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The second law of Newton: the rate of change of momentum of a 

fluid element is equal to the sum of forces acting on this element.
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The rate of change of momentum of the fluid element (the left hand 

side) is defined by the material derivative of its velocity: side) is defined by the material derivative of its velocity: 
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The right hand side is composed of the two categories of forces:

-surface forces (pressure forces and viscosity forces),

-mass forces (gravity forces, Coriolis forces, electromagnetic forces)

For example we will formulate the complete equation for the x 

direction, using the system of surface forces as in the picture:



Forces acting on the element walls perpendicular to the x direction
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Forces acting on the element walls perpendicular to the y direction
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Forces acting on the element walls perpendicular to the z direction
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After adding the above expressions together and dividing by the 

element volume we obtain the surface forces acting in direction x:
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After supplementing the expression with the unit mass force f and 

substituting it to the initial formula we obtain:
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and analogically for the remaining directions:
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Three above scalar equations may be written in the form of the 

equivalent single vector equation:

[ ]Pdivf
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where: [ ]P is the tensor describing the 

state of stress in the fluid, 

as shown in the picture, 

supplemented with 

The unknowns in the momentum conservation equations are: pressure, 

velocity components and stresses representing the surface viscous forces. 

Even after adding the mass conservation equation to the system, the 

number of unknowns is greater than the number of equations. In order to 

reduce the number of unknowns and close the system an appropriate 

fluid model must be introduced.

supplemented with 

pressure added to the 

normal stresses



Examples of application of the momentum 

conservation principle to the solution of conservation principle to the solution of 

simple fluid mechanics problems



Example no. 1

Water is ejected with the mean velocity c=15 [m/s] from the 

nozzle of diameters D=80 [mm] i d=20 [mm] . Disregarding the nozzle of diameters D=80 [mm] i d=20 [mm] . Disregarding the 

pressure difference calculate the hydrodynamic reaction force 

exerted by the water stream on the duct.

The reaction R in steady motion is:

( )1ccQR −⋅⋅= ρ



The flow intensity Q and velocity c1 is calculated from the 

continuity equation:
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After substituting the numerical values we obtain:
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Example no. 2

The stream of perfect liquid of density 

ρ flows out of the nozzle and hits the 

ideally smooth plate of weight G and 

length l. The plate can rotate around 

the bearing A located at the distance b 

from the nozzle axis. Knowing that the 

intensity of the outflowing stream is Q, intensity of the outflowing stream is Q, 

and the nozzle diameter is D, calculate 

the components of the reaction in the 

bearing and the angle φ of inclination 

of the plate in the state of equilibrium.



The hydrodynamic force R is resolved into the components 

normal and tangential to the plate:
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In the perfect liquid the tangential component is equal zero, 

consequently the entire reaction is represented by the normal 

component: ϕcos⋅= RR ϕcos⋅= RRn
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The components of the reaction in the bearing are calculated 

from the equations of forces projections onto the axes x and y:

∑ =−⋅= 0cos Axnix RRP ϕ

∑ =⋅−−= 0sinϕnAyiy RGRP

Hence we obtain:
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The inclination angle of the plate in the state of equilibrium is 

calculated from the equation of moments with respect to A:
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After substituting the formula for the reaction finally we get:
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Example no. 3

Water flows through the bent pipe 

of diameter D=80 [mm] with flow 

intensity Q=0.08 [m**3/s]. 

Disregarding the losses, calculate 

the force exerted by the water 

stream on the pipe. The inlet part 

of the pipe is located at the angle of the pipe is located at the angle 

α=π/6 to the horizon, while the 

outlet part is located at the angle 

π/3. In both inlet and outlet cross-

sections of the pipe the pressure is 

equal to the ambient pressure pb.



The components of the hydrodynamic force are respectively:
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yyy ccQR 21 −⋅⋅= ρ

Where:
αcos1 ⋅= cc x
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The sum of angles is:
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Example no. 4

The stream of water of intensity 

q=0.01 [m**3/s] flows out of the nozzle 

and hits the flat blades of the water 

wheel with the mean radius r=1.0 [m]. 

Disregarding the losses, calculate the 

effective power and the efficiency of 

the wheel, if its angular velocity is 

equal to ω=5.0 [1/s], and the cross-

section area of the duct is equal to 

A=500 [mm**2]. For what angular 

velocity of the wheel the effective 

power reaches the highest value? 



The effective power of the wheel is determined by the 

relation:

ω⋅= MNu

Where the moment M results from the moment of momentum 

principle
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After subsitution of the numerical values we get:
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In turn the power delivered to the wheel is described by 

the formula:
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The efficiency of the wheel is 

then equal to:
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In order to determine the angular velocity corresponding to the 

maximum power, the equation for effective power must be re-

formulated and differentiated with respect to the angular velocity
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After subsituting the numerical values we obtain:



Example no. 5

The Segner wheel of diameter D is 

supplied with water having the flow 

intensity Q. Disregarding the 

frictional losses and flow losses 

determine the angular velocity of the 

wheel rotation ω. Assume the outlet 

diameter of the nozzles equal to d. diameter of the nozzles equal to d. 

Assume that the resultant moment 

on the wheel is zero.



The Segner wheel rotates in the direction opposite to the water 

outflow, hence the absolute outflow velocity c is:
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what leads to:
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After subsituting the relations for the velocities w and u we 

obtain:
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