
J. Szantyr – Lecture No. 30 – Principles of gas dynamics II

Oblique shock waves

a) Subsonic flow – the sound 

wave overtakes the generating 

object

b) Transonic flow – as the velocity 

increases the sound waves 

concentrate and at v=a they form 

the shock wavethe shock wave

c) Supersonic flow – the object 

overtakes the generated sound 

waves – the shock wave front 

forms the so called Mach cone 

with an angle:
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The oblique shock waves in internal flows are often generated by the 

geometric discontinuity of the channel walls:

In such a case we have two flows of different directions: In such a case we have two flows of different directions: 

before and behind the shock wave – consequently two 

Mach angles may be determined. As this would be 

physically unrealistic, we have only one shock wave A-C 

inclined at an angle β, defined by the formula:
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The velocity distribution in an 

oblique shock wave may be 

presented by the normal and 

tangential components. The  

following equations may be 

written:

mass conservation equation 2211 nn vv ρρ =

momentum conservation equation 

perpendicular to OC:
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momentum conservation 

equation parallel to OC:
tntn vvvv 222111 ρρ =

energy conservation equation:
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These equations are identical to those for the perpendicular shock wave, 

as long as the velocity components normal to the shock wave are used.



In an oblique shock wave only the normal velocity component falls 

below the speed of sound when passing the wave front – the total 

flow velocity behind the wave may be still supersonic.

The relations between the 

wall inclination, shock 

wave inclination, and 

Mach numbers before (1) 

and behind (2) the shock 

wave are shown in the wave are shown in the 

diagram. For example for 

θ=12 degrees and 

8.21 =Ma

we get: 2.22 =Ma

0
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When the nose angle of the 

object generating the shock 

wave is large, the wave 

starting at the nose may not be 

generated. In such a  case the 

so called displaced shock 

wave occurs. In this wave in 

zone 1 we have the subsonic 

flow and before the wave and flow and before the wave and 

in zone 2 behind the wave –

the supersonic flow.

The limiting value of the nose 

angle depends on the Mach 

number and it varies around 

the value of 70 degrees.



Flow through the de Laval nozzle

The de Laval nozzle is a device 

enabling acceleration of the gas flow 

to supersonic velocities. Besides 

other applications it forms the part of 

rocket engines.



One-dimensional steady flow of a compressible fluid

mass conservation equation: ( ) ( ) ( ) constxSxux =⋅⋅ρ

The nozzle is composed of the 

confusor (the convergent part), 

the throat (the smallest cross-

section) and the diffusor (the 

divergent part).
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The pressure gradient may be determined from the one-dimensional 

Euler equation for steady flows:
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It follows that the character of the gas flow in the de Laval nozzle 

depends on the value of the Mach number:

The subsonic flow – the velocity is 

inversely proportional to the variation 

of the nozzle cross-section area.

The supersonic flow – the 

velocity increases with the 

increase of the nozzle cross-

section area.



At subsonic velocity the increase of nozzle cross-section leads to 

decrease in velocity and the decrease of cross-section to increase in 

velocity – conversely at supersonic velocity. Conclusion: the de 

Laval nozzle enables acceleration of the gas flow to supersonic 

velocity on the condition of reaching the speed of sound in the 

nozzle throat.

There exists the maximum possible mass flow intensity through 

the de Laval nozzle, defined by the following expression:the de Laval nozzle, defined by the following expression:
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The maximum mass flow intensity corresponds to reaching of the 

speed of sound and of the critical gas pressure in the nozzle throat:
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The possible case of flow through the de Laval nozzle

1 – the subsonic flow – infinite number of 

cases may be realized depending on the 

value of the outlet pressure (or so called 

counterpressure).

2 – subsonic flow in the confusor, speed of 

sound in the throat, in the diffusor either 

sub- or supersonic flow depending on the 

counterpressure.counterpressure.

3 – gas flows into the nozzle with already 

supesonic velocity, this velocity is reduced 

in the confusor, but remains supersonic in 

the throat. In the diffusor the flow 

accelerates further, consequently we have 

supersonic flow in the entire nozzle.


