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Gdańsk University of Technology



Contents

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 2

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References



Description of fluid/solid at

different scales

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 3



Descriptions

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 4

Fluid motion may be described by three types of
mathematical models according to the observed scales:

■ Microscopic description (MD)
■ Mesoscopic description

◆ kinetic theory
◆ LD
◆ BD
◆ DPD
◆ SPH
◆ LBM

■ Macroscopic description – continuum
(FDM, FEM, FVM, LBM)
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Molecular mechanics takes advantage of classical
mechanics equations to model molecular systems whereas
molecular dynamics simulates movements of atoms in the
context of N-body simulation. The motion of molecules is
determined by solving the Newtons’s equation of motion

m
d2ri

dt2
= Gi +

N∑

j=1 6=i

fij (1)

The force exerted on a molecule consists of the external
force such as gravity Gi and the intermolecular force
fij = −∇V usually described by mans of the
Lennard–Jones potential
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V = 4ǫ

((
σ

‖r‖

)12

−
(
σ

‖r‖

)6
)

(2)

In the above equations ‖r‖ is the distance between
particles, ǫ – the depth of the potential well that
characterises the interaction strength and σ – the finite
distance describing the interaction range.
Further, the ensemble average makes it possible to obtain
a macroscopic quantity from the corresponding
microscopic variable. The disadvantage of molecular
dynamics method is that the total number of molecules
even in small volume is too large – proportional to 1023.
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t := 0;
Calculate initial molecule position r;
while not the end of calculations do

fij := −∇V ;
a := m−1fij;
r := r+ v∆t+ 1

2
a∆t2;

t := t+∆t;
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The key concept is the probability distribution function
f (N) in the phase space. The phase space is constituted
of 3N spatial coordinates q1, . . . ,qN and 3N momenta
p1, . . . ,pN . The probability distribution function f (N)

allows to express the probability to find a particle within
the infinitesimal phase space

(q1,q1 + dq)× . . .× (qN ,qN + dq)×
(p1,p1 + dp)× . . .× (pN ,pN + dp) (4)

The total number of molecules within the infinitesimal
phase space is then

f (N) (q1, . . . ,qN ,p1, . . . ,pN) dq
N dpN (5)
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The time evolution of the probability distribution function
f (N) follows the Liouville equation

df (N)

dt
=
∂f (N)

∂t
+

N∑

i=1

(
∂f (N)

∂pi
· dpi
dt

+
∂f (N)

∂qi
· dqi
dt

)
= 0

This means that the distribution function is constant
along any trajectory in phase space.
The reduced probability distribution function is defined as

Fs (q1, . . . ,qs,p1, . . . ,ps) =w

R3(N−s)

w

R3(N−s)

f (N) (q1, . . . ,qN ,p1, . . . ,pN) dq
N−s dpN−s
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The above function is called the s-particle probability
distribution function. A chain of evolution equations for
Fs for 1 ≤ s ≤ N is derived and called BBGKY hierarchy.
This means that the sth equation for the s-particle
distributions contains s+ 1 distribution. That hierarchy
may be truncated. Truncating it at the first order results
in Boltzmann equation

∂f

∂t
+ v · ∇f = Ω(f) (6)

for the probability distribution function

f(r,v, t) = mNF1(q1,p1, t) (7)

for binary collisions with uncorrelated velocities before
that collision.
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The DPD (Dissipative Particle Dynamics) method
simulate only a reduced number of degrees of freedom
(coarse-grained models). The motion of particles is
determined by solving the Newtons’s equation of motion

m
d2ri

dt2
= Gi +

N∑

j=1 6=i

(
fCij + fDij + fRij

)

where the interaction forces are the sum of

■ fCij conservative or repulsion forces
■ fDij dissipative forces
■ fRij random force
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■ Dissipative forces

fDij = −γωD (r̂ij · vij) r̂ij (8)

■ Random force

fRij = σωRr̂ij
θij√
∆t

(9)

■ Conservative forces

fCij = αωRr̂ij (10)

ωD = ω2
R and σ2 = 2γkBT
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The Langevin dynamics equation of motion

m
d2xi

dt2
= fCi − γvi + fRi (11)

where

■ Dissipative forces −γvi
■ Random force fRi
■ Conservative forces

fCi = −∇V (12)
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The Brownian dynamics equation of motion

0 = fCi − γvi + fRi (13)

or

γ
dxi
dt

= fCi + fRi (14)

where

■ Random force fRi
■ Conservative forces

fCi = −∇V (15)
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The Smoothed Particle Hydrodynamics equation of
motion

dui
dt

= gi − fpi + fµi (16)

where

■ Body force gi
■ Pressure gradient forces fpi
■ Viscous forces fµi
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Conservation of mass

dρ

dt
+ ρ∇ · u = 0 (17)

Conservation of linear momentum

ρ
du

dt
= ρf +∇ · σ (18)

Decomposition of stress tensor

σ = −pδ+ τ (19)

Another form of conservation of linear momentum

ρ
du

dt
= ρf −∇p+∇ · τ (20)
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Energy Equation

Kinetic ρdek
dt

= ρf · u+∇ · (σ · u)−∇ · q
Total ρdec

dt
= ∂p

∂t
+∇ · (τ · u)−∇ · q

Mechanical ρdem
dt

= ∇ · (σ · u)− σ : D

Internal ρde
dt

= σ : D−∇ · q
Enthalpy ρdh

dt
= τ : D−∇ · q+ dp

dt
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∂(ρf)

∂t
+∇ · (ρuf) = Sf −∇ · k (21)

Left hand side represents transient and convection effects.
It expresses the rate of change ρdf

dt
= ∂(ρf)

∂t
+∇ · (ρuf).

Right hand side represents sources (positive and negative)
and fluxes (transport due to other mechanism than
convection).

■ mass conservation equation
f := 1, Sf := 0, k := 0

■ linear momentum conservation equation
f ← u, Sf ← ρf , k← −σ

■ energy conservation equation
f := ek, Sf := ρf · u, k := q− σ · u
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Second law of thermodynamics

ρ
ds

dt
≥ −∇ · q

T
(22)

Entropy balance

ρ
ds

dt
=
φ

T
−∇ · q

T
(23)

First law of thermodynamics

ρ
de

dt
= τ : D− p∇ · u−∇ · q (24)



Macroscopic description – constitutive equations

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 23

■ Mechanical (rheological) constitutive equations
■ Equations of state
■ Fluxes
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■ Newtonian fluids τ = 2µD
■ Non-Newtonian fluids

◆ Generalised Newtonian fluids τ = 2µ(γ)D
◆ Differential type fluid τ = f(A1,A2, . . .)

Ai+1 =
dAi

dt
+Ai ·

∂u

∂r
+∇u ·Ai, i = 1, 2, . . .

◆ Integral type fluids

τ =
tr

−∞

f(t− τ) (δ−Ct(τ)) dτ

◆ Rate type fluids τ̇ = f
(
τ,D, Ḋ

)

τ+ λ1τ̇ = 2µ
(
D+ λ2Ḋ

)
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τ
1
n = τ

1
n

0
+ (kγ)

1
m

µ
1
n =
(

τ0
|γ|

)
1
n

+ k
1
m |γ| 1m− 1n

Szulman

τ = τ0 + kγ
n + µ∞γ

µ = τ0|γ| + k|γ|n−1 + µ∞

Generalised Herschel

τ
1
n = τ

1
n

0
+ (kγ)

1
n

µ
1
n =
(

τ0
|γ|

)
1
n

+ k
1
n

Generalised Casson

m := n

τ = τ0 + kγ
n

µ = τ0|γ| + k|γ|n−1

Herschel-Bulkley

n := 1,

m := 1
n

µ∞ := 0

τ = τ0 + k
√
γ + µ∞γ

µ = τ0|γ| +
k√
|γ|
+ µ∞

Luo-Kuang

n := 1
2

√
τ =
√
τ0 +
√
kγ

√
µ =
√

τ0
|γ| +

√
k

Casson

n := 2

τ = τ0 + kγ
µ = τ0|γ| + k

Bingham

n := 1

τ = kγn

µ = k|γ|n−1

Ostwald-de Waele

n := 1 τ0 := 0

τ = kγ
µ = k

Newton

τ0 := 0 n := 1

τ0 := 0

k := 0,

µ∞ := k,

τ0 := 0
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■ Fundamental equation of state e = f(s, ρ−1)

de

dt
= T

ds

dt
+

p

ρ2
dρ

dt
(25)

■ Thermal equation of state p = f(T, ρ−1)

p = ρRT (26)

■ Caloric equation of state e = f(T, ρ−1)

de = cv dT +

(
T
∂p

∂T
− p
)

dρ−1 (27)
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General form w = −T · ∇ϕ due to assumption
w = f(∇ϕ). More precisely w depends only on ϕ and
∇ϕ.
■ Fourier’s law

q = −λ · ∇T (28)
■ Fick’s law

ji = −ρDij · ∇gi (29)
■ Darcy’s law

u = −µ−1K · ∇p (30)

In the case of isotropy T = αδ and

w = −αδ · ∇ϕ = −α∇ϕ (31)
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General transport equations

∂(ρf)

∂t
+∇ · (ρuf) = Sf −∇ · k (32)

Fluxes
k = −Γδ · ∇f = −Γ∇f (33)

In the case of isotropy the general transport equations
becomes

∂(ρf)

∂t
+∇ · (ρuf) = Sf +∇ · (Γ∇f) (34)
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General form of the Navier–Stokes equation for
Newtonian fluids

ρ
du

dt
= ρf −∇p+∇ ·

(
2µDD

)
(35)

■ incompressible flow
■ creeping flow
■ inviscid flow
■ Boussinesq approximation
■ Oseen approximation
■ filtration
■ one-dimensional flows
■ heat transfer
■ surface tension
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– incompressible fluid (ρ = const)

ρ
du

dt
= ρf −∇p+∇ · (2µD) (36)

µ = const

ρ
du

dt
= ρf −∇p+ µ∇2u (37)

µ = ρν
du

dt
= f −∇p

ρ
+ ν∇2u (38)

pk =
p
ρ
+ g · r

du

dt
= −∇pk + ν∇2u (39)
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– creeping flow

ρ
∂u

∂t
= ρf −∇p+∇ · (2µD) (40)

steady state
∇p = ∇ · (2µD) (41)

2D creeping flow
∇4ψ = 0 (42)



Macroscopic description

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 32

– inviscid flow (µ = 0)

ρ
du

dt
= ρf −∇p (43)

– potential flows (∇× u = 0 ⇐⇒ u = ∇ϕ)

∇2ϕ = ∇2ψ = 0 (44)
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– Boussinesq approximation

ρf = ρg = ρ0g + (ρ− ρ0)g (45)

ρ− ρ0 = −ρ0β(T − T0) (46)

ρ0
du

dt
= ρ0g (1− β(T − T0))−∇p+∇ · (2µD) (47)
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– Oseen approximation (linearisation)

u · ∇u ≈ u∞ · ∇u (48)

ρ
∂u

∂t
+ ρu∞ · ∇u = ρf −∇p+∇ ·

(
2µDD

)
(49)
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– filtration

ρ
du

dt
= ρf −∇p+ µ∇2u−R1u (50)

– one-dimensional flows

∇2u = a (51)
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– heat transfer The ‘fluid’ Fourier equation describes the
temperature field in the fluid.

cv

(
∂(ρT )

∂t
+∇ · (ρTu)

)
= φµ +∇ · (λ∇T ) (52)

