
J. Szantyr – Lecture No. 29 –Principles of Gas Dynamics I

The model of compressible fluid implies that a positive change in 

pressure results in a positive change in density, hence:
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We employ the model of an ideal and perfect gas. Out of 4 possible 

gas processes the adiabatic process is most frequently employed 

(q=idem), because due to the high rate of change of the gas flow 

parameters the absence of the heat exchange between the adjacent parameters the absence of the heat exchange between the adjacent 

fluid elements is a reasonable assumption.

Propagation of small disturbances in an ideal gas.

We consider a one-dimensional 

flow: ( ) 0, ρρ <<′ xt

( ) 0, ptxp <<′



The conservation equations for such a flow have the form:
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momentum conservation equation (Euler):

In order to close the system the Poisson adiabatic must be included:
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Now we have 3 equations and 3 unknowns: p, u, ρ

Linearization of the system of equations leads, after some 

transformations, to the linear wave equations:
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ρρfor density:
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for pressure:
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for velocity:

The solutions of the wave equation e.g. for pressure have the form:

( ) ( )taxftxp 0, −=′

it describes a wave of an initial profile                                                                      

,                           , propagating in the ( ) ( )xfxp =′ 0,,                           , propagating in the 

positive x direction, and:
( ) ( )xfxp =′ 0,

( ) ( )taxgxp 00, +=′

it describes a wave of an initial profile                           , 

propagating in the negative x direction.

( ) ( )xgxp =′ 0,

The constant profile of the propagating wave is a consequence of the 

assumption about small disturbances (i.e. linear form of equations).



It follows from the linear wave equation that the small disturbances 

propagate in gas with a constant velocity. As the sound waves are also 

small disturbances, their velocity of propagation may be interpreted as 

the speed of sound:
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It follows from the above formula, that the speed of sound is higher in 

the less compressible media. In air at the sea level the speed of sound is 

about 340 [m/s], while in water it is about 1500 [m/s].

The similarity criterion for the high speed gas flows is the Mach 

number:
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The flows may be categorized according to the value of Mach number:

- low subsonic – Ma<0.3 (compressibility effects are negligible)

- subsonic – 0.3<Ma<1.0

- transonic ( in limited areas there is Ma>1.0)

- supersonic – 1.0<Ma<3.0

- hypersonic – Ma>3.0

Propagation of disturbances of a finite (large) amplitude.

In such a case the linearization of the conservation equations is not 

possible. Their solution in a non-linear form is complicated and it leads 

to the relations for propagation velocity of the following format:

































−






+

−
±=

−

1
2

1

1

2 2

1

0

0

κ

ρ
ρ

ρκ

κ

a
C - for a density disturbance



It follows from the above formula that the velocity of propagation 

increases with the increasing disturbance amplitude. As a result, the 

shape of the disturbance is deformed during propagation. This leads to 

the formation of a surface of an abrupt change of the gas flow 

parameters, or the shock wave.

Aircraft generating shock waves



Examples of visualisation of the 

shock waves.To the right the 

original photograph made by 

Mach in the second half of the 

XIX century.



The mechanism of the shock wave generation

A sudden motion of the piston in the cylinder generates a local 

disturbance (increase in density) of a gas, which propagates with velocity 

U. This disturbance may be treated as a sequence of waves, passing one 

after another through the gas of parameters already changed by the after another through the gas of parameters already changed by the 

previous wave. The adiabatic increase of density results in the increase of 

temperature and the local speed of sound. This means that each 

subsequent wave propagates faster and it catches up with the previous 

one and overlays it. Finally, a thin surface of discontinuity, i.e. an abrupt 

change in the gas parameters is created, called  

the perpendicular shock wave.

(perpendicular to the direction of velocity)



An elementary theory of the perpendicular shock wave

The conservation equations for the perpendicular shock wave may be 

written in the form:

2211 vv ρρ =mass conservation equation: 2211 vv ρρ =mass conservation equation:

222111 vpvp ρρ +=+momentum conservation equation:
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The solution of the following system of equations leads to the relations:
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It follows from these relations that:It follows from these relations that:

- the shock wave is generated when Ma>1.0

- after passing the perpendicular shock wave the velocity decreases and 

pressure, density, temperature and entropy of the gas increase

- behind the perpendicular shock wave there is always Ma<1.0



In transonic flows it often happens that locally on the object the 

flow is supersonic and therefore capable of generating local 

shock waves, despite the fact that the general velocity of the 

object motion relative to air is subsonic – see for example the 

cases illustrated below..



Examples of local shock waves indicating locally supersonic flow 

on aircraft flying at high angles of attack but with nominally 

subsonic speed.


