J. Szantyr — Lecture No. 6 — Fluid — Solid Interaction —
Concept of the Entrained Mass of Fluid

In 1828 Friedrich Bessel has noticed that a pendulum immersed
in water changes (increases) its period of oscillations in
comparison to the value in air. This may be interpreted as a
virtual increase of mass of the pendulum. Bessel has introduced
the idea of the entrained mass of water, 1.c. a certain mass of
water (in general: fluid), exercising the unsteady motion
together with the immersed object and changing its motion
characteristics. The entrained mass increases the inertia of the

object, introducing additional forces to the description of Friedrich Wilhelm Bessel
motion.

1784 - 1846

| The additional forces on the object exercising an

" accelerated motion in a real, viscous fluid (in contrast to

the motion in a vacuum) may be divided into two parts: a

part associated with acceleration of a certain mass of

fluid (in principle a completely potential effect) and a

part resulting from viscous effects in the unsteady

s boundary layer forming on the solid object. This second

Alfreﬁgiirﬁrgdﬁasset part is called Basset force (1888).
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The Basset force is important first of all for small solid objects moving in a
fluid. Its magnitude depends on the history of motion and in the case of a
spherical object it may be described by the following formula:
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where: D — object diameter
t — current time
Pc - fluid density
Hc - fluid dynamic viscosity coefficient
U - velocity of the object
V - velocity of the fluid
In the physical sense the Basset force results from a retarded formation of

the boundary layer and viscous wake behind the solid object moving in the
fluid in an accelerated way.



The simplest interpretation: entrained mass determines the work required to
change the kinetic energy of the fluid due to an accelerated motion of the
immersed solid object. The kinetic energy of the fluid motion caused by the
moving solid object may be written as:

E = P I(”lz + u22 +u32 AV where V — the entire fluid volume
2
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In a steady linear motion there is E=const and E LJU ?

Then we may write: E—p[U where: [ = J’%g BLQ HLH@’V

If the object accelerates or brakes then the energy £ changes with the velocity U.
The change of energy £ may be caused only by the work of an additional
hydrodynamic force F, which appears on the object in an unsteady motion,
according to the relation:

1 dE dU force F'is similar to the force required to

U dt pL—— dt accelerate the object of mass m i.e.. mdU / dt

It i1s convenient to describe the force F as an additional mass of fluid M=pI
accelerated together with the object. In reality every fluid particle around
the object experiences different acceleration, hence the entrained mass M is
a certain ,,virtual mass.”.



A simple example — linear accelerated motion of a sphere or a

1 flow (2D)
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Then the integrals / determining the entrained mass may be calculated as:

For the sphere:

1.e. it is equal to

_ U oo 0P 2 half of the fluid
I —J;J'% o - g %; 5 g%rﬁ sin 9d8dr = 3 ZmR’ massditsplaced

by the sphere
For the cylinder (per unit length):

1.e. it is equal to

— P 1 0D 0P U he fluid mass
I —‘I[I% g 57 Y ggdﬁdlf = E‘iyjﬂz‘;dby "

In the general case of motion of an object in six degrees of freedom the
unsteadiness of any velocity component results in generation of additional forces
in all six degrees of freedom. Then we obtain a matrix (a tensor) of entrained

masses: M .

F,==Mgji,  ij=123456

It may be shown that in a potential flow the matrix of entrained masses is
symmetrical, hence in a general case we may have 21 independent entrained
masses. Symmetry of the moving solid object may lead to further reduction of
the number of entrained masses.



Tensor of the entrained masses

Symmetry:
B M,

M i M i
M21
_ M,

Dimensions =

kg M41
kgm M
kgm® M,

M, M,
M, M,
M, M;;
M, M4
M52 M53

M 62 M63

M, Ms; M,
M, M, M,
My, My My
M, M,, M,
M54 M55 M56
M, M., M,

Ug

First index — direction of force, second index — direction of motion

1=1,2,3 — forces; 1=4,5,6 - moments

j=1,2,3 — linear accelerations;

1=4,5,6 — angular accelerations

Sometimes the entrained masses are presented in a non-dimensional form,
1.e. related to the respective mass characteristic of the solid object.
Non-dimensional coefficient of the entrained masses are denote %



Calculation of the entrained mass coefficients for a three-dimensional object of

an arbitrary geometry is difficult. If one dimension of the object 1s significantly
larger than others, then the so called slender body theory may be applied.

thin 2D slice NX 6k) %/2

In this theory the object may be cut into ,,slices” and the entrained mass
coefficients for two-dimensional sections may be integrated along the object:
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In more complicated cases the
commercial CFD software is used



The entrained mass coefficients for some selected
two-dimensional sections are given below:
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In an unsteady motion of the solid object immersed in fluid the
entrained mass 1s a virtual mass of fluid performing motion with
the same velocity as the solid object. The entrained mass
increases the inertia of the object and in this way it influences the
motion characteristics of the object.

In reality the motion of the immersed solid object induces the
motion of another mass of fluid with diverse velocities — higher
velocity close to the object and smaller at larger distances from
it. This real mass of moving fluid increases the inertia of the
object in the same way as the virtual entrained mass.

For objects moving in gases the entrained mass of gas 1s usually
not taken into account due to the small density of gases.



Influence of the entrained mass on the solid object

oscillations — a simple one-dimensional example. j X
m — mass of the object n
¢ — damping coefficient (due to fluid viscosity) i
. . k —i ¢
k — restoring force coefficient
x — object displacement IS S

The entrained mass increases the inertia of the object, thus it counteracts
oscillations. In this case the equation describing oscillations has the form:

mx +cx +kx =—-m X
(m+m, |i+ck+ke=0 m, - entrained mass

mejé +cex+hkx =0 m, - effective” mass

where:

The own frequency of oscillations of the
immersed body may be determined as:

1 k c’ It should be noticed that immersion of the
I/, = 1- oscillating object results in reduction of
2m m, 4mek the own frequency of oscillations.



