J. Szantyr — Lecture No. 9 — Computations of Potential Flows

If the fluid flow is irrotational, i.e. everywhere or almost
everywhere there is rott = 0 then there exists a scalar function
go(X, Y, Z,t) such that U = grade . Such a flow is called a potential
flow and the scalar function ¢ 1s called the velocity potential.
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In case of the potential flow of incompressible fluid the
mass conservation equation transforms into the

Laplace equation:
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Pierre Laplace
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Laplace equation is linear, therefore a sum of its solutions is also a
solution. Consequently, very complicated potential flow functions,
describing complex flows, may be composed as the superposition of
many simple functions, describing elementary flows.




Elementary flows — a uniform flow
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Velocity potential:

v =const

p(X,y)=a-x+b-y=u - x+u, -y
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Elementary flows — a source (positive or negative)

g-const | Source is a singular point in the field of flow,

o I in which an outflow of the fluid with a
\ ,\ defined volumetric intensity Q takes place.
__ This outflow is uniform in all directions. In

" * the case of a negative source (or a sink), the

\ 1 / fluid flows towards the source and
\\‘_%_,/t ,,disappears” in 1t. Hence we have:
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Constant values of the potential ¢ appear for constant values of the
radius r, hence the equipotential lines are concentric circles.



Elementary flows — a double source (a dipole)

yA Dipole is the effect of superposition of
N w-const positive and negative sources of the
same module of flow intensity. Intensity
_ __ P=const ) ]
ey 3'- XTA N v ofadipole is measured by the so called
[ 7 / «%?; Y \ _ moment of the dipole M=2aQ. As
A\ YFIRNX / /% opposed to the source, the dipole has

S~ - directional characteristics, because it
ejects fluid in a definite direction.
Therefore the orientation of the dipole
In space is important.

For a dipole at x=0, y=0 directed along positive x axis we have:
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Dipole potential: P 27 X2+ y?
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Dipole stream function: T2z Xy



In order to generate hydrodynamic forces on objects in potential flow
an asymmetrical flow must be generated on these objects. This is
possible by using another elementary flow called a vortex.

Elementary flows — a vortex

A vortex Is a singular point generating in its vicinity a flow with

circular trajectories.
w=const

P= t )
cons Vortex is called a transformed

\ 3 source, because the streamlines of
~ 1220 the vortex coincide with
equipotential lines of the source and
Vice versa.
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Vortex potential: @ = A-6& Vortex stream function: ¥ = A-Inr
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The constant A is connected with the velocity circulation along a
closed contour encompassing the vortex:
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It should be noticed that the fluid motion generated by the vortex is
Irrotational in the entire space outside the vortex itself. Calculation
of circulation along a contour not encompassing the vortex produces
zero. Consequently, we have an isolated vortex at x=0, y=0 and
irrotational flow around it. This gives us the possibility to treat the
entire flow domain as potential flow.




In practical modelling the flow domain may be divided into
irrotational and rotational regions. Both these regions are
Interdependent. The rotational flow region may be modelled by
vortex filaments. Then it becomes important to calculate the velocity
field generated by the vorticity field, i.e. inverse operation to
calculation of rotation of the velocity field.

Biot-Savart formula
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Example: vortex (rotational) flow around a cylinder
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Superposition of the uniform flow with dipole and vortex
located at the origin of the system of co-ordinates.
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Stream function: w=u_|r— sin @ + *In -
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On the cylinder surface there is: U, =0 Us = U, 2sin 0+ zﬂauw]

Pressure distribution on the cylinder from Bernoulli:

pu, (. U
Py =P, + 5 (1_é)
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Asymmetrical pressure
distribution round the
cylinder depends on the
value of circulation. For
determination of
circulation an additional
condition Is necessary,

specifying the location of

the stagnation point on the

cylinder.




