence models are applied: 

one-equation (Spalart-Allmaras), two-equation k-ε RNG and k-ω SST 

and seven-equation RSM (Reynolds Stress Modelling)



Dependence of the hydrofoil drag force and lift force on the 

angle of attack of the hydrofoil, calculated using different 

turbulence models 



Axial velocity component in cross-section 10 mm behind the foil

Spalart k-epsilon k-omega RSM

<- Results of LDV measurements



Axial velocity component in cross-section 70 mm behind the foil

Spalart k-epsilon k-omega RSM

<-Results of LDV measurements



Axial velocity component in cross-section 330 mm behind the foil

Spalart k-epsilon k-omega RSM

<-Results of LDV measurements



An alternative to the application of Reynolds equations together 

with the turbulence models (or RANSE method) is the so called 

LES (Large Eddy Simulation method) or DNS (Direct Numerical 

Simulation method).

LES method is based on numerical simulation of large, coherent 

vortex structures and on modelling of the small turbulent vortices 

(below the size of the computational grid) by selected model 

equations. It requires large computer memory and long computation 

time.

DNS method is based on direct numerical simulation of the entire 

Kolmogorov turbulence cascade of vortices down to the smallest 

turbulence scales. Its application requires very large computing 

resources and nowadays it is not used for solution of practical 

engineering flows yet.



Flow behind a foil calculated using LES method – the numerically 

simulated large, coherent vortex structures are visible

Axial velocity in section 70 

mm behind the foil

<- transient values

mean values->



Calculations of the velocity field behind a foil are only an 

introduction to the numerical prediction of vortex cavitation

Calculation (Fluent)

Experiment in the 

cavitation tunnel


