
J. Szantyr – Lecture No. 6 – Fluid – Solid Interaction – 
Concept of the Entrained Mass of Fluid

In 1828 Friedrich Bessel has noticed that a pendulum immersed 
in water changes (increases) its period of oscillations in 
comparison to the value in air. This may be interpreted as a 
virtual increase of mass of the pendulum. Bessel has introduced 
the idea of the entrained mass of water, i.e. a certain mass of 
water (in general: fluid), exercising the unsteady motion 
together with the immersed object and changing its motion 
characteristics. The entrained mass increases the inertia of the 
object, introducing additional forces to the description of 
motion.

Friedrich Wilhelm Bessel 
1784 - 1846

The additional forces on the object exercising an 
accelerated motion in a real, viscous fluid (in contrast to 
the motion in a vacuum) may be divided into two parts: a 
part associated with acceleration of a certain mass of 
fluid (in principle a completely potential effect) and a 
part resulting from viscous effects in the unsteady 
boundary layer forming on the solid object. This second 
part is called Basset force (1888). 

Alfred Barnard Basset 
1854 - 1930



The Basset force is important first of all for small solid objects moving in a 
fluid. Its magnitude depends on the history of motion and in the case of a 
spherical object it may be described by the following formula:
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where: D – object diameter

t – current time

- fluid density

- fluid dynamic viscosity coefficient

- velocity of the object

- velocity of the fluid

In the physical sense the Basset force results from a retarded formation of 
the boundary layer and viscous wake behind the solid object moving in the 
fluid in an accelerated way.
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The simplest interpretation: entrained mass determines the work required to 
change the kinetic energy of the fluid due to an accelerated motion of the 
immersed solid object. The kinetic energy of the fluid motion caused by the 
moving solid object may be written as:
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In a steady linear motion there is E=const and

where V – the entire fluid volume
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If the object accelerates or brakes then the energy E changes with the velocity U. 
The change of energy E may be caused only by the work of an additional 
hydrodynamic force F, which appears on the object in an unsteady motion, 
according to the relation:
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F ρ−=−= 1 force F is similar to the force required to 

accelerate the object of mass m i.e.: dtdUm

It is convenient to describe the force F as an additional mass of fluid M=ρI 
accelerated together with the object. In reality every fluid particle around 
the object experiences different acceleration, hence the entrained mass M is 
a certain „virtual mass.”.



A simple example – linear accelerated motion of a sphere or a 
cylinder in a two-dimensional flow (2D):

Stream lines and 
equipotential lines

Velocity vectors and 
pressure field

The potential fluid flow 
description is applied

The following velocity potentials are obtained:

For the sphere:

For the cylinder:

( ) ϑϑ cos
2

, 2

3

r
UR

r −=Φ

( ) ϑϑ cos,
2

r
UR

r −=Φ



Then the integrals I determining the entrained mass may be calculated as:

For the sphere:

For the cylinder (per unit length):
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i.e. it is equal to 
half of the fluid 
mass displaced 
by the sphere

i.e. it is equal to 
the fluid mass 
displaced by the 
cylinder

In the general case of motion of an object in six degrees of freedom  the 
unsteadiness of any velocity component results in generation of additional forces 
in all six degrees of freedom. Then we obtain a matrix (a tensor) of entrained 
masses:
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i,j=1,2,3,4,5,6

It may be shown that in a potential flow the matrix of entrained masses is 
symmetrical, hence in a general case we may have 21 independent entrained 
masses. Symmetry of the moving solid object may lead to further  reduction of 
the number of entrained masses.



Tensor of the entrained masses

11M 12M 13M

First index – direction of force, second index – direction of motion

i=1,2,3 – forces; i=4,5,6 - moments

j=1,2,3 – linear accelerations;    j=4,5,6 – angular accelerations

F=
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Sometimes the entrained masses are presented in a non-dimensional form, 
i.e. related to the respective mass characteristic of the solid object. 
Non-dimensional coefficient of the entrained masses are denoted as
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Calculation of the entrained mass coefficients for a three-dimensional object of 
an arbitrary geometry is difficult. If one dimension of the object is significantly 
larger than others, then the so called slender body theory may be applied.

In this theory the object may be cut into „slices” and the entrained mass 
coefficients for two-dimensional sections may be integrated along the object:
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In more complicated cases the 
commercial CFD software is used



The entrained mass coefficients for some selected 
two-dimensional sections are given below:



In an unsteady motion of the solid object immersed in fluid the 
entrained mass is a virtual mass of fluid performing motion with 
the same velocity as the solid object. The entrained mass 
increases the inertia of the object and in this way it influences the 
motion characteristics of the object.

