
J. Szantyr – Lecture No. 3 – Fluid in equilibrium

Internal forces – mutual interactions of the selected mass elements of 

the analysed region of fluid, forces having a surface character, forming 

pairs acting in the opposite directions, thus reducing to zero. 

External forces – the result of action of masses which do not belong 

to the analysed region of fluid – they may be divided into mass forces 

and surface forces.

Mass forces act on every fluid element and they are proportional to Mass forces act on every fluid element and they are proportional to 

its mass.
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Surface forces act on the surface surrounding the selected region of 

fluid and they are proportional to the area of this surface.
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In general the surface force depends on the orientation of the surface 

element, defined by the unit length normal vector n, thus it should be 

symbolized by: nP

The fluid remains in equilibrium under the action of the given 

external forces if the forces acting on an arbitrarily selected part 

of the fluid form the system of vectors equivalent to zero.



In the fluid in the state of equilibrium the pressure in an 

arbitrary point has a constant value and it does not depend on 

the orientation of the surface element passing through this point.

Equilibrium conditions of the tetrahedron:

( ) 0,cos =− xppdSdSp xx

( ) 0,cos =− yppdSdSp yy

( ) 0,cos =− zppdSdSp ( ) 0,cos =− zppdSdSp zz

but we have: ( )xpdSdSx ,cos= etc.

0;0;0 =−=−=− pppppp zyx
hence: zyx pppp ===

Conclusion: the hydrostatic state of stress in the fluid has the 

character of a scalar field.



Conditions of the fluid equilibrium

Unit mass force:

( )zyxFkZjYiXF ,,=++=

Density:

( )zyx ,,ρρ =

Conditions of equilibrium of the fluid 

element:element:
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hence we obtain:
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what leads to the basic hydrostatic Euler equation:

gradpF
ρ

1
=

or in the differential form:

ρ
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if the mass force field has the potential U, such that:

ρ

dp
dU −= and after integration: CUp +−= ρ

The integration constant may be determined from the given pressure 

and mass force field potential in the selected point in the fluid.

then we obtain:

gradUF −=



For example in the gravitational field near the Earth we have  X=Y=0

z

U
gZ

∂

∂
−=−= or: gzU = what gives: Cgzp +−= ρ

Conclusion: in the gravitational field of the Earth the surfaces of 

constant hydrostatic pressure (isobaric surfaces) are horizontal.

If by         we denote the pressure on the fluid free surface at the 

elevation H we get:
ap

General conclusion: isobaric and equipotential surfaces are 

perpendicular to the vector of mass forces (see example at the end)

elevation H we get:

CgHpa +−= ρ what gives: gHpC a ρ+= and further:

( )zHgpp a −+= ρ finally: ghpp a ρ+= where:

h=H-z – immersion of the point under free surface

ap - pressure on the free surface (eg. atmospheric)



Examples of application

Connected vessels – at the level A-B we have:

11ghpp a ρ+= 22ghpp a ρ+=

czyli:

2211 hh ρρ = albo:
12
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Hydrostatic measurement of pressureHydrostatic measurement of pressure

ppA = hgpp aB ∆+= ρ

BA pp = hgpp a ∆=− ρ

In this way we measure the overpressure 

(relative pressure) in the container, or the 

difference between the absolute pressure 

p and the atmospheric pressure.



Barometer – measurement of the atmospheric pressure.

ghpa ρ=

Pascal theorem

Increase of pressure in an arbitrary point of the 

homogenous incompressible fluid in the state of 

equilibrium, placed in the potential mass force field, 

results in the same increase of pressure in any other results in the same increase of pressure in any other 

point of the fluid.

( )UUpp −=− 00 ρ

( ) ( )UUpppp −=+−+ 000 ρδδ

00 =− pp δδ
0pp δδ =



Example No.1: Determination of the inclination of the liquid 

free surface in the container moving in a straight constantly 

accelerated motion in an arbitrary direction.

ua convective acceleration uaa =

projections of the unit mass force:
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liquid equilibrium equations:
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or: ( )gdzdzadya
dp

++−= ββ
ρ

sincos

after integration with ρ=const we obtain:
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the constant is determined for the pressure at the free surface in the 

point M1:
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the equation of the isobaric (constant pressure) surfaces has the form:
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Conclusion: the resultant mass force is perpendicular to the isobaric 

surfaces.



Example No. 2: Determination of the relation describing the 

pressure distribution in a tank rotating with constant angular 

velocity ω. The tank is filled with liquid having density ρ, and 

the ambient pressure is equal p.

In the cylindrical system of co-ordinates the 

basic hydrostatic equation has the form: 
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where the respective terms are equal to:
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gqz −=



After substitution we get: ( )dzgdrrdp ⋅−⋅⋅⋅= 2ωρ

Integration leads to: Czgrp +⋅⋅−⋅⋅= ρω
ρ 22

2

For the liquid surface point at the tank axis we have:

0=r 0zz = 0pp =

Hence the integration constant is equal to: zgpC ⋅⋅+= ρHence the integration constant is equal to: 00 zgpC ⋅⋅+= ρ

Finally, the pressure distribution in the liquid is described 

by equation:
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Example No. 3: Three pistons of areas A1=0,6 m**2, A2=0,8 

m**2, A3 0,4 m**2, respectively loaded with forces P1=1 kN, 

P2=2 kN i P3=3 kN, act on water having density ρ=1000 

kg/m**3. Determine at which elevations h1 i h2 the system of 

pistons remains in equilibrium. 



Pressure under piston 2 is:
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The elevations are determined from the above equations:
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Correctness of the solution may be checked using the equilibrium 

equation referring to pistons 1 and 3:
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