For solids where u = 0 the above equation simplifies to
the ‘solid’ Fourier–Kirchhoff equation

c
∂(ρT )

∂t
= ∇ · (λ∇T ) + SE (53)

where internal energy sources are given by SE.
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Generally, the ‘fluid’ equation should be solved together
with ‘solid’ equation. This is called conjugate heat
transfer. Not having to know the heat transfer coefficient
is an advantage of this approach. The disadvantage is the
necessity of increasing the total number of mesh elements
due to the additional solid volume.
It is not always possible because of storage limitations.
Then either the temperature or heat flux must be
specified at the wall. Alternatives, through boundary
conditions, are discussed further such as specified
temperature, specified heat flux, specified temperature
and heat flux, adiabatic or specified heat transfer
coefficient.
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– surface tension

du

dt
= f −∇p

ρ
+ ν∇2u (54)

body forces
f = g + ρ−1fσ (55)

fσ = σκ∇α (56)

κ = −∇ · n̂ = −∇ · ∇α‖∇α‖ (57)

α transport equation

∂α

∂t
+∇ · (αu) = 0 (58)
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Mass conservation equation

∇+ · u+ = 0 (59)
Linear momentum conservation equation

ρ+
(
Sh
∂u+

∂t+
+ u+ · ∇+u+

)
=

=
ρ+f+

Fr
− Eu∇+p+ +

µ+

Re
∇2+u+ (60)

Fourier–Kirchhoff (internal energy)

ρ+c+v

(
Sh
∂T+

∂t+
+ u+ · ∇+T+

)
=

=
Ec

Re
φ+
µ +

λ+

PrRe
∇2+T+ (61)
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Sh = L
Ut0

= tch
t0

= Lf
U

=
U
t0
U2

L

Fr = U2

f0L
=

ρ0U
2

L

ρ0f0

Re = LUρ0
µ0

= LU
ν0

=
ρ0U

2

L
µ0U

L2

Eu = p0
ρ0U2 =

p0
L

ρ0U
2

L

Ec = U2

cv0T0
Pr = cv0µ0

λ0
= ν0

λ0
cv0ρ0

Sc = µ0
ρ0D0

= ν0
D0

Da = K0

L2

De = λ0
t0

Wi = λ0γ0
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General transport equation

∂(ρf)

∂t
+∇ · (ρuf) = Sf −∇ · k (62)

From Reynolds’ transport theorem arises general
compatibility condition n̂ · [ρuf + k] = 0

■ Mass conservation: f := 1, Sf := 0, k := 0. C.C.
takes form n̂ · [ρu] = 0 or n̂ · [u] ≡ [un] = 0

■ Linear momentum: f ← u, Sf ← ρf , k← −σ and
C.C. n̂ · [ρuu− σ] = 0 or n̂ · [σ] = [σn] = 0

■ Energy conservation: f := ek, Sf := ρf · u,
k := q−σ · u and C.C. n̂ · [ρuek −σ · u+ q] = 0 or
n̂ · [q] or [λ∂T

∂n
] = 0
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Compatibility conditions are insufficient! Further
conditions are needed:

■ adhesion l̂ · u = ul = 0
■ thermal equilibrium on surfaces [T ] = 0

Boundary condition related to heat transfer (arise from
C.C.)

■ Dirichlet: T = f1(x, y, z, t)
■ Neumann: qn = n̂ · q or qn = f2(x, y, z, t)
■ mixed: αT − λ∂T

∂n
= f3(P, t)
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Other surfaces than walls

■ inlet: n− 1 conditions where n stands for the number
of equations

■ outlet: Generally, σn = n̂ · σ plus T distribution.
Usually p distribution due to σn ≈ −pn̂ plus ∂T

∂n
= 0

■ symmetry: ∂ϕ
∂n

= 0 for all scalar variables ϕ
■ periodicity (translation and rotation): ϕ(P1) = ϕ(P2)

where P1 and P2 are corresponding points on periodic
surfaces
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General partial differential equation

F

(
∂kf

∂xn1
1 . . . ∂xnn

n

,
∂k−1f

∂xm1
1 . . . ∂xmn

n

, . . . ,
∂f

∂xi
, f,x

)
= 0

(63)

■ linear
■ semi-linear

∑

i

ai(x)
∂kf

∂xn1
1 . . . ∂xnn

n

+ a0

(
∂k−1f

∂xm1
1 . . . ∂xmn

n

, . . . ,
∂f

∂xi
, f,x

)
= 0

(64)

■ quasi-linear
■ fully non-linear
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The Navier–Stokes equations are second order nonlinear
partial differential equations. In general, they cannot be
easily classified. However they posses properties of
semi-linear and linear second order partial differential
equations. Sometimes they can be simplified to those and
can be divided into:

■ hyperbolic
■ parabolic
■ elliptic
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For two independent variables x, y:

A(x, y)
∂2f

∂x2
+ B(x, y)

∂2f

∂x∂y
+ C(x, y)

∂2f

∂y2
+

F

(
x, y, f,

∂f

∂x
,
∂f

∂y

)
= 0 (65)

for all (x, y) over a domain Ω the above equation is:

■ hyperbolic if B2 − 4AC > 0
■ parabolic if B2 − 4AC = 0
■ elliptic if B2 − 4AC < 0
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■ Laplace equation

∂2f

∂x2
+
∂2f

∂y2
= 0 (66)

■ Poisson equation

∂2f

∂x2
+
∂2f

∂y2
= f(x, y) (67)

■ Helmholtz equation

∂2f

∂x2
+
∂2f

∂y2
+ k2f = 0 (68)
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■ Heat equation

∂f

∂t
− α∂

2f

∂x2
= 0 (69)

∂f

∂t
− α∂

2f

∂x2
= g(x, t) (70)

■ Convection-diffusion equation

∂f

∂t
+ u

∂f

∂x
= ν

∂2f

∂x2
(71)
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■ Wave equation

∂2f

∂t2
− a2∂

2f

∂x2
= 0 (72)

■ Telegraph equations

∂2f

∂x2
− a∂

2f

∂t2
− b∂f

∂t
− c f = 0 (73)

■ Convection equations

∂f

∂t
+ u

∂f

∂x
= 0 (74)
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■ Euler-Tricomi equation

∂2f

∂x2
− x∂

2f

∂y2
= 0 (75)

It is of hyperbolic type for x > 0, parabolic at x = 0
and elliptic for x < 0.

■ Generalised Euler-Tricomi equation

∂2f

∂x2
− g(x)∂

2f

∂y2
= 0 (76)
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■ Potential gas flow

(1−Ma2∞)
∂2ϕ′

∂x2
+
∂2ϕ′

∂y2
= 0 (77)

It is of hyperbolic type for Ma2∞ > 1, parabolic at
Ma2∞ = 1 and elliptic for Ma2∞ < 1
The velocity potential for the x axis dominated flow is

ϕ(x, y) = u∞x+ ϕ′(x, y) (78)

Velocity components are then given as

ux(x, y) =
∂ϕ′

∂x
= u∞ + ux(x, y) (79)

uy(x, y) =
∂ϕ′

∂y
= uy(x, y) (80)
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VoF – Volume of Fluid

ρ = αρl + (1− α)ρg (81a)

µ = αµl + (1− α)µg (81b)

α is a volume fraction

α =





1, liquid;

0, gas;

0 ≤ α ≤ 1, interface

(82)
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Mass conservation
∇ · u = 0 (83)

the Navier–Stokes equation

∂

∂t
(ρu)+∇·(ρuu) = σκ∇α−∇prgh−g·h∇ρ+∇·(2µD)

(84)
modified pressure prgh = p− ρg · h
α transport equation

∂α

∂t
+∇ · (αu) = 0 (85)
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■ Free surface flows
■ Cavitation
■ Melting



Free surface flows

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 55

Mixture mass conservation equation

∇ · u = 0 (86)

Mixture Navier–Stokes equation

∂

∂t
(ρu) +∇ · (ρuu) = σκ∇α︸ ︷︷ ︸

=0, 6=0

−∇prgh − g · h∇ρ+∇ · (2µD) (87)

Volume fraction transport equation

∂α

∂t
+∇ · (αu) = 0 (88)
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Mixture mass conservation equation

∇ · u = 0 (89)

Mixture Navier–Stokes equation

∂

∂t
(ρu) +∇ · (ρuu) = σκ∇α︸ ︷︷ ︸

=0, 6=0

−∇prgh − g · h∇ρ+∇ · (2µD) (90)

Volume fraction transport equation

∂αl
∂t

+∇ · (αlu) =
Sm
ρl

(91)

■ Merkle Sm = . . .
■ Kunz
■ Schnerr–Sauer
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Mixture mass conservation equation

∇ · u = 0 (92)

Mixture Navier–Stokes equation

∂

∂t
(ρu) +∇ · (ρuu) = ρ0g − ρ0β(T − T0)g

−∇p+∇ · (2µD) + Su (93)

Volume fraction transport equation

∂αl
∂t

+∇ · (αlu) =
Sm
ρl

(94)

Enthalpy equation

∂

∂t
(ρcpT ) +∇ · (ρcpTu) = ∇ · (λ∇T ) + Sh (95)
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The finite difference method (introduced by Euler in
XVIII century) replaces the region by a finite mesh of
points at which the dependent variable is approximated.

All partial derivatives
at each mesh point
are approximated from
neighbouring values
by means of Taylor’s
theorem. This means
that derivatives at each
point are approximated
by difference quotients.
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Assuming that f has continuous derivatives over certain
interval the Taylor expansion is used

f(x0 +∆x) =
m−1∑

n=0

dnf(x0)

n!
+

dmf(c)

m!
(96)

where x = x0 +∆x, c = x0 + θ∆x and θ ∈]0; 1[. The
above equation may also be written as

f(x0 +∆x) = f(x0) + f ′(x0)∆x+
1

2
f ′′(x0)∆x

2

+
1

6
f ′′′(x0)∆x

3 + . . .+
1

m!
f (m)(c)∆xm (97)
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Instead of f (m) at unknown point c it is rewritten in
terms of another unknown quantity of order ∆xm

f(x0 +∆x) = f(x0) + f ′(x0)∆x+ f ′′(x0)
∆x2

2

+ . . .+ f (m−1)(x0)
∆xm−1

(m− 1)!
+O(∆xm) (98)

Discarding (truncating) O(∆xm) one gets an
approximation to f . The error in this approximation is
O(∆xm). Roughly speaking it says that knowing the
value of f and the values of its derivatives at x0 it is
possible to write down the equation for its value at the
point x0 +∆x.
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Taking under consideration the Taylor expansion up to
the first derivative

f(x0 +∆x) = f(x0) + f ′(x0)∆x+O(∆x2) (99)

then neglecting O(∆x) and rearranging gives the first
order finite difference approximation to f ′(x0)

f ′(x0) ≈
f(x0 +∆x)− f(x0)

∆x
(100)

This approximation is called a forward approximation.
Replacing ∆x by −∆x in Taylor expansion one gets
backward approximation

f ′(x0) ≈
f(x0)− f(x0 −∆x)

∆x
(101)
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Taking under consideration the Taylor expansion up to
the second derivative

f(x0+∆x) = f(x0)+ f ′(x0)∆x+ f ′′(x0)
∆x2

2
+O(∆x3)

(102)
then neglecting O(∆x2). Doing the same for −∆x and
combining the two above we have

f ′(x0) ≈
f(x0 +∆x)− f(x0 −∆x)

2∆x
(103)

after neglecting O(∆x2). This is so called the second
order central difference approximation to f ′(x0).
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Higher order approximation to derivatives is also possible.
This can be done by taking more terms in the Taylor
expansion. Doing so up to the third we get

f(x0 +∆x) = f(x0) + f ′(x0)∆x+
1

2
f ′′(x0)∆x

2

+
1

6
f ′′′(x0)∆x

3 +O(∆x4) (104)

Replacing ∆x for −∆x and combing the results then
dropping O(∆x4) gives the second order symmetric
difference approximation to f ′′

f ′′(x0) ≈
f(x0 +∆x)− 2f(x0) + f(x0 −∆x)

∆x2
(105)
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Selected finite differences approximation to first and
second derivatives are given in the following table. These
can be used to solve ordinary differential equations by
replacing derivatives by their approximations.