Influence of the entrained mass on the vibration of the reversible machine
(pump-turbine) rotor

Model experiments
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Model of the rotor of a reversible
machine (pump-turbine) has been tested
in air and in water. Model vibration was
excited by an inducer in 384 points
shown 1in the picture. The responses for
several own modes of vibration were
registered.



Change of the damping coefficients
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Table 1 Averaged natural frequencies, damping ratios, FRR’s and ADV’s in air and 1n water.
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Own frequencies and damping coefficients in air and in water

Mode (ND) 7 1. FRR - - ADV
OND 838 735 0,12 0,034 0,040 0,006
OND 1111 1006 0.10 0,030 0,037 0,007
3ND 1463 | 1279 0,13 0,032 0,041 0,009
IND 1439 | 1342 0,07 0,030 0,031 0,001
4ND 1811 1630 0,10 0,032 0,031 -0,001

2-2ND 1861 1630 0,12 0,022 0,031 0,009
SND 2282 | 2103 0,08 0,025 0,026 0,001
6ND 2769 | 2464 0,11 0,014 0,016 0,002
7ND 3003 | 2741 0,09 0,015 0,026 0,011




Influence of the entrained mass on the vibration of the pump rotor

Numerical calculations

The basic own
vibration modes

2ND
Model of the rotor
Calculations were performed using
OND the Finite Element Method. The

computational model of the rotor was

built of 165000 quadrihedral
elements, and the model of the

surrounding fluid was built of 342676

such elements.
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o
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5 : ; own vibration frequencies of
= . . .
1000 - & the rotor 1n air and in water
]
5Dn T LI I I I
2ZND OND IND 1ND 4ND SND 6ND TND
Modes By ND (Nodal Diameter)
SIMLAIR EXP.AIR SIM.WATER EXP.WATER SIML.RATIO EXP.RATIO
2ND 825.26 838.00 714.11 734.50 0.87 0.88
OND 1247.40 1111.00 1103.80 1006.00 0.88 0.90
3ND 1479.75 1463.00 1332.90 1279.00 0.90 0.87
1IND 1605.55 1439.00 1482.05 1342.00 0.92 0.93
4ND 1871.80 1811.00 1668.90 1629.00 0.89 0.90
SND 2350.15 2282.00 2062.05 2103.60 0.88 0.92
6ND 2624.25 2769.00 2458.80 2464.00 0.94 0.89
TIND 2852.00 3002.50 2661.15 2741.50 0.93 0.91

Table 3. Results of modal analysis of pump-turbine runner




Influence of the entrained mass on the vibration of the ship
propulsion system
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Scheme of a ship propulsion system. The most important are the torsional
and longitudinal (axial) vibrations. An important component of the system
1s the propeller, being a heavy object immersed in water. Variable

hydrodynamic forces are generated on the propeller, constituting the main
source of vibration excitation.

< Variable thrust force

Variable torque on the shaft -->




Determination of the entrained mass for the propeller 1s necessary for correct
analysis of vibration of the ship propulsion system. There are many methods for
determination of the entrained mass. The simplest are the empirical formulae:

For axial vibration:

M, =(0,1-02)M,
or.

Mll = CllpD3

For torsional vibration:

M44 = Kl MPD
Kz

or.

M44 = 44:0D5

M, - mass of the propeller

D — propeller diameter

K, =0,25-0,30
K,=19-28
0212/ 42
Cll = (/i))
0,0224(E/ | 4
C44 = P

P — propeller pitch
z — propeller number of blades
A — propeller area coefficient

p - density of water



Computational determination of the entrained mass for a Kaplan turbine
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Draft tube J
Inner stay ring ,
Upper stay column

Lower stay column

Vertical bulb support AL -
Kaplan type runner I (2 )" -
Turbine shaft : 1 6
Rotor of the generator

Stator of the generator i ; Mo
10.Turbine guide bearing @
11.Generator guide and thrust ST A7\ Nl e :
bearing B i dllf

CoNoOhLN =

5)(8)4)(7) 1

Scheme of the Kaplan turbine Rotor model in the Finite

Element Method

The objective of calculations was to determine the entrained masses for
different rotor sizes, different numbers of blades and different blade pitch
settings. Calculations were performed for turbines having powers from 3
[MW] to 75 [MW] and rotor diameters from od 1.75 [m] to 7.5 [m].
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Transverse Added Mass of Water (FEM)
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Influence of the entrained mass on vibration of the Francis water turbine

Model experiments

oy 5

Model of the rotor

The rotor model was excited using a special inducer (hammer), in 118
selected points, exciting different modes of own vibration in air and in water.
The vibrations were measured and registered using special sensoring system.
One degree of freedom vibrations of the rotor may be described by the

following equation:

(M, +M )X +(C,y +C )X +(K, +K )X = F[1)

T00

wy [

W

T

Index A denotes the effect of immersion of the rotor in water, concerning

the mass M, the damping coefficient C and the stiffness coefficient K.

400

Test set-up for measurements in water and in air



Influence of the entrained mass on vibration of the Francis water turbine
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Measured and calculated degree
of reduction of frequency of the
different vibration modes in water

Numerical calculations
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Every geometrically repeatable sector of
the rotor was modelled by 6133
hexahedral finite elements. The results of
calculations were compared with
experimental measurements discussed
before. In all cases the immersion in
water has reduced the own frequencies of
vibration of the rotor.
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Comparison of the calculated and
measured frequencies of the different
vibration modes in air and in water



