
J. Szantyr – Lecture No. 9 – Computations of Potential Flows 

If the fluid flow is irrotational, i.e. everywhere or almost 

everywhere there is                 then there exists a scalar function                        

,                 such that               .     . Such a flow is called a potential 

flow and the scalar function φ is called the velocity potential.
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In case of the potential flow of incompressible fluid the 

mass conservation equation transforms into the 

Laplace equation:
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Laplace equation is linear, therefore a sum of its solutions is also a 

solution. Consequently, very complicated potential flow functions, 

describing complex flows, may be composed as the superposition of 

many simple functions, describing elementary flows.
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Pierre Laplace 

1749 - 1827



Elementary flows – a uniform flow
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Velocity potential:

Equipotential lines:
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Stream function: Streamlines:
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Elementary flows – a source (positive or negative)

Source is a singular point in the field of flow, 

in which an outflow of the fluid with a 

defined volumetric intensity Q takes place. 

This outflow is uniform in all directions. In 

the case of a negative source (or a sink), the 

fluid flows towards the source and 

„disappears” in it. Hence we have:
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Constant values of the potential  φ appear for constant values of the 

radius r, hence the equipotential lines are concentric circles.



Elementary flows – a double source (a dipole)

Dipole is the effect of superposition of 

positive and negative sources of the 

same module of flow intensity. Intensity 

of a dipole is measured by the so called 

moment of the dipole M=2aQ. As 

opposed to the source, the dipole has 

directional characteristics, because it 

ejects fluid in a definite direction. 

Therefore the orientation of the dipole 

in space is important.
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For a dipole at x=0, y=0 directed along positive x axis we have:



Elementary flows – a vortex

In order to generate hydrodynamic forces on objects in potential flow 

an asymmetrical flow must be generated on these objects. This is 

possible by using another elementary flow called a vortex.

Vortex is called a transformed 

source, because the streamlines of 

the vortex coincide with 

equipotential lines of the source and 

vice versa.

A vortex is a singular point generating in its vicinity a flow with 

circular trajectories.



Vortex potential: Vortex stream function:  A rA ln

The constant A is connected with the velocity circulation along a 

closed contour encompassing the vortex:
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It should be noticed that the fluid motion generated by the vortex is 

irrotational in the entire space outside the vortex itself. Calculation 

of circulation along a contour not encompassing the vortex produces 

zero. Consequently, we have an isolated vortex at x=0, y=0 and 

irrotational flow around it. This gives us the possibility to treat the 

entire flow domain as potential flow.



In practical modelling the flow domain may be divided into 

irrotational and rotational regions. Both these regions are 

interdependent. The rotational flow region may be modelled by 

vortex filaments. Then it becomes important to calculate the velocity 

field generated by the vorticity field, i.e. inverse operation to 

calculation of rotation of the velocity field.

Biot-Savart formula
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Jean Baptiste Biot 

1774 - 1862

Felix Savart 

1791 - 1841



Example: vortex (rotational) flow around a cylinder 

kołowego

Superposition of the uniform flow with dipole and vortex 

located at the origin of the system of co-ordinates.
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Pressure distribution on the cylinder from Bernoulli:
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Asymmetrical pressure 

distribution round the 

cylinder depends on the 

value of circulation. For 

determination of 

circulation an additional 

condition is necessary, 

specifying the location of 

the stagnation point on the 

cylinder.



The pressure distribution on the cylinder surface may be determined 

in the form of a non-dimensional coefficient:
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On the basis of the pressure distribution the components of the 

resultant hydrodynamic force may be determined:

 



 
2

0

0cos dpaPx

  



 
2

0

sin udpaPy - lift force

- drag force

Joukovsky theorem: lift force acting on the unit length of the 

cylinder is equal to the multiple of fluid density, undisturbed flow 

velocity and velocity circulation around the cylinder.

Nicolai Joukovsky 

1847 - 1921



Contemporary methods for determination of potential flows

- lifting line method

- lifting surface method

- boundary elements method Lifting line method is based 

on modelling the lifting foil 

with a single vortex line, 

called the bound vortex, which 

generates lift according to 

Joukovsky theorem. This 

vortex must be substituted 

with the system of free 

vortices. Lifting line method is 

suitable for modelling foils 

with high aspect ratio, i.e. 

airplane wings and air screw 

blades.



Joukovsky theorem may be employed e.g. for determination of 

the lift force on the aircraft wing, according to the relation:
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The above relation determines not only the magnitude, but also the 

direction of the lift force. In the potential flow the vortex lines 

cannot terminate inside the fluid (cf. theorems on the following 

slide). Hence it is necessary to supplement the bound vortex with 

the system of free vortices, which contribute to the velocity field 

calculation according to the Biot-Savart formula.



Second Helmholtz theorem: In the flow of an 

ideal barotropic fluid taking place in the field of 

potential mass forces the intensity of a vortex 

filament does not change along its length and 

remains constant in time.

Thomson theorem: in the flow of an ideal 

barotropic fluid taking place in the field of 

potential mass forces the circulation along an 

arbitrary closed fluid line does not change with 

time.

Wiliam Thomson lord Kelvin   

1824 - 1907

Hermann von Helmholtz 

1821 - 1894



Lifting surface method is based on distribution of the vortices, 

dipoles and sources on an infinitely thin surface bound by the true 

foil outline. This method is suitable for modelling of foils with low 

aspect ratio, e.g. marine propeller blades, turbine blades etc.



Boundary elements method is based on distributing the vortices, 

dipoles and sources on the true surface of the modelled object, i.e. on 

both sides of an aircraft wing or turbine blade. This method is suitable 

for determination of flow around complicated objects e.g. whole aircraft, 

ships or vehicles. Many thousands of elements may be used in such 

modelling.



Pressure distribution 

on a marine 

propeller, computed 

using the boundary 

elements method



Geometrically complicated objects may be modelled using continuous 

distributions of sources, vortices and dipoles. E.g. a continuous 

distribution of sources along the curve a-b may be described by the 

potential:
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In practice the geometrically complicated surface is divided into a 

number of elements called panels. In two-dimensional flows panels are 

usually sections of a straight line, in three-dimensional flows they are 

sections of a flat surface.



Solution of such a flow 

is based on the 

boundary condition, 

which postulates no 

flow through the 

surface of the object, 

i.e. zero normal 

velocity on the surface. 

This leads to the 

following equation:
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Formulation of such an equation for every panel leads to the system 

of linear equations for the unknown intensities of sources λ.



Modelling of flows with lift forces requires distributions of vortices and 

dipoles. In case of the continuous distribution of vortices with intensity γ

we have:

In this case the flow is described by the potential:
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, where:  sm - continuous distribution 

of vortices

After the object is divided into panels we obtain the following equation:
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In case of modelling the object which generates lift force by means of the 

vortex distribution, an additional condition is necessary for univocal 

determination of the vortices intensity. For a profile the so called Kutta 

condition is most frequently used. This condition postulates the flow to 

leave the profile tangentially, precisely at the trailing edge. After the 

system of equations is solved and the intensity of all vortices is 

determined, the lift force may be calculated from the Joukovsky theorem:
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1867 - 1944