Approximation Type Order

f ′(x0)
f(x0+∆x)−f(x0)

∆x
forward 1st

f ′(x0)
f(x0)−f(x0−∆x)

∆x
backward 1st

f ′(x0)
f(x0+∆x)−f(x0−∆x)

2∆x
central 2nd

f ′′(x0)
f(x0+∆x)−2f(x0)+f(x0−∆x)

∆x2
symmetric 2nd
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Equations for f ′ approximate the slope of the tangent in
x0 by means of chords (backward, forward and central

finite difference).
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The typical subscript notation is

f(x0 +mh, y0 + nh) ≡ fi+mj+n (106)

Now it is possible to express selected finite differences
approximations to derivatives in somewhat simpler
manner

Approximation Type Order

f ′
i

fi+1−fi
h

forward 1st

f ′
i

fi−fi−1

h
backward 1st

f ′
i

fi+1−fi−1

2h
central 2nd

f ′′
i

fi+1−2fi+fi−1

h2
symmetric 2nd
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∂ (ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γ∇φ) (107)

■ parabolic. Additionally, if u = 0

∂ (ρφ)

∂t
= ∇ · (Γ∇φ) (108)

■ hyperbolic, if Γ = 0

∂ (ρφ)

∂t
+∇ · (ρφu) = 0 (109)

■ elliptic, if ∂
∂t

= 0 or at the same time ∂
∂t

= 0 and
u = 0

∇ · (Γ∇φ) = 0 (110)
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If Γ = 0 and ρ = 1 we have

∂φ

∂t
+∇ · (φu) = 0 (111)

One dimensional version

∂φ

∂t
+ ux

∂φ

∂x
= 0 (112)

The analytical solution of the above is

φ(x, t) = f(x− uxt) (113)



Convection equation – FTCS scheme

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 70

∂φ

∂t
+ ux

∂φ

∂x
= 0 (114)

FTCS discretisation scheme (Forward Time Centred
Space)

φn+1
i − φni
∆t

+ ux
φni+1 − φni−1

2∆x
= 0 (115)

or explicitly

φn+1
i = φni − 1

2
Co
(
φni+1 − φni−1

)
(116)

where Co is the Courant number

Co =
ux∆t

∆x
(117)

✐ � ✶ ✐ ✐ ✰ ✶

♥ � ✶

♥

♥ ✰ ✶
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (118)

FOU discretisation scheme (First Order Upwind)

φn+1
i − φni
∆t

+ ux
φni − φni−1

∆x
= 0 (119)

or explicitly

φn+1
i = φni − Co

(
φni − φni−1

)
(120)

✐ � ✶ ✐ ✐ ✰ ✶

♥ � ✶

♥

♥ ✰ ✶
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (121)

BTCS discretisation scheme (Backward Time Centred
Space)

φn+1
i − φni
∆t

+ ux
φn+1
i+1 − φn+1

i−1

2∆x
= 0 (122)

For comparison, FTCS scheme is

φn+1
i − φni
∆t

+ ux
φni+1 − φni−1

2∆x
= 0 (123)

✐ � ✶ ✐ ✐ ✰ ✶

♥ � ✶

♥
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (124)

The Crank–Nicolson scheme is a combination of the
FTCS and BTCS

φn+1
i − φni
∆t

+

1

2

(
ux
φni+1 − φni−1

2∆x
+ ux

φn+1
i+1 − φn+1

i−1

2∆x

)
= 0 (125)

✐ � ✶ ✐ ✐ ✰ ✶

♥ � ✶

♥
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (126)

Second-order backward using two previous time-step
values φni , φ

n−1
i

3φn+1
i − 4φni + φn−1

i

2∆t
+ ux

φn+1
i+1 − φn+1

i−1

2∆x
= 0 (127)

✐ � ✶ ✐ ✐ ✰ ✶

♥ � ✶

♥

♥ ✰ ✶
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (128)

φ is expanded up to the third order

∂φi
∂t
≈ φn+1

i − φi
∆t

− 1

2

∂2φi
∂t2

∆t (129)

Also, the centred space approximation is used

φn+1
i = φni − 1

2
Co
(
φni+1 − φni−1

)
+

1
2
Co2

(
φni−1 − 2φni + φni+1

)
(130)
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Convection equation – Lax–Friedrichs
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (131)

Lax-Friedrichs scheme is a modification of the FTCS
scheme

φn+1
i =

φni−1 + φni+1

2
− 1

2
Co
(
φni+1 − φni−1

)
(132)

For comparison, FTCS scheme is

φn+1
i = φni − 1

2
Co
(
φni+1 − φni−1

)
(133)
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If u = 0 and ρ = 1 we have

∂φ

∂t
= ∇ · (Γ∇φ) (134)

One dimensional version for Γ = const

∂φ

∂t
= Γ

∂2φ

∂x2
(135)
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∂φ

∂t
= Γ

∂2φ

∂x2
(136)

FTCS discretisation scheme (Forward Time Centred
Space)

φn+1
i − φni
∆t

= Γ
φni+1 − 2φni + φni−1

∆x2
(137)

or explicitly

φn+1
i = φni +

Γ∆t

∆x2
(
φni+1 − 2φni + φni−1

)
(138)
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Transient diffusion equation – BTCS
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∂φ

∂t
= Γ

∂2φ

∂x2
(139)

BTCS discretisation scheme (Backward Time Centred
Space)

φn+1
i − φni
∆t

= Γ
φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2
(140)
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∂φ

∂t
= Γ

∂2φ

∂x2
(141)

The Crank–Nicolson scheme is a combination of the
FTCS and BTCS

φn+1
i − φni
∆t

=

1

2

(
Γ
φni+1 − 2φni + φni−1

∆x2
+ Γ

φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2

)

(142)
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∂φ

∂t
= Γ

∂2φ

∂x2
(143)

Second-order backward using two previous time-step
values φni , φ

n−1
i

3φn+1
i − 4φni + φn−1

i

2∆t
= Γ

φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2
(144)
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If u = 0, ρ = 1 and ∂
∂t

= 0 we have

∇ · (Γ∇φ) = Sφ (145)

Two types of equations can be distinguished for
Γ = const

■ Poisson equation, S = Γ−1Sφ

∇2φ = S (146)

■ Laplace equation, S = 0

∇2φ = 0 (147)
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Poisson equation is ∇2φz = a. Two dimensional versions
of this equation is written as

∂2φz
∂x2

+
∂2φz
∂y2

= a (148)

The next step would be to replace second order
derivatives by symmetric finite difference approximation

φi+1j − 2φij + φi−1j

h2
+
φij+1 − 2φij + φij−1

h2
= a (149)

It can be rewritten to give φij as a function of
surrounding variables

φij =
φi+1j + φi−1j + φij+1 + φij−1 − ah2

4
(150)



Poisson equation - mesh and boundary
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The domain is discretised in the x and y directions by
means of constant mesh size h (figure on the left). φz is
unknown at black mesh points and known at white points
from the boundary condition.

For instance
the Dirichlet boundary
condition specifies the values
of φz directly. In this case
φz = 0 meaning no slip wall.
If the boundary values are
known then discrete Poisson
equation gives a system
of linear equations for φij.
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The accuracy of results depends on the size of the mesh
represented here by h. Mesh size should be decreased
until there is no significant influence on numerical results.
The set of linear equations can be solved either directly
by means of an appropriate method (Gauss elimination
for instance) or indirectly by means of iterative solution
methods or the relaxation method (point-Jacobi iteration)

φn+1
ij =

φni+1j + φni−1j + φnij+1 + φnij−1 − ah2
4

(151)

or point-Gauss–Seidel (faster than point-Jacobi)

φn+1
ij =

φni+1j + φn+1
i−1j + φnij+1 + φn+1

ij−1 − ah2
4

(152)
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Another indirect method is so called Successive
Over-Relaxation method

φn+1
ij = (1− w)φnij+

w
φni+1j + φn+1

i−1j + φnij+1 + φn+1
ij−1 − ah2

4
(153)

where w is a relaxation parameter. For w ∈]1, 2[ we have
over-relaxation and for w = 1 this method corresponds to
the point-Gauss–Seidel method. One can also consider
under-relaxation method for w ∈]0, 1[.
The best choice of w value needs numerical experiments.
It also depends on specific problems.
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Data: Read input variables and BCs
w := 1; n := 1;
repeat

R := 0;
for i := 1 to imax do

for j := 1 to jmax do
if not boundary(φnij) then

φn+1
ij :=

φni+1j+φ
n+1
i−1j+φ

n
ij+1+φ

n+1
ij−1−ah

2

4
;

R := max
(
|φn+1
ij − φnij|, R

)
;

φn+1
ij := (1− w)φnij + w φn+1

ij ;

n := n+ 1;

until n ≤ nmax and R > Rmin;
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Laplace equation is ∇2ϕ = 0. Two dimensional versions
of this equation is written as

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (154)

Replacing second order derivatives by symmetric finite
difference approximation

ϕi+1j − 2ϕij + ϕi−1j

h2
+
ϕij+1 − 2ϕij + ϕij−1

h2
= 0 (155)

It can be rewritten to give ϕij as a function of
surrounding variables

ϕij =
ϕi+1j + ϕi−1j + ϕij+1 + ϕij−1

4
(156)
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Neumann boundary condition specifies values of the
derivative ∂

∂n
of a solution ϕ on boundary ∂Ω to fulfil

∂ϕ

∂n
= N(x, y) (157)

where the normal derivatives is defined as

∂ϕ

∂n
= n̂ · ∇ϕ = nx

∂ϕ

∂x
+ ny

∂ϕ

∂y
(158)

and (x, y) ∈ ∂Ω. If u = ∇ϕ we get

∂ϕ

∂n
= n̂ · u = nxux + nyuy (159)
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We have two equation for a point
located on boundary ‘2’

∂2f

∂x2
=
fi+1j − 2fij + fi−1j

h2

∂f

∂x
=
fi+1j − fi−1j

2h
= Nij

Point fi−1j is located outside the
Ω area. Eliminating it we get

∂2f

∂x2
=

2fi+1j − 2Nijh− 2fij
h2

and

fij =
2fi+1j + fij+1 + fij−1 − 2Nijh

4
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Data: Read input variables and BCs
w := 1; n := 1;
repeat

R := 0;
for i := 1 to imax do

for j := 1 to jmax do
if boundary(ϕn

ij) 6= 0 then

switch ϕn
ij do

case 1: do ϕn+1
ij :=

ϕn
i+1j+ϕ

n+1
i−1j

+ϕn
ij+1+ϕ

n+1
ij−1

4
;

;

case 2: do ϕn+1
ij :=

2ϕn
i+1j+ϕn

ij+1+ϕ
n+1
ij−1

−2hNij

4
;

;
.
.
.

