J. Szantyr — Lecture No. 11 — Navier-Stokes equation

Substitution of the relations resulting from the Newtonian fluid
model nto the equation of conservation of the fluid momentum
leads to the equation known as the Navier-Stokes equation.

This equation may be written in the form of three scalar equations:
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In the vector form the Navier-Stokes equation reads:

P bu _ pf — gradp + grad (Adivir )+ div(2u[D])

Dt
A=B+C+D+E

A — rate of change of the fluid element momentum
B- mass force
C- surface pressure force

D — surface force connected with fluid viscosity and resulting from
the change of volume of the compressible fluid element
(compression or expansion)

E- surface force connected with fluid viscosity and resulting
from the linear and shearing deformation of the fluid element



In an incompressible fluid the Navier-Stokes equation simplifies

to the form:
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If additionally a constant fluid viscosity i1s assumed, we obtain:
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Further possible simplification 1s the assumption of zero viscosity of
the fluid, which leads to the Euler equation, describing the motion
of an incompressible and nviscid fluid:
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The Navier-Stokes equation may be solved analytically only for a
few simplified cases. Selected examples are described below.



Examples of the analytical solutions of the Navier-Stokes for
simple flows

Assumption: we consider an unidirectional flow, 1.e. the flow 1n
which v=w=0, so the velocity vectors are parallel to each other
in every point of the field.

If the fluid 1s incompressible, we get from the mass conservation
equation: AU
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Then the Navier-Stokes equation simplifies to the form:
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then: p = p(xat) 3—5 = f(t) and finally: (;p _Ap
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Example No. 1: Steady laminar flow between two infinite parallel
plates (Poiseuille flow)

. Ap
Given: —— =const
AX

Ih Boundary conditions:
Ih u=u(y) u=0 for y=h
u=0 for y=-h
Solution ,
du 1Ap
The Navier-Stokes equation takes the form: dt> - 1 AX

After double integration we obtain:
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The integration constants may be determined from the boundary
conditions, what leads to the solution:

Comments:
-the velocity profile 1s parabolic with maximum at y=0,

-for increasing pressure gradient the maximum velocity and the
volumetric flow intensity also increase,

-for increasing fluid viscosity the maximum velocity and the
volumetric intensity of flow decrease.



Example No. 2: Steady laminar flow through the horizontal pipe of
constant circular cross-section (case of a=0)

. Ap
Given: — =const
AX

Boundary conditions:

u(R)=0 u(0) <o

Solution

We employ the cylindrical system of co-ordinates, in which the
Laplace operator applied to the velocity field has the form:
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The Navier-Stokes equation 1s: 1o (r duj = ERCE
rdr\ dr) p AX

Double integration with respect to r gives:
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The integration constants may be determined from the boundary
conditions: 2
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Ultimately this leads to:
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Comment: comparison with the Example No. 1 assuming h=R leads
to the conclusion that with the same pressure gradient the maximum
flow velocity and the volumetric flow intensity in the pipe are
smaller. This 1s due to the more intensive retardation of the pipe flow
by the viscous stresses.

The case of pipe inclined at an angle a to the horizon

In this case the Navier-Stokes equation must include the component
of the mass force acting in the direction of flow:
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As the pressure gradient and the mass flow component act on the flow
in a similar way we may introduce the hydraulic head J:
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Then the solution has the form:

J
u(r)= 2R 1) Q-"TR!
A particular case: the vertically oriented pipe
In this case we have: J=1- ﬂ
poL
Pressure at inlet: P, = p, +pgH
Pressure at outlet: P, = Py

Then: Ap=p,—p, =—-pgH

After substitution we get:

Q=

v

|
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ngR* H\ Due to the easy measurement of Q this formula
J 1+ —
T | | may be employed for experimental

determination of the fluid viscosity coefficient v



Example No. 3: Flow in an open channel

Boundary conditions:

I - du —0 for: y=h (1)

h u

u=0 fory=0 (2)

!

& Solution
2
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From condition (1): C,=———h whatleads to:
u AX

du 1 Ap y—l&h

dy MAX i AX



:L& y2 _L&hy_kcz
21 AX 21 AX

C, =0 from condtion (2), what ultimately leads to:

After second integration we get: u

1 Ap
21 AX

And the volumetric intensity of flow is:

u

y(y—2h)

NB!: when comparing the above results with those for the Poiseuille
flow the differences in the adopted systems of co-ordinates should
be taken into account.



