
J. Szantyr – Lecture No. 14 – Modelling of Flows with 
Free Boundaries

The free boundary of the flow domain is usually a 
surface separating liquid and gas. On this surface 
gravity waves occur frequently, caused by the flow 
of gas (wind) or by motion of solid objects floating 
in the liquid. Within the linear theory of two-
dimensional waves the following equation of the 
wavy surface may be formulated:

η ( x ,t )=a⋅cos ( k⋅x−ω⋅t )

where: k=
2⋅π
λ

- wave number

ω=
2⋅π
T

=2⋅π⋅f - circular frequency

– wave lengthλ

a – wave amplitude

T – wave period



George Biddle Airy 1801 - 1892

The simplest two-dimensional model of surface waves is the Airy’s theory

Airy’s theory describes the travelling 
sinusoidal wave.



Two-dimensional regular 
wave may be described by 
the velocity potential:

Φ ( x , z ,t )=−
g⋅a
ω

⋅
cosh [k⋅(h−z ) ]
cosh (k⋅h )

⋅sin (k⋅x−ω⋅t )

where: cosh (s )=
es

+e−s

2 h – liquid domain depth
z – vertical co-ordinate 
downwards from free surface

Phase wave velocity in deep liquid domain:

Group wave velocity in deep liquid domain:

Phase wave velocity in shallow liquid domain:

Group wave velocity in shallow liquid domain:

Pressure inside wave in deep water domain:

c=
ω
k

=
λ
T

=√ g
k
=√ g⋅λ

2⋅π
=A

Wave energy (per unit surface):

c=√g⋅h=A
cg=

1
2
⋅
ω
k

=
1
2
⋅c=B

cg=c=√ g⋅h=B

E=Ek+E p=
1
4
⋅ρ⋅g⋅a2+

1
4
⋅ρ⋅g⋅a2=

1
2
⋅ρ⋅g⋅a2

Pressure inside wave in shallow water domain:

p= ρ⋅g⋅a⋅
cosh [k⋅(h−z ) ]
cosh (k⋅h )

⋅sin (k⋅x−ω⋅t )

p= ρ⋅g⋅a⋅e−kz
⋅sin (k⋅x−ω⋅t )



Comparison of trajectories of 
the liquid particles in waves 
in liquid domain of unlimited 
depth (A) and in shallow 
liquid domain (B). 

Variation of the phase wave velocity (A) 
and group wave velocity (B) between 
deep and shallow liquid domain

The liquid domain may be 
regarded as „deep” when its depth 
is larger than half of the wave 
length:

h≥
1
2
⋅λ

Explanation of the 
wave phase 
velocity and wave 
grupo velocity 



Capillary waves or waves under the influence of surface tension 

In case when the surface tension 
acting on the separation surface 
between liquid and gas is taken into 
account, the dynamic boundary 
condition on the free surface takes the 
form:

p−pa= f la⋅(
1
R1

+
1
R2 )

Then within the linear wave theory we obtain the following relation:

Phase velocity in deep liquid domain: c=√ g⋅λ
2⋅π

+
2⋅π⋅f la
ρ⋅λ

Influence of the surface tension on 
the wave velocity and frequency:

ω−ω0
ω0

=
c−c0
c0

=√1+
f la

g⋅ρ
⋅k 2−1

The influence of surface tension on the surface waves becomes meaningful for 
waves shorter than 0.12 [m] and propagation velocity under 0.43 [m/s]. Then we 
may use the term capillary waves.

where:            - surface tension, for water/air there is:f la f la=0 .072 [N /m ]



Numerical determination of flows with free boundaries

As a rule the shape and location of the free boundary are known in the initial 
condition only. In the consecutive instants of time they have to be determined as part 
of the solution. If the phase change processes on the free boundary are neglected, 
then we have the following boundary conditions:

Kinematic boundary condition: no flow through the free boundary, i.e.:

Dynamic boundary condition: forces on the free boundary are in equilibrium, i.e.:

[ ( ῡ− ῡfs)⋅n̄ ] fs=0 or ṁfs=0

F̄c⋅̄n=F̄g⋅n̄+f la⋅(
1
R1

+
1
R2 )

F̄c⋅̄t=F̄g⋅̄t+
∂ f la
∂ t

F̄c⋅̄s=F̄g⋅̄s+
∂ f la
∂ s

In case when meaningful temperature gradients are present on the free surface, 
the value of surface tension may vary, this may cause forces tangential to the 
surface and may generate a flow from „warm” region to the „cold” region.