R := max
(

|ϕn+1
ij − ϕn

ij |, R
)

;

ϕn+1
ij := (1− w)ϕn

ij + wϕn+1
ij ;

n := n+ 1;

until n ≤ nmax and R > Rmin;
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The biharmonic equation is ∇4ψ ≡ ∇2 · ∇2ψ = 0. Two
dimensional versions of this equation is written as

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
= 0 (161)

It is a fourth-order elliptic partial differential equation
that describes creeping flows in terms of a stream
function ψ where the velocity components are ux =

∂ψ
∂y

and uy = −∂ψ
∂x
.

The Dirichlet boundary condition specifies both: a stream
function ψ and its normal derivative ∂ψ

∂n
. Two conditions

are needed due to the fourth order of the biharmonic
equation.



Biharmonic equation - approximation to
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The finite difference approximations to ∂4ψ
∂x4

, ∂
4ψ
∂y4

are

∂4ψ

∂x4
=
ψi+2j + ψi−2j − 4ψi+1j − 4ψi−1j + 6ψij

h4
(162a)

∂4ψ

∂y4
=
ψij+2 + ψij−2 − 4ψij+1 − 4ψij−1 + 6ψij

h4
(162b)

The fourth order mixed derivative is approximated as

∂4ψ

∂x2∂y2
=
ψi+1j+1 + ψi−1j−1 + ψi−1j+1 + ψi+1j−1

h4

+
4ψij − 2ψi+1j − 2ψi−1j − 2ψij+1 − 2ψij−1

h4
(163)
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From the discrete biharmonic equations ψij can be
expressed as a function of surrounding variables

ψij =
−ψi+2j − ψi−2j − ψij+2 − ψij−2 + 4ψij

20

+ 8
ψi−1j + ψij+1 + ψij−1 + ψi+1j

20

− 2
ψi+1j+1 + ψi−1j−1 + ψi−1j+1 + ψi+1j−1

20
(164)
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From the below figure two purely geometric relationships
arise ∂ψ

∂n
= n̂ · ∇ψ = −ul, ∂ψ∂l = l̂ · ∇ψ = un. For an

impermeable boundary one gets un = 0⇒ ∂ψ
∂l

= 0. The
general relationship between volumetric flow rate and the
stream functions is

V̇ =
w

L

u · n̂ dL =
w

L

∂ψ

∂l
dL =

w

L

dψ = ψA − ψB (165)
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Data: Read input variables and BCs
w := 1; n := 1;
repeat

R := 0;
for i := 1 to imax do

for j := 1 to jmax do
if not boundary(ψnij) then

ψn+1

ij :=
−ψn

i+2j−ψ
n
i−2j−ψ

n
ij+2−ψ

n
ij−2+4ψn

ij

20
+

8
ψn

i−1j+ψ
n
ij+1+ψ

n
ij−1+ψ

n
i+1j

20
−

2
ψn

i+1j+1+ψ
n
i−1j−1+ψ

n
i−1j+1+ψ

n
i+1j−1

20
;

R := max
(
|ψn+1

ij − ψnij |, R
)
;

ψn+1

ij := (1− w)ψnij + wψn+1

ij ;

n := n+ 1;

until n ≤ nmax and R > Rmin;
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If Γ = ν = const and ρ = 1 we have

∂φ

∂t
+∇ · (φu) = ν∇2φ (166)

One dimensional version

∂φ

∂t
+ ux

∂φ

∂x
= ν

∂2φ

∂x2
(167)
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∂φ

∂t
+ ux

∂φ

∂x
= ν

∂2φ

∂x2
(168)

Forward time centred space discretisation scheme

φn+1
i − φni
∆t

+ ux
φni+1 − φni−1

2∆x
= ν

φni+1 − 2φni + φni−1

∆x2
(169)

or explicitly

φn+1
i = φni − Co

2

(
φni+1 − φni−1

)
+ 1

Re

(
φni+1 − 2φni + φni−1

)

(170)
where

Re =
∆x2

ν∆t
(171)
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∂φ

∂t
+ ux

∂φ

∂x
= ν

∂2φ

∂x2
(172)

Backward time centred space discretisation scheme

φn+1
i − φni
∆t

+ ux
φn+1
i+1 − φn+1

i−1

2∆x
= ν

φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2
(173)

or

φn+1
i − φni + Co

2

(
φn+1
i+1 − φn+1

i−1

)
=

1
Re

(
φn+1
i+1 − 2φn+1

i + φn+1
i−1

)
(174)
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Point 1 is located inside the
Ω area

f1 =
h f0 + d f2
h+ d

(175)

Point 1 is located outside
the Ω area

f1 =
h f0 − d f2
h− d (176)
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The decomposition of φnj into a Fourier series is

φnj =
N∑

m=−N

Anme
ikmj∆x (177)

where the wave number km is

km =
mπ

N ∆x
=

θ

∆x
(178)

A single mode determines the time evolution of φnj

φnj = Anme
ijθ (179)

A numerical scheme is stable if and only if
∣∣∣∣
An+1
m

Anm

∣∣∣∣ = |G| ≤ 1 (180)
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■ convection equation

|G| =
√
1 + Co2 sin2 θ ≥ 1 (181)

■ diffusion equation

2Re−1 ≤ 1 (182)

■ convection-diffusion equation

Co2 ≤ 2Re−1 ≤ 1 (183)
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■ convection equation

|G|2 = 1

1 + Co2 sin2 θ
≤ 1 (184)

■ diffusion equation
|G| ≤ 1 (185)

■ convection-diffusion equation

|G|2 = 1
(
1 + 4Re−1 sin2 θ

2

)2
+ Co2 sin2 θ

≤ 1 (186)
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Stability analysis – Crank–Nicolson
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■ convection equation

|G| = 1 (187)

■ diffusion equation
|G| ≤ 1 (188)

■ convection-diffusion equation

|G| ≤ 1 (189)
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■ Using a specific discretisation scheme one obtains a
discrete counterpart of the original PDE;

■ Taylor’s expansion is applied around φn+1
i and

substituted into the specific scheme;
■ Resulting equation is rearranged in order to recover

the original PDE;
■ The remaining terms are the truncation errors

associated with the specific discretisation scheme;
■ The modified equation is actually solved rather than

the original PDE;
■ Numerical diffusion and dispersion can be analysed

now;
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Convection-diffusion equation

∂φ

∂t
+ ux

∂φ

∂x
= ν

∂2φ

∂x2︸ ︷︷ ︸
diffusion

(190)

Korteweg-de Vries equation

∂φ

∂t
+ ux

∂φ

∂x
= −ε∂

3φ

∂x3︸ ︷︷ ︸
dispresion

(191)
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (192)

FTCS discretisation scheme (Forward Time Centred
Space)

φn+1
i − φni
∆t

+ ux
φni+1 − φni−1

2∆x
= 0 (193)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= −1

2
ux∆xCo

∂2φn+1
i

∂x2

− 1
6
ux∆x

2
(
2Co2 + 1

) ∂3φn+1
i

∂x3
+ . . . (194)
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (195)

FTCS discretisation scheme (Forward Time Centred
Space)

φn+1
i − φni
∆t

+ ux
φni+1 − φni−1

2∆x
= 0 (196)

The modified equation

∂φn+1
i

∂t
+ux

∂φn+1
i

∂x
= νN

∂2φn+1
i

∂x2
−εN

∂3φn+1
i

∂x3
+ . . . (197)

or
∂φn+1

i

∂t
+ ux

∂φn+1
i

∂x
= νN

∂2φn+1
i

∂x2
(198)
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (199)

FOU discretisation scheme (First Order Upwind)

φn+1
i − φni
∆t

+ ux
φni − φni−1

∆x
= 0 (200)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= 1

2
ux∆x (1− Co)

∂2φn+1
i

∂x2
+

1
6
ux∆x

2
(
3Co− 2Co2 − 1

) ∂3φn+1
i

∂x3
+ . . . (201)
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (202)

FOU discretisation scheme (First Order Upwind)

φn+1
i − φni
∆t

+ ux
φni − φni−1

∆x
= 0 (203)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= νN

∂2φn+1
i

∂x2
− εN

∂3φn+1
i

∂x3
+ . . .

(204)

What if Co = 1?
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (205)

BTCS discretisation scheme (Backward Time Centred
Space)

φn+1
i − φni
∆t

+ ux
φn+1
i+1 − φn+1

i−1

2∆x
= 0 (206)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= 1

2
ux∆xCo

∂2φn+1
i

∂x2
+

1
6
ux∆x

2
(
Co2 − 1

) ∂3φn+1
i

∂x3
+ . . . (207)
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (208)

BTCS discretisation scheme (Backward Time Centred
Space)

φn+1
i − φni
∆t

+ ux
φn+1
i+1 − φn+1

i−1

2∆x
= 0 (209)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= νN

∂2φn+1
i

∂x2
− εN

∂3φn+1
i

∂x3
+ . . .

(210)

What if Co = 1?
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (211)

The Crank-Nicolson scheme is a combination of the
FTCS and BTCS

φn+1
i − φni
∆t

+

1

2

(
ux
φni+1 − φni−1

2∆x
+ ux

φn+1
i+1 − φn+1

i−1

2∆x

)
= 0 (212)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= −1

6
ux∆x

2
(
1
2
Co2 + 1

) ∂3φn+1
i

∂x3
+ . . .

(213)
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∂φ

∂t
+ ux

∂φ

∂x
= 0 (214)

The Crank–Nicolson scheme is a combination of the
FTCS and BTCS

φn+1
i − φni
∆t

+

1

2

(
ux
φni+1 − φni−1

2∆x
+ ux

φn+1
i+1 − φn+1

i−1

2∆x

)
= 0 (215)

The modified equation

∂φn+1
i

∂t
+ ux

∂φn+1
i

∂x
= −εN

∂3φn+1
i

∂x3
+ . . . (216)
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Typical numerical approaches for the incompressible
Navier–Stokes equations:

■ Ωz-ψ (vorticity-stream function) formulation method
■ Artificial compressibility method
■ Pressure/velocity correction (operator splitting

methods)

◆ Projection methods
◆ Explicit and implicit operator splitting methods
◆ Fractional step method
◆ PISO, SIMPLE, PIMPLE (PIso + siMPLE)
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The incompressible Navier–Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (217)

Explicit forward difference in time

un+1 − un

∆t
+ un · ∇un = −1

ρ
∇pn + ν∇2un (218)

Problems:

∇ · un+1 6= 0,
pn+1 =?
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The incompressible Navier–Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (219a)

∇ · u = 0 (219b)

un+1 − un

∆t
+ un · ∇un = −1

ρ
∇pn+1 + ν∇2un (220a)

∇ · un+1 = 0 (220b)

Problems:

∇2pn+1 = ρ
∆t
∇ · (un −∆tun · ∇un +∆t ν∇2un)

BCs?
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The incompressible Navier–Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (221a)

∇ · u = 0 (221b)

Semi implicit approach

un+1 − un

∆t
+ un · ∇un︸ ︷︷ ︸

non-linear

= −1

ρ
∇pn+1 + ν∇2un+1 (222a)

∇ · un+1 = 0 (222b)
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The incompressible Navier–Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (223a)

∇ · u = 0 (223b)

Semi implicit approach

un+1 − un

∆t
+ un · ∇un+1
︸ ︷︷ ︸

linearised

= −1

ρ
∇pn+1 + ν∇2un+1 (224a)

∇ · un+1 = 0 (224b)
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The incompressible Navier–Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (225a)

∇ · u = 0 (225b)