In reality the motion of the immersed solid object induces the 
motion of another mass of fluid with diverse velocities – higher 
velocity close to the object and smaller at larger distances from 
it. This real mass of moving fluid increases the inertia of the 
object in the same way as the virtual entrained mass.

For objects moving in gases the entrained mass of gas is usually 
not taken into account due to the small density of gases.



Influence of the entrained mass on the solid object 
oscillations – a simple one-dimensional example.

m – mass of the object
c – damping coefficient (due to fluid viscosity)

k – restoring force coefficient 

x – object displacement

The entrained mass increases the inertia of the object, thus it counteracts 
oscillations. In this case the equation describing oscillations has the form:
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The own frequency of oscillations of the 
immersed body may be determined as:
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where:

- entrained mass

- „effective” mass

It should be noticed that immersion of the 
oscillating object results in reduction of 
the own frequency of oscillations.
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Influence of the entrained mass on the vibration of the reversible machine 
(pump-turbine) rotor

Model experiments

Model of the rotor of a reversible 
machine (pump-turbine) has been tested 
in air and in water. Model vibration was 
excited by an inducer in 384 points 
shown in the picture.  The responses for 
several own modes of vibration were 
registered.



Own frequencies and damping coefficients in air and in water

Change of the damping coefficients Change of own frequencies



Influence of the entrained mass on the vibration of the pump rotor

Numerical calculations

Model of the rotor

The basic own 
vibration modes

2ND

0ND

3ND

Calculations were performed using 
the Finite Element Method. The 
computational model of the rotor was 
built of 165000 quadrihedral 
elements, and the model of the 
surrounding fluid was built of 342676 
such elements. 



Comparison of the calculated 
(SIM) and measured (EXP) 
own vibration frequencies of 
the rotor in air and in water



Influence of the entrained mass on the vibration of the ship  
propulsion system

Scheme of a ship  propulsion system. The most important are the torsional 
and longitudinal (axial) vibrations. An important component of the system 
is the propeller, being a heavy object immersed in water. Variable 
hydrodynamic forces are generated on the propeller, constituting the main 
source of vibration excitation.

Variable thrust force

Variable torque on the shaft -->



Determination of the entrained mass for the propeller is necessary for correct 
analysis of vibration of the ship propulsion system. There are many methods for 
determination of the entrained mass. The simplest are the empirical formulae:

For axial vibration:

For torsional vibration:
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P – propeller pitch

z – propeller number of blades

A – propeller area coefficient

- density of waterρ



Computational determination of the entrained mass for a Kaplan turbine

Scheme of the Kaplan turbine Rotor model in the Finite 
Element Method

The objective of calculations was to determine the entrained masses for 
different rotor sizes, different numbers of blades and different blade pitch 
settings. Calculations were performed for turbines having powers from 3 
[MW] to 75 [MW] and rotor diameters from od 1.75 [m] to 7.5 [m].



The entrained mass of the rotor in 
transverse direction           for the 
diameter 4.5 [m] at different blade 
pitch settings

22M

The entrained 
mass          for 
rotors of 
different 
diameters and 
numbers of 
blades at the 
same pitch 
setting angle β

22M



Influence of the entrained mass on vibration of the  Francis water turbine

Model experiments

Model of the rotor Test set-up for measurements in water and in air

The rotor model was excited using a special inducer (hammer), in 118 
selected points, exciting different modes of own vibration in air and in water. 
The vibrations were measured and registered using special sensoring system. 
One degree of freedom vibrations of the rotor may be described by the 
following equation:
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Index A denotes the effect of immersion of the rotor in water, concerning 
the mass M, the damping coefficient C and the stiffness coefficient K.



Influence of the entrained mass on vibration of the Francis water turbine

Numerical calculations

Model of the rotor for FEM calculation

Measured and calculated degree 
of reduction of frequency of the 
different vibration modes in water

Comparison of the calculated and 
measured frequencies of the different 
vibration modes in air and in water

Every geometrically repeatable sector of 
the rotor was modelled by 6133 
hexahedral finite elements. The results of 
calculations were compared with 
experimental measurements discussed 
before. In all cases the immersion in 
water has reduced the own frequencies of 
vibration of the rotor.