There are two groups of computational methods enabling determination of the free 
boundary geometry:

Interface Capturing Methods

In this case the calculations are performed on the fixed discrete grid (e.g. finite volume 
grid), which extends beyond the initial location of the free boundary. The consecutive 
locations of the free boundary are determined either through tracing the motion of 
mass-less particles located in the liquid close to the free boundary (Marker and Cell 
Method - MAC),or through solving an additional transport equation for „degree of 
vacuum” in the liquid phase (Volume of Fluid Method - VOF). 

The MAC method is quite simple but it requires high computer power for tracing motion 
of a large number of marker particles. In VOF method the transport equation for the 
parameter C must be solved in addition to the mass and momentum conservation 
equations:

∂C
∂ t

+div (C ῡ )=0

where C=1 denotes a finite volume completely filled with liquid, and C=0 – finite 
volume completely filled with gas. The free boundary is determined by finite volumes 
where C=0.5. The VOF method does not produce a „sharp” definition of the free 
boundary location – usually it is „smeared” over 2 -3 finite volumes. This problem may 
be alleviated by an additional increase of grid density in the vicinity of the free 
boundary.



The consecutive phases of unsteady 
flow after sudden breaking of a 
barrier, calculated by the Volume of 
Fluid (VOF) method, using „one fluid 
approach”, in comparison with 
experiment.

In the VOF method the gas and liquid flows are usually determined separately, with 
a common boundary condition on the free boundary. Alternatively, both phases may 
be treated as one fluid with changing properties, i.e.:

ρ=ρ1⋅C+ρ2⋅(1−C ) μ=μ1⋅C+μ2⋅(1−C )

In such a case the formal boundary condition on the free boundary is not taken into 
account explicitly, because this boundary is treated as a surface of discontinuity of 
the fluid parameters. However, the boundary conditions are implicitly fulfilled.



Calculated effect of dropping a solid 
sphere on the free surface of water, 
calculated by the MAC method. On the 
right the mass-less particles (markers) 
distributed in a liquid 



Interface Tracking Methods

In most cases the following function describing the elevation of the free boundary 
above its initial position is introduced: z=H ( x , y , t )

Then the following relation describing the local variation of H may be developed from 
the kinematic boundary condition: ∂H

∂ t
=υz−υ x⋅

∂H
∂ x

−υ y⋅
∂ H
∂ y

The above relation is integrated numerically in time and in each time step the 
following internal iterative cycle is performed:

- Solution of the momentum conservation equation with known pressure distribution 
on the free boundary, leading to the determination of the velocity field 

- Solution of the mass conservation equation with known pressure distribution on the 
free boundary and known geometry of this boundary, leading to the determination of 
the non-zero mass flow through the free boundary:

ṁfs=∫
S fs

ρ⋅̄υ fs⋅n̄⋅dS−∫
S fs

ρ⋅̄υ b¿ n̄⋅dS≈¿ ρ⋅( ῡ⋅̄n ) fs
T
¿ S fs

T − ρ⋅Ω̇fs ¿

where: - current velocity determined on the free boundary

- own velocity of the free boundary from the preceding time step

ῡ fs

ῡb

These methods require modification of the computational grid in every time step



- Correction of the free boundary location leading to zero mass flow through the 
corrected boundary:

ṁfs+ ρ⋅Ω̇fs
' =0

          is the volume of liquid which should flow out from (or flow into) the finite 
volume in order to fulfil the mass conservation equation. On the basis of this 
volume the appropriate displacement of the grid nodes is determined (cf. the sketch 
below), e.g. for a two-dimensional grid we have:

∂Ω̇fs
'
=
1
2
⋅Δx⋅(hnw+2⋅hn+hne )

Ω̇fs
'

- Repetition of the above actions until the satisfactory convergence is achieved

- Moving to the next time step



An example of application of the ITM method for the case of determination of the 
wave system on the free boundary generated by a hydrofoil moving under the 
surface (two-dimensional flow).