Fully implicit approach

un+1 − un

∆t
+ un+1 · ∇un+1 = −1

ρ
∇pn+1 + ν∇2un+1 (226a)

∇ · un+1 = 0 (226b)
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The incompressible Navier–Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (227a)

∇ · u = 0 (227b)

Explicit forward difference in time

un+1 − un

∆t
+ un · ∇un = − 1

ρ0
∇pn + ν∇2un (228a)

β
pn+1 − pn

∆t
+∇ · un = 0 (228b)
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u∗ − un

∆t
= −un · ∇un + ν∇2un (229)

∇ · u∗ 6= 0, BC

un+1 − u∗

∆t
= −1

ρ
∇pn+1 (230)

∇ · un+1 = 0, ¬BC

∇2pn+1 =
ρ

∆t
∇ · u∗ (231)
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u∗ − un

∆t
= −un · ∇un − 1

ρ
∇pn + ν∇2un (232)

∇ · u∗ 6= 0

un+1 − un

∆t
= −un · ∇un − 1

ρ
∇pn+1 + ν∇2un (233)

∇ · un+1 = 0

uc = un+1 − u∗ = −1

ρ
∆t∇

(
pn+1 − pn

)
(234)

∇ · uc = −∇ · u∗ = −1

ρ
∆t∇2

(
pn+1 − pn

)
(235)

un+1 = u∗ + uc
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The incompressible 2D Navier–Stokes equations
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (236a)

Ωz =
∂uy
∂x
− ∂ux

∂y
(236b)

2D Helmholtz equation (ux =
∂ψ
∂y
, uy = −∂ψ

∂x
)

∂Ωz

∂t
+ u · ∇Ωz = ν∇2Ωz (237a)

∇2ψ = −Ωz (237b)

Ωn+1
z − Ωn

z

∆t
+ un · ∇Ωn

z = ν∇2Ωn
z (238a)

∇2ψn+1 = −Ωn+1
z (238b)
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Since all the transport equation have common terms, the
general transport equation for a quantity φ has the form
of

∂ (ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ (239)

Four transport effects can be summarised at least, namely

■ unsteadiness ∂
∂t
(ρφ),

■ convection ∇ · (ρφu),
■ diffusion ∇ · (Γ∇φ).
■ overall source term Sφ. In the above Γ is the

diffusivity for φ.
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The integral form of the transport equation over a control
volume VP is now expressed as

d

dt

y

VP

ρφ dV +
y

VP

∇ · (ρφu) dV =

y

VP

∇ · (Γ∇φ) dV +
y

VP

Sφ dV (240)

where a finite volume VP and its measure is |VP |.
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■ the finite volume centroid P located at xP ,
■ the vector d connects the centroid P with its

neighbour centroid N ,
■ the surface Sf is oriented by means of a surface

normal vector Sf pointing outward and the face Sf
centroid is located at xf .
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The order of discretisation is usually equal or higher in
comparison with the order of the discretised equation.
Exceptions to this rule are sometimes permitted.
In order to keep the second order accuracy of spatial
dicretisation the following variation of φ around P is
assumed

φ(x) = φP + (x− xP ) · (∇φ)P (241)

This can be proved by means of Taylor series expansion.
Also, the unknown variable φP , located at the centroid
xP of a control volume VP , is calculated as φP = φ(xP ).
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In order to transform volume integrals into surface
integrals the Gauss’s (divergence) theorem is applied

y

VP

∇ ·w dV =
{

∂VP

w · dS (242)

where dS stands for the differential of the surface area
vector pointing outward. Now the general transport
equation can be rewritten as

d

dt

y

VP

ρφ dV +
{

∂VP

ρφu · dS =

{

∂VP

Γ∇φ · dS+
y

VP

Sφ dV (243)



Volume integrals

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 141

d

dt

y

VP

ρφ dV +
{

∂VP

ρφu · dS =

{

∂VP

Γ∇φ · dS+
y

VP

Sφ dV (244)

The following definition of an average value φP of the
function φ located at the centroid of VP is assumed

φP =
1

|VP |
y

VP

φ dV (245)

The volume integral is expressed by means of the
averaged value φ̄ of unknown function φ and the control
volume measure |VP |. Next, the averaged value is
replaced by the value at VP centroid φP .
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If the source term Sφ, i.e. the fourth integral in the
general transport equation, depends on the unknown
function φ it should be linearised first

Sφ(φ) = SC + SPφ (246)

Subsequently, it can be integrated similarly and the
discretised source terms is now

y

VP

Sφ dV = SC |VP |+ SP |VP |φP (247)

If, however, the source term Sφ does not depend on φ the
discretised form is simpler since SP = 0.
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For the sake of simplicity let us assume further
incompressibility ρ = const. This assumptions is also
valid for gases provided that Ma < 0.3. Furthermore, if
the control volume VP is constant in time, i.e. is not
deforming, then it is now possible to express the general
transport equation as

ρ
dφP
dt
|VP |+ ρ

{

∂VP

φu · dS =

{

∂VP

Γ∇φ · dS+ SC |VP |+ SP |VP |φP (248)
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Convection terms involving ∇ · (ρφu) are already
transformed by means of the Gauss’s theorem and
expressed as surface integrals. The surface integral over
the individual surface Sf is now expressed by means of
the vector wf value located the face Sf centroid and the
surface area vector Sf pointing outward, namely

x

Sf

w · dS = wf · Sf (249)

This also means that the vector w distribution over the
surface Sf is now expressed by means of a single value
wf .
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Since the boundary ∂VP of a control volume VP consists
of f planar surfaces Sf , i.e.

⋃
f Sf = ∂VP , the

convection terms is now given by the following
approximation being second order accurate

{

∂VP

φu · dS =
∑

f

φfuf · Sf (250)

The term φfuf · Sf is also referred to as a face flux. The
general transport equations is now given by

ρ
dφP
dt
|VP |+ ρ

∑

f

φfuf · Sf =
{

∂VP

Γ∇φ · dS+ SC |VP |+ SP |VP |φP (251)
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What is important, is the fact that the discretised
convection term needs to be interpolated further by
means of cell centred values because the values φf are
located at the face centroids. Several methods are in
common use. These include, among others:

■ linear interpolation or central differencing (CD),
■ upwind differencing (UD),
■ blending differencing,
■ second order upwind differencing (SOU) or linear

upwind differencing (LUD).
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A linear distribution of φ between two points P and N is
assumed. This leads to the following face value φf

φf = fxφP + (1− fx)φN (252)

where the weighting factor fx is a ratio of respective
distances

fx =
‖xd − xN‖
‖d‖ (253)

This method is known to be second order accurate.
Nonetheless, it may lead to non-physical oscillations for
some convection dominated flows or in the presence of
strong gradients.
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This interpolation depends on the flow direction uf · Sf .
The face value φf is interpolated by means of the
upstream node P or N , depending of the flow direction,
namely

φf =

{
φP ; uf · Sf ≥ 0,

φN ; uf · Sf < 0
(254)

Boundedness of the solution is guaranteed, however, it
comes at a price of having to sacrifice accuracy. This is
because the numerical diffusion term is implicitly
introduced. Additionally, upwind differencing is only first
order accurate.
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This type of interpolation tries to maintain reasonable
accuracy and boundedness of the solution at the same
time. Typically, it combines upwind differencing and
central differencing in the following manner

φf = γφfCD + (1− γ)φfUD (255)

Other methods also exist. In the above equation γ is the
so called flux limiter also referred to as a blending
coefficient. The idea of flux limiter makes it possible,
among others, to limit towards first order upwind in
regions of rapidly changing gradients.
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Second order upwind differencing (SOU) or linear upwind
differencing (LUD). More information is required than the
nearest neighbours of the control volume. This leads to
higher order accuracy. The face value φf depends on the
flow direction and is interpolated by means of two the
upstream nodes P , PP or N , NN

φf =

{
φP + 1

2
(φP − φPP ) ; uf · Sf > 0,

φN + 1
2
(φN − φNN) ; uf · Sf < 0

(256)

LUD interpolation is second order accurate and
unbounded.
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Flux limiter formulation (uf · Sf > 0)

φf = φP +
1

2
ψ(r) (φP − φPP ) (257)

where ψ is a limiter function. The limiter ψ is a function
of gradients ratio r (1D version)

r =
φN − φP
φP − φPP

(258)

General 3D version

r = 2
d · (∇φ)P
d · (∇φ)f

− 1 (259)
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A limiter is symmetric if

ψ

(
1

r

)
=
ψ(r)

r
(260)

TVD conditions:

■ 0 ≤ ψ(r) ≤ 2r,
■ 0 ≤ ψ(r) ≤ 2

Second order TVD conditions:

■ 0 ≤ ψ(r) ≤ 2r, r ∈ [0; 1],
■ 1 ≤ ψ(r) ≤ r, r ∈ [1; 2],
■ 0 ≤ ψ(r) ≤ 2, r > 2,
■ ψ(1) = 1
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φ̃C =
φC − φU
φD − φU

(261)

P

C

N

D

fPP

U

bcbcbcbc P

D

N

C

f NN

U

bcbcbc bc

φ̃f =
φf − φU
φD − φU

(262)
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0 1

0

1

φ̃c

φ̃
f

NVD conditions:

■ φ̃f is continuous,

■ φ̃C ≤ φ̃f (φ̃C) ≤ 1, φ̃C ∈ [0; 1],

■ φ̃f (φ̃C) = φ̃C , φ̃C /∈ [0; 1]

Second (or above) order NVD con-
ditions:

■ all above,
■ φ̃f (0.5) = 0.75



Convection terms – example

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 155

Ω

∂Ω

U, T

∂

∂n
= 0

U
,
T

∂

∂
n
=
0

∂ (ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ (263)

∂φ

∂t
+∇ · (φu) = 0 (264)
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Upwind Differencing (First Order
Upwind)

ψ(r) = 0

■ TVD, NVD,
■ 1st order

φ̃f (φ̃C) = φ̃C



Convection terms – UD

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 157

0 0.02 0.04 0.06 0.08 0.1
0

0.3

0.6

0.9

1.2

x

φ

exact

UD

0 0.02 0.04 0.06 0.08 0.1
0

0.3

0.6

0.9

1.2

x

φ

exact

UD



Convection terms – SOU

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 158

0 1 2 3

0

1

2

3

ψ = 0, UD

ψ = 1, SOU

ψ = 2

ψ
=
r,
L
D

ψ
=
2
r

r

ψ

0 1

0

1

φ̃c

φ̃
f

Second Order Upwind (Linear Up-
wind Differencing)

ψ(r) = 1

■ Not TVD, not NVD,
■ 2nd order

φ̃f (φ̃C) =
3
2
φ̃C
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Quadratic Upwind Interpola-
tion for Convective Kinematics
(Quadratic Upwind Differencing)
For a uniform mesh

φf =
3

8
φD +

3

4
φC −

1

8
φU

■ not NVD,
■ 3rd order

φ̃f (φ̃C) =
3

8

(
1 + 2φ̃C

)
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Linear Differencing (Central Dif-
ferencing)

ψ(r) = r

■ Not TVD, not NVD,
■ 2nd order

φ̃f (φ̃C) =
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1 + φ̃C
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ψ(r) = max(0,min(1, r))

■ TVD, NVD,
■ 2nd order,
■ piecewise linear

φ̃f (φ̃C) =
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)
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φ̃C ; otherwise
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ψ(r) = max(0,min(2r, 1),min(r, 2))