The pressure distribution on the cylinder surface may be determined
In the form of a non-dimensional coefficient:
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On the basis of the pressure distribution the components of the
resultant hydrodynamic force may be determined: = 7" %

P, = —aj ppcosdf=0  _drag force
0
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P, =-a[ p,sin@d=pu,T - lift force
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Nicolai Joukovsky
1847 - 1921

Joukovsky theorem: lift force acting on the unit length of the

cylinder is equal to the multiple of fluid density, undisturbed flow
velocity and velocity circulation around the cylinder.



Contemporary methods for determination of potential flows

- lifting line method

- lifting surface method

- boundary elements method Lifting line method is based
on modelling the lifting foil
A with a single vortex line,
. s ‘\:":\\ called the bound vortex, which
.l | :,:1:\:\ generates lift accordmg_to
LR i Joukovsky theorem. This
o > CUSES R A vortex must be substituted
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blades.



Starting vortex -

shed on takeoff -—j
AN
//
{. )/
' ‘.'.“.

circulation

' \ Trailing vortex or
wake vortex -
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Bound vortex —
air circulating
around the wing

Joukovsky theorem may be employed e.g. for determination of
the lift force on the aircraft wing, according to the relation:

L=pU_xT
The above relation determines not only the magnitude, but also the
direction of the lift force. In the potential flow the vortex lines
cannot terminate inside the fluid (cf. theorems on the following
slide). Hence it Is necessary to supplement the bound vortex with

the system of free vortices, which contribute to the velocity field
calculation according to the Biot-Savart formula.




Thomson theorem: in the flow of an ideal
barotropic fluid taking place in the field of
potential mass forces the circulation along an
arbitrary closed fluid line does not change with
time.

Wiliam Thomson lord Kelvin
1824 - 1907

Second Helmholtz theorem: In the flow of an
Ideal barotropic fluid taking place in the field of
potential mass forces the intensity of a vortex
filament does not change along its length and
remains constant in time.

Hermann von Helmholtz
1821 - 1894



Lifting surface method is based on distribution of the vortices,
dipoles and sources on an infinitely thin surface bound by the true
foil outline. This method is suitable for modelling of foils with low
aspect ratio, e.g. marine propeller blades, turbine blades etc.
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Boundary elements method is based on distributing the vortices,
dipoles and sources on the true surface of the modelled object, i.e. on
both sides of an aircraft wing or turbine blade. This method is suitable
for determination of flow around complicated objects e.g. whole aircraft,

ships or vehicles. Many thousands of elements may be used in such
modelling.
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Pressure distribution
on a marine
propeller, computed
using the boundary
elements method



Geometrically complicated objects may be modelled using continuous
distributions of sources, vortices and dipoles. E.g. a continuous
distribution of sources along the curve a-b may be described by the

potential: b

o(X,y)= j A8 1y where:A[m/s] - continuous distribution of sources
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In practice the geometrically complicated surface is divided into a

number of elements called panels. In two-dimensional flows panels are
usually sections of a straight line, in three-dimensional flows they are

sections of a flat surface.



— A=) _————=—____Solution of such a flow
L _ W is based on the
o | \\%ﬁ boundary condition,

which postulates no
flow through the
surface of the object,

< 1.e.zero normal

yes/m velocity on the surface.

1 * This leads to the
g following equation:

Boundary
points

Formulation of such an equation for every panel leads to the system
of linear equations for the unknown intensities of sources /.



Modelling of flows with lift forces requires distributions of vortices and
dipoles. In case of the continuous distribution of vortices with intensity y
we have:
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In this case the flow is described by the potential:

b
o(x,y)= —zijeyds where: 7[m/s] - continuous distribution
T a

of vortices
After the object is divided into panels we obtain the following equation:
n oy, .00,
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In case of modelling the object which generates lift force by means of the
vortex distribution, an additional condition is necessary for univocal
determination of the vortices intensity. For a profile the so called Kutta
condition is most frequently used. This condition postulates the flow to
leave the profile tangentially, precisely at the trailing edge. After the
system of equations is solved and the intensity of all vortices is
determined, the lift force may be calculated from the Joukovsky theorem:
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Martin Kutta
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