Comparison of the calculated and experimental results

Grid 1 – 1004 finite 
volumes
Grid 2 – 4016 finite 
volumes
Grid 3 – 16064 finite 
volumes
Grid 4 – 64256 finite 
volumes



Comparison of the VOF and ITM methods on calculation of the wave system 
generated by a moving ship at Fr=0.267

Calculated map of the wave system – 
upper part of the picture – VOF 
method, lower part of the picture –  ITF 
method

Comparison of the experimentally 
observed and calculated wave profile 
along the ship hull



Supercritical free surface flow over a semi-cylindrical obstacle on the bottom



Free surface deformation over the moving submerged hydrofoil



Free surface flow around a blunt ship hull



Comparison of observed and calculated  free surface level along the blunt ship hull



Deformation of the muddy bottom due to ship motion in shallow water



Calculated phenomenon of liquid sloshing in the tank swaying horizontally



 Appendix (free of charge): chemical reactions in flows – using 
the example of combustion

Combustion is a complicated chemical process: a common combustion of 
methane in air involves about 40 basic chemical reactions. 



If  we are interested only in the global results of the process , then a simplified 
approach may be applied, based on the following assumptions:

- chemical reactions develop with infinite speed

- combustion is a single stage reaction

- if one reactant is abundant, then the remaining reactants combine with 
each other in stoichiometric proportion, forming the products of the 
reaction:

1kg fuel + s kg oxidant = (1+s) kg products of reaction

CH 4+2⋅O2→CO2+2⋅H2O

1kg methane + 64/16 kg oxygen = (1+64/16) kg products of reaction

The transport equations for the mass fractions of fuel and oxidant have the form:

∂ (ρ⋅mp)
∂ t

+div ( ρ⋅mp⋅̄u )=div ( Γ p⋅gradmp)+S p

∂ (ρ⋅mu)
∂ t

+div ( ρ⋅mu⋅ū )=div (Γ u⋅gradmu )+Su

local variation+convection=diffusion+production

where:

Γ – mass exchange 
coefficients



Assuming that transport coefficients are equal, we may introduce a function:

φ=s⋅mp−mu
this allows us to combine both transport equations into one equation:

∂ ( ρ⋅φ )

∂ t
+div (ρ⋅φ⋅ū )=div (Γ φ⋅grad φ )

Now the mixture coefficient f may be introduced : f =
φ−φu

φ p−φu
With such a definition of the mixture coefficient f its local value is 0 where there is 
only oxidant and the value is 1 where there is only fuel. Transport of the coefficient f  
in the flow is described by the equation:

∂ ( ρ⋅f )

∂ t
+div ( ρ⋅f⋅ū )=div (Γ f⋅gradf )

Solution of this equation together with the equations of mass conservation, 
momentum conservation, energy conservation and balance of entropy, using the 
appropriate boundary condition, leads to the distribution of f in the field of flow. 
This enables determination of the mass fractions of fuel and oxidant after the 
process of combustion.



with:

with:

f st≤f ≤1 there is mp=
f −f st

1−f st

⋅mpw

0≤f≤ f st there is mu=
f st−f

f st

⋅muw

mu=0

mp=0

where: f st=
muw

s⋅mpw+muw

the value of f for the stoichiometric ratio

- mass fraction of fuel at inlet

- mass fraction of oxidant at inlet

mpw

muw

The above simplified approach requires solution of only one additional differential 
equation, describing the transport of the coefficient f for determination of the 
concentrations of fuel oxidant and products of combustion in every point of the flow 
domain. Knowledge of f enables determination of temperature in the field of flow:

T=
h−mp⋅H p

C̄ p

where: C̄ p=
1

T−T 0
∫
T 0

T

C pdT - energy density of 
fuel

- specific heat of the 
mixture

h – specific enthalpy

H p

C pTransport equation for the specific enthalpy:

∂ ( ρ⋅h )

∂ t
+div ( ρ⋅h⋅̄u )=div (Γ h⋅gradh)+Sh

h=e+
p
ρ
=e+ p⋅υ- „source”of enthalpySh



Example

Calculation of the velocity and temperature 
fields during a fire in the room. The finite 
volume grid 14*13*12=2688 was applied.

Velocity field calculated in the cross-
section z-y for x=5,25 [m]



The calculated temperature field in the 
section z-y for x=3,00 [m]

Comparison of calculated and 
measured temperature distribution 
for the probes TR1 i TR2 
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