■ TVD,
■ 2nd order,
■ symmetric.
■ piecewise linear
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Upstream Monotonic Interpola-
tion Scalar Transport
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4
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■ TVD,
■ 2nd order,
■ limr→∞ ψ(r) = 2,
■ piecewise linear
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Monotonic Upwind Scheme for
Conservation Laws

ψ(r) = max(0,min(2r, 1
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■ TVD, NVD,
■ 2nd order,
■ limr→∞ ψ(r) = 2,
■ piecewise linear

φ̃f (φ̃C) =
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ψ(r) =
r + |r|
1 + |r|

■ TVD, NVD,
■ 2nd order,
■ symmetric,
■ limr→∞ ψ(r) = 2

φ̃f (φ̃C) =

{
φ̃C

(
2− φ̃C

)
; 0 ≤ φ̃C ≤ 1,

φ̃C ; otherwise
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Diffusion terms involving ∇ · (Γ∇φ) are treated in the
same way as convection terms

{

∂VP

Γ∇φ · dS =
∑

f

Γf (∇φ)f · Sf (265)

Most importantly, the discretised diffusion term needs to
be interpolated further by means of cell centred values.
The spatially discretised general transport equations is
now given by

ρ
dφP
dt
|VP |+ ρ

∑

f

φfuf · Sf =
∑

f

Γf (∇φ)f · Sf + SC |VP |+ SP |VP |φP (266)
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If the considered mesh is orthogonal the dot product of
the face centred gradient (∇φ)f and surface normal
vector Sf , being in fact the surface normal gradient, is
calculated according to the following equation

(∇φ)f · Sf =
φN − φP
‖d‖ ‖Sf‖ (267)

which takes under considerations two two centroids P
and N values around the surface Sf . This approach is
the central difference approximation of the first order
derivative and is know to be second order accurate.
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For generic non-orthogonal meshes a correction is
introduced. The two contributing parts are considered
based upon the following decomposition Sf = S⊥ + k.
Here, S⊥ is parallel with d. Finally, the corrected
equation is

(∇φ)f · Sf =
φN − φP
‖d‖ ‖S⊥‖+ (∇φ)f · k (268)

The right hand side of the above formula represents the
orthogonal and non-orthogonal contributions. The latter
requires the face centred gradient interpolation. This is
usually achieved by the linear interpolation of cell centred
gradients (∇φ)P and (∇φ)N , i.e.

(∇φ)f = fx (∇φ)P + (1− fx) (∇φ)N (269)
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(∇φ)f = fx (∇φ)P + (1− fx) (∇φ)N (270)

Two most commonly met methods of cell centred
gradients evaluations are Gaussian integration and least
squares method:

■ Gaussian integration,
■ least squares method.
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Gaussian integration. Cell centred gradients are evaluated
by means of the Gauss’s theorem for w = φc where c

stands for a constant vector
y

VP

∇φ dV =
{

∂VP

φ dS (271)

These terms are converted by means of Gaussian
integration. Secondly, the average value of ∇φ is
replaced by the cell centred value (∇φ)P

(∇φ)P =
1

|VP |
y

VP

∇φ dV =

1

|VP |
{

∂VP

φ dS =
1

|VP |
∑

f

φfSf (272)
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Equation

φN = φP + (xN − xP ) · (∇φ)P (273)

allows for extrapolation of the values φP by means of
their gradients (∇φ)P to the neighbouring points φN .
Introducing the following vector connecting point P with
its neighbours N , namely dN = xN − xP , it is now
possible to provide N equations

dN · (∇φ)P = φN − φP (274)

where N stands for the total number of neighbours of P
and is always larger or equal four. This is because the
simplest polyhedral volume consists of four faces.
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Since N is larger than the three components of the
gradient (∇φ)P to be computed, it is necessary to
minimise the sum of the square of weighted errors for all
N neighbours. In order to find the gradient (∇φ)P a
linear system of equations is formulated

A · (∇φ)P = y (275)

where known N × 3 matrix is A = (dN , . . .)
T, the

unknown 3× 1 gradient is (∇φ)P and finally the known
N × 1 vector is y = (φN − φP , . . .)T.
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The sum of squared residuals or the the norm to be
minimised is defined by

‖A · (∇φ)P − y‖2 =
∑

N

(dN · (∇φ)P − (φN − φP ))2 (276)

Finally, the unknown gradient (∇φ)P is the solution of
the following linear equations system

(
AT ·A

)
· (∇φ)P = AT · y (277)
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Time dependent (transient) problems require temporal
discretisation of the general transport equation.
Integration it with respect to time from t to t+∆t
results in

ρ|VP |
t+∆tw

t

dφP
dt

dt =

t+∆tw

t

(
−ρ
∑

f

φfuf · Sf
)

dt+

t+∆tw

t

∑

f

Γf (∇φ)f · Sf dt+
t+∆tw

t

(SC |VP |+ SP |VP |φP ) dt

(278)

The right hand side of the above represents the time
integral of all the spatial values.
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The following abbreviations are assumed:

■ the new value φn+1
P = φP (t+∆t), i.e. value the

solver is calculating for,
■ old value φnP = φP (t), i.e. known from the previous

time step,
■ old old value φn−1

P = φP (t−∆t) known from the
time step prior to the previous.
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The left hand side of the dicretised equation can be
evaluated directly and the right hand side integrand is
denoted as f(φf , φP )

ρ
(
φn+1
P − φnP

)
|VP | =

t+∆tw

t

f(φf (t), φP (t)) dt (279)

This time, however, the right hand side cannot be
integrated directly. This means that it has to be
approximated by F (φf , φP )∆t. Above equation now
reads

ρ
φn+1
P − φnP

∆t
|VP | = F (φf , φP ) (280)
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Several treatments of the spatial derivatives in a transient
problem are possible. The most popular are:

■ explicit Euler,
■ implicit Euler,
■ Crank–Nicolson (linear interpolation),
■ backward differencing.

Euler methods as well as Crank–Nicolson method require
only values of the unknown function at two different times
φn+1
P and φnP and are referred to as two-level methods.

Backward differencing is the so called three-level method
because it require the values of the unknown function φP
at three different times, namely φn+1

P , φnP and φn−1
P .
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The right hand side of previous equation is approximated
explicitly by means of old values φn which is denoted as
F (φnf , φ

n
P ). The discrete version of the general transport

equation is

ρ
φn+1
P − φnP

∆t
|VP |+ ρ

∑

f

φnfuf · Sf =
∑

f

Γf (∇φ)nf · Sf + SC |VP |+ SP |VP |φnP (281)

The method is first order accurate in time. However, it is
also unstable if Co > 1. Despite this, explicit Euler
discretisation is very easy to implement and does not
require substantial computer resources.
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This time the right hand side of previous equation is
approximated implicitly by means of current values φn+1

which is denoted as F (φn+1
f , φn+1

P ). The discrete version
of the general transport equation is

ρ
φn+1
P − φnP

∆t
|VP |+ ρ

∑

f

φn+1
f uf · Sf =

∑

f

Γf (∇φ)n+1
f · Sf + SC |VP |+ SP |VP |φn+1

P (282)

The method is first order accurate in time and is
unconditionally stable in contrast to explicit method.
Implicit Euler discretisation is more complicated to
implement in comparison with its explicit formulation and
requires iterative approach.
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Formally, the method utilises the trapezoid rule. This is
equivalent to an arithmetical average of current and old
values

ρ
φn+1
P − φnP

∆t
|VP | =

F
(
φnf , φ

n
P

)
+ F

(
φn+1
f , φn+1

P

)

2
(283)

The method is known to be second order accurate in time
and unconditionally stable.
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The integrand dφP
dt

of the left hand side of the previous
equation is discretised first rather than being evaluated
directly

dφP
dt

=
3φn+1

P − 4φnP + φn−1
P

2∆t
(284)

Now the left hand side of the previous equation can be
integrated. The implicit discrete version of the general
transport equation is

ρ
3φn+1

P − 4φnP + φn−1
P

2∆t
|VP |+ ρ

∑

f

φn+1
f uf · Sf =

∑

f

Γf (∇φ)n+1
f · Sf + SC |VP |+ SP |VP |φn+1

P (285)

The method is known to be second order accurate in
time.
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Let us consider differential form of the general transport
equation

∂(ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ (286)

To obtain the integral form of this equation one needs
Gauss’s (divergence) theorem. Two dimensional version
has the following form

x
Ωi

∇ ·w dΩ =
z
∂Ω+

i

w · dL (287)

where dΩ ≡ dx dy and dL ≡ n̂ dL ≡ ı̂ dy − ̂ dx
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Integrating over the two dimensional domain (finite
‘volume’) Ωi and utilising Gauss’s theorem results in

d

dt

x
Ωi

ρφ dΩ +
z
∂Ω+

i

ρφu · dL =
z
∂Ω+

i

Γ∇φ · dL+
x

Ωi

Sφ dΩ (288)

First and last integral in the above equation suggest the
following definition of an average φ̄i value of f over Ωi

φ̄i =
1

|Ωi|
x

Ωi

φ dΩ (289)

The average value φi is typically located at the centre of
the volume Ωi.
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The next step would be the spatial discretisation over the
volume Ωi boundary ∂Ωi. The line integral represents the
total flux out of volume Ωi and is replaced by a sum

z
∂Ω+

i

w · dL ≈
∑

k

wk ·∆Lk (290)

Boundary ∂Ωi consists of lines indexed by subscript k.
There are at least three lines (triangle). The vector w is
either φu or Γ∇φ. Because that vector w is typically not
constant along each line it has to be approximated by a
single value wk at the centre of each line.
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The last step would be time discretisation. Among many
possibilities the simplest is the first order forward finite
difference approximation

dφ̄i
dt
≈ φ̄n+1

i − φ̄ni
∆t

(291)

Time step of this approximation is denoted here as ∆t.
Finally, one gets the following discretised version of
transport equation (i.e. Finite Volume Scheme)

ρ
φ̄n+1
i − φ̄ni
∆t

|Ωi|+ ρ
∑

k

(φu)k ·∆Lk =

∑

k

(Γ∇φ)k ·∆Lk + S̄φi|Ωi| (292)

|Ωi| stands for the area of control volume Ωi
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Two dimensional and steady state diffusion equation of a
f quantity arises, as previously, from the general
transport equation (convection-diffusion equation)

∇ · (Γ∇φ) + Sφ = 0 (293)

If the diffusion coefficient is constant Γ = 1 and the
source term Sφ = a then the above equation simplifies to

∇ · ∇φ+ a = 0 (294)

or ∇2φ = −a which is Poisson equation.
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The discrete version of the diffusion equation (simplified
version of general transport equation) is

∑

k

(Γ∇φ)k ·∆Lk + S̄φij|Ωij| = 0 (295)

For a structural and Cartesian mesh (next slide) the
normal ∆Lk vectors are

∆LAB = |AB |̂ı = ∆yi ı̂ (296a)

∆LBC = |BC |̂ = ∆xi ̂ (296b)

∆LCD = |CD| (−ı̂) = −∆yi ı̂ (296c)

∆LDA = |DA| (−̂) = −∆xi ̂ (296d)
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φi−1j−1

φij−1

φi+1j−1

φi−1j φij φi+1j

φi−1j+1 φij+1 φi+1j+1

A

BC

D
∆LAB

∆LBC

∆LCD

∆LDA
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The discrete version of two dimensional diffusion equation
is now

