
J. Szantyr – Lecture No. 24 – Potential Flows 2

The elementary potential flows (continued)

4. The vortex

In order to generate hydrodynamic forces on the bodies in potential 

flows it is necessary to achieve an asymmetrical flow. This is 

possible by means of another elementary potential flow called a 

vortex.

The vortex is a singular point generating in its neighbourhood a fluid 

The vortex is a flow linked to a source flow, 

because the vortex stream lines are identical 

to the source equipotential lines and the 

vortex equipotential lines coincide with the 

source stream lines.

The vortex is a singular point generating in its neighbourhood a fluid 

motion along the circular paths.



The vortex potential: The vortex stream function:θϕ ⋅= A

rA ln⋅=ψ

The constant A is connected with the velocity circulation along the 

contour C encompassing the vortex:
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It should be noticed that the flow generated by the vortex is 

irrotational in the entire space except the vortex itself. The 

computation of circulation along any contour not containing the 

vortex gives zero. Hence we have an isolated vortex at x=0, y=0

and an irrotational flow in its neighbourhood. This allows us to 

treat the entire flow as a potential flow.



Example: Rotational flow around a circular cylinder

Superposition of an uniform flow, a dipole and a vortex.
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The stream line:
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On the cylinder surface we have: 0=ru 
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The pressure distribution on the cylinder 

according to the Bernoulli equation: 
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The pressure distribution on the cylinder surface, defined in the 

form of a non-dimensional coefficient:
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On the basis of the pressure distribution the components of the 

resultant hydrodynamic force on the cylinder may be calculated:
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- the lift force

- the drag force

The Joukovsky theorem: the lift force acting on the unit span of 

the cylinder is equal to the multiple of the fluid density, velocity of 

the undisturbed flow and the circulation of velocity around the 

cylinder.



The rotational flow around a cylinder depending on 

the value of the circulation of velocity



The asymmetrical pressure distribution around the cylinder depends 

on the value of circulation. In order to determine the value of 

circulation an additional condition is necessary, which defines the 

location of the stagnation point on the cylinder.



The Joukovsky theorem may be employed e.g. for determination 

of the lift on the wing of an aircraft, according to:

Γ×= ∞UL ρ

The above relation determines not only the value of the lift force, 

but also its direction.



Contemporary methods for determination of potential flows

- the lifting line method

- the lifting surface method

- the boundary element method

The lifting line method is 

based on substituting the 

lifting foil with a single vortex 

line, so called bound vortex, 

which generates lift according 

to the Joukovsky theorem. to the Joukovsky theorem. 

This vortex must be 

supplemented with the system 

of free vortices. The lifting 

line method is well suited for 

modelling flows around foils 

of high aspect ratio, e.g. 

aircraft wings or airscrew 

blades.



The lifting surface method is based on the distribution of 

vortices, sources and dipoles on an infinitely thin surface, bounded 

by the true foil outline. This method is well suited for modelling of 

flow around the foils of low aspect ratio, e.g. marine propeller 

blades or turbine and pump blades etc.



The boundary element method is based on distribution of vortices, 

sources and dipoles on the true surface of objects, that is on both sides of 

an aircraft wing or turbine blade etc. This method is well suited for 

deremination of flows around complicated objects, e.g. complete aircraft, 

vehicles or ships. The modelling of such flows requires using many 

thousands of elements.



Pressure distribution 

on the marine 

propeller blades 

calculated by means 

of the boundary 

element method



Flows around geometrically the complicated objects may be modelled by 

continuous distributions of sources, vortices or dipoles. For example, a 

continuous distribution of sources along the curve a-b may be described 

by a potential:
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where: [ ]smλ - a continuous 

distribution of sources

In practice, the geometrically complicated surface of the object is divided 

into a number of elements, so called panels. In the two-dimensional 

flows the panels are most frequently sections of a straight line, and in 

three-dimensional flows – sections of flat surfaces.



The main role in the 

solution of such a flow 

plays the boundary 

condition, which 

postulates no flow 

through the object 

surface, i.e. normal 

component of the 

resultant velocity equal resultant velocity equal 

zero, what leads to the 

equation:
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Writing such an equation for each panel leads to the system of linear 

equations for the unknown intensities of the source distribution λ.



Modelling of flows in which lift forces are generated requires using the 

distributions of vortices or dipoles. In the case of a continuous vortex 

distribution of intensity γ we have:

In this case the flow is described by the potential:
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where: [ ]smγ - a continuous vortex 

distribution

After dividing the object into panels we obtain the equation:
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In the case of modelling of the flow around an object generating lift force 

by means of the vortex distribution it is necessary to introduce an 

additional condition, which enables a unique determination of the vortex additional condition, which enables a unique determination of the vortex 

intensity. For a profile in most cases it is so called Kutta condition, which 

postulates that the flow leaves the profile exactly at the trailing edge. 

After solution of the system of linear equations and calculation of the 

vortex intensity on all panels, the lift force may be computed using the 

Joukovsky equation:

∑
=

∞=
n

j

jjsVL
1

γρ


