J. Szantyr — Lecture No. 30 — Principles of gas dynamics II
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Obligue shock waves
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a) Subsonic flow — the sound
wave overtakes the generating
object

b) Transonic flow — as the velocity
increases the sound waves
concentrate and at v=a they form
the shock wave

¢) Supersonic flow — the object
overtakes the generated sound
waves — the shock wave front
forms the so called Mach cone
with an angle:
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The oblique shock waves in internal flows are often generated by the

geometric discontinuity of the channel walls:
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In such a case we have two flows of different directions:
before and behind the shock wave — consequently two
Mach angles may be determined. As this would be
physically unrealistic, we have only one shock wave A-C
inclined at an angle 3, defined by the formula:
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The velocity distribution in an
oblique shock wave may be
— presented by the normal and
tangential components. The
following equations may be

written:
mass conservation equation PV, = PV, ,
momentum conservation equation 2 _ 2
; . p1+101v1n_p2+p2v2n
perpendicular to OC:
momentum conservation —
. PiViViy = PoVo, Vo,

equation parallel to OC:
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energy conservation equation: c, T, + P 121” =c,T, + P 222”

These equations are i1dentical to those for the perpendicular shock wave,
as long as the velocity components normal to the shock wave are used.



In an oblique shock wave only the normal velocity component falls

below the speed of sound when passing the wave front — the total
flow velocity behind the wave may be still supersonic.
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The relations between the
wall inclination, shock
wave inclination, and
Mach numbers before (1)
and behind (2) the shock
wave are shown in the
diagram. For example for
0=12 degrees and

Ma, =2.8
we get: Ma, =2.2
p=31"  p,/p =22



When the nose angle of the
object generating the shock
wave 1s large, the wave
starting at the nose may not be
generated. In such a case the
so called displaced shock
wave occurs. In this wave in
zone 1 we have the subsonic
flow and before the wave and
in zone 2 behind the wave —
the supersonic flow.

The limiting value of the nose
angle depends on the Mach
number and it varies around
the value of 70 degrees.
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Flow through the de [L.aval nozzle

The de Laval nozzle 1s a device
enabling acceleration of the gas flow
to supersonic velocities. Besides
other applications i1t forms the part of
rocket engines.
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V = Velocity
m = mass flow rate
p = pressure

Thrust= F =m V, + (P.—-Py) Ae




One-dimensional steady flow of a compressible fluid

The nozzle 1s composed of the
—— confusor (the convergent part),
the throat (the smallest cross-
section) and the diffusor (the
divergent part).
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mass conservation equation: ,O(X)- M(X) S (x) = const

d d d
after differentiation: u-S -—'0+,0-S -—u+,0-u o) =0
dx dx dx
DT, Ldp, ldu, 1dS_
after dividing by pusS: Ddr udi S dv
d dp dpd 1 d
moreover, we have: D g or LLD_ P

dp dx dpdx a dx



The pressure gradient may be determined from the one-dimensional

Euler equation for steady flows: du 1 dp
U— =———
dx P dx
hence:
d_p:_pzt du . (Ma2 _l)du _u dS . (Ma2 _l)du _ dS
dx a” dx dx S dx u S

It follows that the character of the gas flow in the de Laval nozzle
depends on the value of the Mach number:
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The supersonic flow — the
The subsonic flow — the velocity 1s velocity increases with the
inversely proportional to the variation increase of the nozzle cross-

of the nozzle cross-section area. section area.



At subsonic velocity the increase of nozzle cross-section leads to
decrease 1n velocity and the decrease of cross-section to increase in
velocity — conversely at supersonic velocity. Conclusion: the de
Laval nozzle enables acceleration of the gas flow to supersonic
velocity on the condition of reaching the speed of sound in the
nozzle throat.

There exists the maximum possible mass flow intensity through
the de Laval nozzle, defined by the following expression:
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The maximum mass flow intensity corresponds to reaching of the
speed of sound and of the critical gas pressure in the nozzle throat:
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The possible case of flow through the de LLaval nozzle

1 — the subsonic flow — infinite number of
cases may be realized depending on the

value of the outlet pressure (or so called
counterpressure).

2 — subsonic flow 1n the confusor, speed of
sound 1n the throat, in the diffusor either
sub- or supersonic flow depending on the
counterpressure.

3 — gas flows into the nozzle with already
supesonic velocity, this velocity 1s reduced
in the confusor, but remains supersonic in
the throat. In the diffusor the flow
accelerates further, consequently we have
supersonic flow in the entire nozzle.