Γ
∂φi+ 1

2
j

∂x
∆yi + Γ

∂φij+ 1
2

∂y
∆xi − Γ

∂φi− 1
2
j

∂x
∆yi−

Γ
∂φij− 1

2

∂y
∆xi + S̄φij|Ωij| = 0 (297)

where the area of volume Ωij is |Ωij| = ∆xi∆yi and the
diffusion coefficient is constant Γ = 1. If so, then

∂φi+ 1
2
j

∂x
∆yi +

∂φij+ 1
2

∂y
∆xi −

∂φi− 1
2
j

∂x
∆yi

−
∂φij− 1

2

∂y
∆xi + S̄φij∆xi∆yi = 0 (298)
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The average value of Sφ at the centre of finite volume is
approximated by means of known values of Sφ at the
boundary of finite volume

S̄φij =
1

4

(
Sφi− 1

2
j− 1

2
+ Sφi+ 1

2
j− 1

2
Sφi− 1

2
j+ 1

2
+ Sφi+ 1

2
j+ 1

2

)

(299)
Derivatives at the boundary of finite volume are
approximated by means of the second order scheme as

∂φi+ 1
2
j

∂x
≈ φi+1j − φij
xi+1j − xij

=
φi+1j − φij
∆xi+1

(300a)

∂φij+ 1
2

∂y
≈ φij+1 − φij
yij+1 − yij

=
φij+1 − φij
∆yj+1

(300b)
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∂φi− 1
2
j

∂x
≈ φij − φi−1j

xij − xi−1j

=
φij − φi−1j

∆xi−1

(301a)

∂φij− 1
2

∂y
≈ φij − φij−1

yij − yij−1

=
φij − φij−1

∆yj−1

(301b)

The specific form of a finite volume scheme is now

S̄φij∆xi∆yi+
φi−1j∆yi
∆xi−1

+
φi+1j∆yi
∆xi+1

+
φij−1∆xi
∆yj−1

+
φij+1∆xi
∆yj+1

−

φij

(
∆yi
∆xi−1

+
∆yi
∆xi+1

+
∆xi
∆yj−1

+
∆xi
∆yj+1

)
= 0 (302)
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It can also be rewritten to give φij as a function of
surrounding variables

φij =

φi−1j∆yi
∆xi−1

+
φi+1j∆yi
∆xi+1

+
φij−1∆xi
∆yj−1

+
φij+1∆xi
∆yj+1

+ S̄φij∆xi∆yi
∆yi

∆xi−1
+ ∆yi

∆xi+1
+ ∆xi

∆yj−1
+ ∆xi

∆yj+1

(303)

For ∆xi = ∆yi = ∆xi−1 = ∆xi+1 = ∆yi−1 = ∆yi+1 = h
(i.e. uniform mesh) the finite volume scheme reduced to
a finite difference scheme for Poisson equation

φij =
φi−1j + φi+1j + φij−1 + φij+1 + S̄φijh

2

4
(304)
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Data: Read volumes data and BCs
Create nodes and ghost nodes;
n := 1;
repeat

R := 0;
for i := 2 to imax − 1 do

for j := 2 to jmax − 1 do

φn+1
ij :=
φni−1j∆yi

∆xi−1
+

φni+1j∆yi

∆xi+1
+

φnij−1∆xi

∆yj−1
+

φnij+1∆xi

∆yj+1
+S̄φij∆xi∆yi

∆yi
∆xi−1

+
∆yi

∆xi+1
+

∆xi
∆yi−1

+
∆xi

∆yi+1

;

R := max
(
|φn+1
ij − φnij |, R

)
;

Update ghost nodes;
n := n+ 1;

until n ≤ nmax and R > Rmin;
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One dimensional and steady state diffusion equation of a
f quantity arises from the general transport equation
(convection-diffusion equation)

∂(ρφ)

∂t
+∇ · (ρuφ) = ∇ · (Γ∇φ) + Sφ (305)

If the diffusion coefficient Γ is constant then the above
equation simplifies to

∇ · (Γ∇φ) + Sφ = 0 (306)

or more precisely

d

dx

(
Γ
dφ

dx

)
+ Sφ = 0 (307)
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The integral form of one dimensional diffusion equation
takes the following form

w x
i+1

2

x
i− 1

2

d

dx

(
Γ
dφ

dx

)
dx+

w x
i+1

2

x
i− 1

2

Sφ dx = 0 (308)

There is no need to take advantage of Gauss’s theorem.
This is because the first term can be integrated directly

(
Γ
dφ

dx

)

i+ 1
2

−
(
Γ
dφ

dx

)

i− 1
2

+ S̄φi∆xi = 0 (309)

where ∆xi = xi+ 1
2
− xi− 1

2
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The average value of Sf at the centre of finite volume can
be approximated by means of trapezoidal rule by means
of known values of Sf at the boundary of finite volume

S̄fi =
Sfi− 1

2
+ Sfi+ 1

2

2
(310)

Let us consider ODE

y′′(x) + 20x = 0 (311)

subjected to the Dirichlet boundary conditions
y(0) = y(1) = 0. The specific solution is

y(x) = −10

3
(x3 − x) (312)
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In other word, the diffusion coefficient Γ = 1 and source
term Sf = 20x. If so, then discrete version of one
dimensional diffusion equation is now

dφi+ 1
2

dx
−

dφi− 1
2

dx
+ S̄φi∆xi = 0 (313)

Derivatives or diffusive fluxes at the boundary of finite
volume are approximated by means of the second order
scheme as

dφi+ 1
2

dx
≈ φi+1 − φi
xi+1 − xi

(314a)

dφi− 1
2

dx
≈ φi − φi−1

xi − xi−1

(314b)
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The specific form of a finite volume scheme is now

φi+1 − φi
xi+1 − xi

− φi − φi−1

xi − xi−1

+ S̄φi∆xi = 0 (315)

It can also be rewritten to give φi as a function of
surrounding variables

φi =
∆xi+1φi−1 +∆xi−1φi+1 + S̄φi∆xi−1∆xi+1∆xi

∆xi−1 +∆xi+1

(316)
where ∆xi−1 = xi − xi−1 and ∆xi+1 = xi+1 − xi.
For ∆xi−1 = ∆xi+1 = ∆xi = h (i.e. uniform mesh) the
finite volume scheme is reduced to a finite difference
scheme

φi =
φi−1 + φi+1 + S̄φih

2

2
(317)
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Data: Read volumes data and BCs
Create nodes and ghost nodes;
n := 1;
repeat

R := 0;
for i := 2 to imax − 1 do

φn+1
i :=

∆xi+1φ
n
i−1+∆xi−1φ

n
i+1+S̄φi∆xi−1∆xi+1∆xi

∆xi−1+∆xi+1
;

R := max
(
|φn+1
i − φni |, R

)
;

Update ghost nodes;
n := n+ 1;

until n ≤ nmax and R > Rmin;
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Let us consider the same ordinary differential equation

y′′(x) + 20x = 0 (318)

subjected to both the Dirichlet y(0) = 0 and Neumann
y′(1) = 0 boundary conditions. The specific solution is
now

y(x) = −10x
(
x2

3
− 1

)
(319)
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The mathematical foundation of the finite element
method is in the method of weighted residuals.
Imagine ordinary differential equation

y′′(x) + 20x = 0 (320)

subjected to boundary conditions y(0) = y(1) = 0. The
exact general solution of this equation is

y(x) = −10

3
x3 + C1x+ C2 (321)

and a specific solution subjected to boundary conditions

y(x) = −10

3
(x3 − x) (322)
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The method seeks an approximate solution ŷ in the
general form

ŷ(x) =
N∑

i=1

CiNi(x) (323)

where Ni are known trial functions which should be
continuous and fulfilled boundary conditions. The
constants Ci are unknown and they will be determined. A
residual R appears when substituting approximate
solution ŷ into the differential equations

R(x) = ŷ′′(x) + 20x 6= 0 (324)

The unknown Ci constant are determined for i = 1, . . . N
from

w 1

0
Wi(x)R(x) dx = 0 (325)



Method of weighted residuals

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 218

w 1

0
Wi(x)R(x) dx = 0 i = 1, . . . , N (326)

Choices for the weighting functions Wi

■ Collocation method Wi(x) = δ(x− xi)
■ Subdomain method

Wi(x) = H(x− xi−1)−H(x− xi)
■ Galerkin’s method Wi(x) = Ni(x)

w 1

0
Ni(x)R(x) dx = 0 i = 1, . . . , N (327)

■ Least Squares Method Wi(x) =
∂R
∂Ciw 1

0

∂R

∂Ci
R(x) dx = 0 i = 1, . . . , N (328)
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A polynomial trial functions can be assumed

N(x) = xr(x− 1)s (329)

It is continuous and fulfils boundary conditions. Just one
trial function for r = s = 1 is the simplest case

N1(x) = x(x− 1) (330)

The approximate solution ŷ(x) =
∑N

i=1CiNi(x) where
N = 1 takes the following form

ŷ(x) = C1N1(x) = C1(x
2 − x) (331)

Residual may now be expressed as

R(x) = 2C1 + 20x 6= 0 (332)
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The unknown constant C1 may be determined upon
integrating (Galerkin’s method of weighted residuals)

w 1

0
x(x− 1)(2C1 + 20x) dx = 0 (333)

This gives −1
3
(5 + C1) = 0 and allows to determine

C1 = −5. The approximate solution is now

ŷ(x) = −5x(x− 1) (334)

and can be compared with the exact solution

y(x) = −10

3
(x3 − x) (335)
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The simplest case with just one trial function
approximates the exact solution more or less acceptably.
Better agreement is possible with more than one trial
functions.
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The two polynomial trial functions can be assumed

N1(x) = x(x− 1), N2(x) = x2(x− 1) (336)

Both are continuous and fulfil boundary conditions. The
approximate solution ŷ(x) =

∑N
i=1CiNi(x) where N = 2

takes the following form

ŷ(x) = C1N1(x) + C2N2(x) = C1(x
2 − x) + C2(x

3 − x2)
(337)

Residual may now be expressed as

R(x) = 2C1 + 2C2(3x− 1) + 20x 6= 0 (338)
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The unknown constants C1, C2 may be determined upon
integrating

w 1

0
x(x− 1)(2C1 + 2C2(3x− 1) + 20x) dx = 0

w 1

0
x2(x− 1)(2C1 + 2C2(3x− 1) + 20x) dx = 0

This gives 10 + 2C1 + C2 = 0 and 1 + 1
6
C1 +

2
15
C2 = 0

and allows to determine C1 = C2 = −10
3
. The

approximate solution is now

ŷ(x) = −10

3
x(x− 1)(x+ 1) (339)
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The case with two trial function approximates the exact
solution very well. It is far better that the previous case.
There is no visible difference. In fact, it is even the exact
solution

−10

3
x(x− 1)(x+ 1) = −10

3
(x3 − x) (340)
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■ The method of weighted residuals constitutes
foundation of the final element method

■ The method exploits an integral formulation to
minimise residual errors

■ Trail functions of this method are global. It is usually
difficult task to find a proper one that satisfies
boundary conditions. The more dimensions the worse.
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The approximate solution is expressed as

ŷe = yjN1(x) + yj+1N2(x) = N · ye (341)

where the known local trial functions N and the unknown
nodal values ye are collected as vectors

N = (N1, N2) (342a)

ye = (yj, yj+1) (342b)

The local trial functions are simply a linear interpolation

N1 =
xj+1 − x
xj+1 − xj

xj ≤ x ≤ xj+1 (343a)

N2 =
x− xj
xj+1 − xj

xj ≤ x ≤ xj+1 (343b)
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For each element we have the Galerkin residual condition
w xj+1

xj
NR dx = 0 j = 1, . . . , N (344)

