
The phenomenon of two 

markedly different types of 

flow, namely laminar and 

turbulent, was discovered by 

Osborne Reynolds (1842 –

1912) in 1883 in his well known 

experiment concerning the flow 

in a pipe. He established that the 

laminar flow occurs up to 

Re=2300. Above that value the 

flow becomes unstable and an 

intensive mixing of fluid in form 

of vortex, turbulent motion takes 

place.
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The similarity parameter enabling definition of the flow character 

on the basis of its main parameters is the Reynolds number:
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The non-dimensional Reynolds number describes the ratio of inertia 

forces to the viscous forces in a given flow. High Reynolds number 

points to the domination of inertia forces, while low Reynolds 

number means that the flow is dominated by viscous forces. 

u – characteristic flow velocity

l – characteristic dimension of flow, in 

most cases parallel to the flow velocity u 

(with exception of flow in a pipe, where 

l=diameter)

ν – kinematic viscosity coefficient
Osborne Reynolds 

1842 - 1912



The mutual relation of inertia and viscous forces, expressed by the 

Reynolds number, strongly influences the character of flow. At 

low Reynolds numbers, i.e. with relatively high viscous forces the 

flow has an orderly character – the elements of fluid move along 

parallel paths without mixing. Such a flow is called laminar or 

layered. Above certain value of a Reynolds number (known as the 

critical number), the flow loses its inherent stability and the 

regions of stochastic velocity fluctuations appear. If the Reynolds 

number increases further up to the so called transition number, 

the regions of stochastic velocity fluctuations cover the entire flow  

domain. Such a flow is called fully turbulent. The critical and 

transition values of the Reynolds number are not universal, they 

are different for different flows, e.g. for the flow in a pipe and the 

flow along a flat plate.



Laminar flow – an orderly motion of fluid along parallel paths, 

fluid elements do not mix with each other, a purely viscous 

mechanism of transport of momentum and energy controls the flow

Increase of the Reynolds number (mostly due to increasing flow 

velocity) leads to the loss of stability of the laminar flow and its 

conversion into a turbulent flow.



Turbulent flow – chaotic motion of fluid of a stochastic 

character, unsteady even with steady boundary conditions, fluid 

elements mix vigorously, leading to the much more intensive 

exchange of mass, momentum and energy.

Big whirls have little whirls,

That feed on their velocity

And little whirls have lesser 

whirls 

And so on to viscosity

(in the molecular sense)

L.F. Richardson (1922)



The experiment presented above shows the flow around a thin rod placed 

perpedicularly to the velocity. The consecutive photographs show the 

gradual loss of flow stability and development of a turbulent flow due to 

the increase of a Reynolds number.



The drawing shows the 

process of increasing of the 

turbulent fluctuations in a flow 

along a flat plate, i.e. with the 

growing Reynolds number 

calculated on the basis of a 

distance from the plate leading 

edge (flow direction vertically 

down).

For the flow in a pipe having circular cross-section (D – diameter) 

there is:

critical value:

transition value:
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In the flow along a flat plate (x – distance from the edge) there is:

critical value:

transition value:
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In a turbulent flow there is: uUu  or:

actual velocity=mean velocity+turbulent fluctuation

The measure of turbulence intensity is the degree of turbulence ε:
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The kinetic energy of turbulence may be defined as:
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Visualization of a turbulent flow shows vortex structures of different 

sizes, called the turbulent vortices.



The model of Kolmogorov (1941) treats turbulence as a cascade of vortices, 

transmitting the energy of flowing fluid from the main flow to the molecular 

motion level.

The largest vortices interact with the main flow and extract their energy from this 

flow. Their characteristic velocity and characteristic dimension are of the same 

order as in the main flow (high Re number). This means that they are dominated 

by inertia, with negligible viscous forces. This leads to disintegration of larger 

vortices into the smaller and faster rotating ones. The smallest vortices have Re=1 

with diameter η=0,1-0,01 mm and frequency10 kHz. The motion of these vortices 

is retarded by viscous forces (equal to inertia forces) and their energy is dissipated 

and converted into heat (i.e. internal energy of the molecular motion).

Andrej Kolmogorow 

1903 - 1987



The analysis of physical mechanisms acting in the turbulent 

motion of fluid leads to the following expressions defining the 

characteristic magnitude of vortices in the Kolmogorov cascade:
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 where: η – scale of the smallest vortices –

Kolmogorov scale
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 where: Ma –Mach number based on the 

molecular motion velocity

Numerical assessment of the above formulae leads to the 

following approximate values:
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It should be stressed that the distance between l and η is covered 

in a continuous way by different vortex sizes, but between η and      

there are no intermediate vortex scales.

or: 0ll 

0l



The outflowing stream a 

the relatively low 

Renolds number just 

above the transition 

value

The outflowing stream 

at a high Reynolds 

number above the 

transition value



Remarks about the agreement of Kolmogorov theory with the 

physical reality of turbulent flows:

1. Kolmogorov theory describes quite well the real turbulent flow 

at high Reynolds numbers above transition.

2. Kolmogorov theory assumes purely stochastic character of 

turbulence, while in the real turbulent flows there are often 

large, coherent vortex structures, which behave and may be 

described in a deterministic way.

3. Kolmogorov theory assumes only unidirectional transport of 

energy – from large vortices to the small ones – while the 

experiments confirm the existence of so called backscatter of 

energy, i.e. transport of energy in the opposite direction.
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The mathematical description of the turbulent fluid motion may 

be done by means of Reynolds equations. Reynolds assumed 

that in a turbulent flow all characteristic parameters (including 

pressure and velocity) may be presented in the form of sums of 

their mean values (strictly: slowly varying values) and their 

turbulent fluctuations:

where U is the mean flow velocity

and        is the turbulent fluctuation of velocityu



Substitution of velocity and pressure defined in the above way into 

the Navier-Stokes equations leads to the appearance of new surface 

forces, named the turbulent stresses:
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The above equations refer to the flow of an incompressible fluid



Turbulent stresses, also known as Reynolds stresses, depend on the 

values of turbulent fluctuations of velocity and not on the fluid 

viscosity. It may be proved that they form a symmetrical tensor of 

turbulent stresses. They constitute 6 additional unknowns in the 

Reynolds equations describing the turbulent motion of fluid. In order 

to reduce the number of unknowns and to close the system of 

equations, an appriopriate model of turbulence must be introduced. 

Reynolds equations are employed in a majority of commercial CFD 

codes.
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Normal stresses:

Tangential (shear) stresses: vuyxxy
~~  

wuzxxz
~~   wvzyyz

~~  


