
J. Szantyr – Lecture No. 18 – Laminar and turbulent flows
Occurence of the two disctinct types of flow, namely laminar and 
turbulent, was discovered by Osborne Reynolds in his well-known
experiment concerning the flow in a pipe in 1883. He came to the
conclusion that the laminar flow occurs up to the value of Re=2300. 
Above that value the fluid motion becomes unstable and intensive
mixing of fluid occurs due to vortex structure of the turbulent flow.
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The ratio of inertia forces and viscosity forces in the fluid flow, 
expressed by the Reynolds number, influences strongly the 
character of the flow. At low Reynolds numbers, i.e. with relatively 
high viscosity forces, the flow has an orderly character – the fluid 
elements move along parallel tracks and no mutual mixing occurs. 
Such a flow is called the laminar flow or the layered flow. Above a 
certain value of the Reynolds number (called the lower critical
number), due to the increasing role of the inertia forces, such a
flow loses stability and disturbances exhibiting stochastic 
fluctuations of the flow velocity appear. With further increase of the
Reynolds number (above so called upper critical number) the
disturbances fill the entire flow, which is then called the turbulent
flow The critical Reynolds numbers are different for different 
flows, for example they are different for a pipe flow and different 
for a flow along the plane wall.



The laminar flow – an orderly fluid motion along parallel
paths, the fluid elements do not mix with each other, a purely
viscous mechanism of transport of momentum and energy
dominates the flow.

The turbulent flow – a chaotic fluid motion of a stochastic 
character, unsteady even with the steady boundary conditions,
the fluid elements mix with each other, what leads to an
intensive process of transport of mass, momentum and energy.
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u – the characteristic velocity

l – the characteristic linear dimension

ν – the kinematic viscosity coefficient



The above picture shows an experiment concerning the flow around a 
thin rod, placed perpendicularly to the direction of velocity. The 
consecutive photographs show the gradual de-stabilisation of the flow as 
the Reynolds number increases.



The picture shows an increase
of the turbulent fluctuations of
velocity of the flow along a 
flat plate, i.e. with the
increasing value of the
Reynolds number calculated
on the basis of the distance
from the leading edge of the
plate.

For the flow in a pipe of a circular cross-section (D – the diameter) 
we have:
the lower critical value: 2000Re 1 =
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In the flow along a flat plate (x – the distance from the leading edge) 
we have:
the lower critical value:

the upper critical value:
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uUu ′+=In a turbulent flow we have: or:

time-dependent velocity=mean velocity+turbulent fluctuation

The measure of the turbulence intensity is the degree of turbulence ε:
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The kinetic energy of turbulence k is given by the expression:
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Visualisation of a turbulent flow shows the specific vortex structures
of different scales, known as the turbulent eddies.



The Kolmogorov model
(1941) treats turbulence as  
the cascade of vortices, 
transferring the energy of the
fluid motion from the main
flow to the molecular motion.

The largest vortices interact with the main flow and absorb its energy. 
Their characteristic length and velocity are of the same order as those of
the main flow (high Reynolds number). It means that the inertia forces
dominate and the viscosity forces are negligible. This leads to the 
disintegration of the vortices into smaller and faster rotating ones. The
smallest vortices have Re=1 with diameter η=0.1-0.01 mm and rotational
frequency 10 kHz. The motion of these vortices is retarded by the
viscosity forces (equal to the inertia forces), and their energy is dispersed
and converted into the internal energy (i.e. heat) .
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The turbulent flow is mathematically described by the Reynolds
Equations. Reynolds has assumed that in the turbulent flow the
velocity and pressure may be expressed as sums of their mean values
(or rather: slowly changing) and turbulent fluctuations, that is:

uUu ′+= pPp ′+=
where: wkvjuiu ′+′+′=′
Substitution of such velocity and pressure into the Navier-Stokes
equation leads to the appearance of the new surface forces, called the
turbulent stresses:
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Normal stresses:

2~uxx ′−= ρτ 2~vyy ′−= ρτ 2~wzz ′−= ρτ

vuyxxy
~~ ′′−== ρττTangential (shearing) stresses:

wuzxxz
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The turbulent stresses, also known as Reynolds stresses, depend on 
the values of the velocity fluctuations, not on the fluid viscosity. It 
may be proved that they form a symmetrical system of stresses. They
constitute the additional 6 unknowns in the system of Reynolds 
equations describing the turbulent motion of the fluid. In order to 
reduce the number of unknowns and close the system it is necessary 
to introduce the appropriate models of turbulence. The Reynolds
equations are the basis of most of the contemporary commercial
computer codes in the domain of the Computational Fluid 
Mechanics.