Taking under consideration our differential equation
y′′ + 20x = 0 and the approximate solution ŷe it is now
possible to express the residual as

w xj+1

xj
N

(
d2ŷe
dx2

+ 20x

)
dx = 0 (345)

The second derivative has to be replaced. This is due to
linear nature of the trial functions.
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Integration by parts makes it possible to replace the
second derivative

N
dŷe
dx

∣∣∣∣
xj+1

xj

−
w xj+1

xj

dN

dx

dŷe
dx

dx+
w xj+1

xj
N20x dx = 0

(346)
Finally, matrix form of the Galerkin residual condition for
each element is now

w xj+1

xj

dN

dx

dN

dx
dx · ye =

w xj+1

xj
N20x dx+ N

dŷe
dx

∣∣∣∣
xj+1

xj

j = 1, . . . , N (347)
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The so called ‘stiffness’ matrix for each element e may be
introduced

Ke =
w xj+1

xj

dN

dx

dN

dx
dx (348)

The above matrix is symmetric. The so called
‘displacement’ vector is also introduced

Fe =
w xj+1

xj
N20x dx+ N

dŷe
dx

∣∣∣∣
xj+1

xj

(349)

The Galerkin residual condition for each element may
now be written as

Ke · ye = Fe (350)
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It is possible to simplify the matrices even further. For
the linear trial functions one gets the ‘stiffness’ matrix

Ke =
w xj+1

xj

(
dN1

dx
dN1

dx
dN1

dx
dN2

dx
dN1

dx
dN2

dx
dN2

dx
dN2

dx

)
dx =

1

xj+1 − xj

(
1 −1
−1 1

)

(351)
and the ‘displacement vector’

Fe =
w xj+1

xj

(
N120x
N220x

)
dx+

(
N1

dŷe
dx

∣∣xj+1

xj

N2
dŷe
dx

∣∣xj+1

xj

)
(352)

If the gradients are dropped, as discussed further, we have

Fe = −
10

3
(xj − xj+1)

(
2xj + xj+1

xj + 2xj+1

)
(353)
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For the interval [0; 1] divided equally into 3 elements we
have the element matrices

K1 = K2 = K3 =

(
3 −3
−3 3

)
(354)

The global assembly process (coupling):

K =




K11
1 K12

1 0 0
K12

1 K22
1 +K11

2 K12
2 0

0 K12
2 K22

2 +K11
3 K12

3

0 0 K12
3 K22

3


 (355)

results in

K =




3 −3 0 0
−3 6 −3 0
0 −3 6 −3
0 0 −3 3


 (356)
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The ‘displacement’ vector for equally divided interval
[0; 1] take form

F1 =

(
10
27
− dy(0)

dx
20
27

+
dy( 1

3
)

dx

)
,F2 =

(
40
27
− dy( 1

3
)

dx
50
27

+
dy( 2

3
)

dx

)
,F3 =

(
70
27
− dy( 2

3
)

dx
80
27

+ dy(1)
dx

)

(357)
After the global assembly process one finally gets

F =




F 1
1

F 2
1 + F 1

2

F 2
2 + F 1

3

F 2
3


 =




10
27
− dy(0)

dx
60
27
120
27

80
27

+ dy(1)
dx


 (358)
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The global (assembled) system of linear equations is




3 −3 0 0
−3 6 −3 0
0 −3 6 −3
0 0 −3 3


 ·




y1
y2
y3
y4


 =




10
27
− dy(0)

dx
60
27
120
27

80
27

+ dy(1)
dx


 (359)

It cannot, however, be solved yet. This is due to necessity
of applying the global boundary conditions. These are
y1 = y4 = 0. Two typical methods of applying them are
discussed further.
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Extracting only these equations that are related to
unknown functions y2 and y3 for y1 = y4 = 0 results in




· · · ·
· 6 −3 ·
· −3 6 ·
· · · ·


 ·




·
y2
y3
·


 =




·
60
27
120
27

·


 (360)

or simpler in

(
6 −3
−3 6

)
·
(
y2
y3

)
=

(
60
27
120
27

)
(361)

The above system may now be solved to obtain the
unknown values y2, y3.
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The second method does not change the layout of the
matrices. However, it involves modification of specific
elements by multiplying them by a ‘large’ number. These
elements are located on the diagonal of the ‘stiffness’
matrix and corresponding positions of the ‘displacement’
vector (if non-zero)




3 · 107 −3 0 0
−3 6 −3 0
0 −3 6 −3
0 0 −3 3 · 107


 ·




y1
y2
y3
y4


 =




0
60
27
120
27

0


 (362)
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Data: Read N elements, nodes and BCs
Create global matrix K and vectors F, y;
for e := 1 to N do

Ke :=
r
e
dN
dx

dN
dx

dx;
Fe :=

r
e
N20x dx;

Add Ke to K;
Add Fe to F;

Apply BCs;
Solve linear system K · y = F;
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Considering line equation ŷe = a+ bx and utilising it for
two different points (xj, yj) and (xj+1, yj+1) we can get
the following system of equations(

yj
yj+1

)
=

(
1 xj
1 xj+1

)
·
(
a
b

)
(363)

It can be easily solved for a and b
(
a
b

)
=

(
1 xj
1 xj+1

)−1

·
(
yj
yj+1

)
(364)

Keeping in mind that ŷe = N · ye where N = (N1, N2)
and ye = (yj, yj+1) we can utilise the solution for a and b
to get

ŷe = a+ bx =
xj+1 − x
xj+1 − xj

yj +
x− xj
xj+1 − xj

yj+1 = N1yj +N2yj+1

(365)
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Introducing L1 and L2 for a one-dimensional element

L1 = N1 =
xj+1 − x
xj+1 − xj

(366a)

L2 = N2 =
x− xj
xj+1 − xj

(366b)

one can formulate similar system of equation for
quadratic interpolation ŷe = a+ bx+ cx2 through the
points (xj, yj), (xj+ 1

2
, yj+ 1

2
) and (xj+1, yj+1)




yj
yj+ 1

2

yj+1


 =



1 xj x2j
1 xj+ 1

2
x2
j+ 1

2

1 xj+1 x2j+1


 ·



a
b
c


 (367)
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The quadratic
trial functions
can be also
expressed in
terms of linear
trial functions

N1 = L1 (2L1 − 1) ,

N2 = 4L1L2,

N3 = L2 (2L2 − 1)
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The ‘stiffness’ matrix for each element e may now be
calculated as

Ke =

xj+1w

xj

dN

dx

dN

dx
dx =

1

3(xj+1 − xj)




7 −8 1
−8 16 −8
1 −8 7




(369)
The ‘displacement’ vector is now

Fe =

xj+1w

xj

N20x dx =
10

3
(xj+1−xj)




xj
2(xj + xj+1)

xj+1


 (370)

The Galerkin residual condition for each element is the
same as previously

Ke · ye = Fe (371)
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Data: Read N linear elements, n nodes and BCs
Insert midpoints xj+ 1

2
:=

xj+xj+1

2
;

n := 2n− 1 ;
Create global matrix K and vectors F, y;
for e := 1 to N do

Ke :=
r
e
dN
dx

dN
dx

dx;
Fe :=

r
e
N20x dx;

Add Ke to K;
Add Fe to F;

Apply BCs;
Solve linear system K · y = F;
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The generalised p-norm is given by

‖f‖p =
(w

L
|f(x)|p dx

) 1
p

(372)

where for p = 2 we have a special case

‖f‖2 =
√w

L
f 2(x) dx (373)

The error E = y − ŷ of a finite element solution ŷ may
now be defined by means of 2-norm. It may take the
following form

‖E ′‖22 ≤ C

N∑

e=1

r2e (374)
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The element residue re is defined as

re = |Le| ‖f + ŷ′′e‖2 (375)

but due to the linear form of trial functions N ′′
i = 0 it is

true that ŷ′′e = 0. This means that the element residue is
re = |Le| ‖f‖2 and solution error

‖E ′‖22 ≤ C

N∑

e=1

|Le|2‖f‖22 (376)

Element’s length is |Le| = xj+1 − xj and utilising the
trapezoidal rule we can express the element residue as

re = |Le|
√w

Le

f(x)2 dx ≈ (xj+1 − xj)
3
2

√
f 2
j + f 2

j+1

2
(377)

The above approximation is used for mesh refinement.
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Let the two dimensional form
of the Poisson equation on Ω

∂2U

∂x2
+
∂2U

∂y2
= −a (378)

be subjected to the Dirichlet
boundary condition U(x, y) = 0 for every (x, y) ∈ ∂Ω. It
is true that

x
Ω
f(x, y) dx dy =

∑

e

x
Ωe

f(x, y) dx dy (379)
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The approximate solution is expressed as

Ûe = N ·Ue (380)

where the known local trial functions N and the unknown
nodal values Ue are

N = (N1, N2, N3) (381a)

Ue = (U1, U2, U3) (381b)

For each element we have the Galerkin residual condition
x

Ωe

NR dx = 0 (382)



‘Element’ formulation

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 257

Taking under consideration Poisson equation and the
approximate solution Ûe it is now possible to express the
residual as

x
Ωe

N

(
∂2Ûe
∂x2

+
∂2Ûe
∂y2

+ a

)
dx dy = 0 (383)

The second derivative has to be replaced (due to linear
nature of the trial functions). This can be done by means
of Green’s first identity

x
S

(
ψ
∂2ϕ

∂x2
+ ψ

∂2ϕ

∂y2

)
dx dy =

w
∂S
ψ
∂ϕ

∂n
dL

−
x

S

(
∂ψ

∂x

∂ϕ

∂x
+
∂ψ

∂y

∂ϕ

∂y

)
dx dy (384)
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Integration by means of Green’s identity makes it possible
to replace the second derivative

x
Ωe

(
∂N

∂x

∂Ûe
∂x

+
∂N

∂y

∂Ûe
∂y

)
dx dy

−
w
∂Ωe

N
∂Ûe
∂n

dL−
x

Ωe

Na dx dy = 0 (385)

The matrix form of the Galerkin residual condition for
each element can now be expressed

x
Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy ·Ue =

x
Ωe

Na dx dy

(386)
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Introducing the ‘stiffness’ matrix for each element e

Ke =
x

Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy (387)

and the ‘displacement’ vector

Fe =
x

Ωe

Na dx dy (388)

one may obtain the Galerkin residual condition for each
element in the form

Ke ·Ue = Fe (389)
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The expanded version of the ‘stiffness’ matrix is

Ke=
x

Ωe







∂N1

∂x
∂N1

∂x
+∂N1

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂x
+∂N1

∂y
∂N2

∂y
∂N1

∂x
∂N3

∂x
+∂N1

∂y
∂N3

∂y
∂N1

∂x
∂N2

∂x
+∂N1

∂y
∂N2

∂y
∂N2

∂x
∂N2

∂x
+∂N2

∂y
∂N2

∂y
∂N2

∂x
∂N3

∂x
+∂N2

∂y
∂N3

∂y
∂N1

∂x
∂N3

∂x
+∂N1

∂y
∂N3

∂y
∂N2

∂x
∂N3

∂x
+∂N2

∂y
∂N3

∂y
∂N3

∂x
∂N3

∂x
+∂N3

∂y
∂N3

∂y






dx dy

(390)

Similarly, the same for the ‘displacement’ vector

Fe = a
x

Ωe



N1

N2

N3


 dx dy (391)

The actual form of matrices depends on the trial
functions. Linear form of these are discussed further.
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Considering plane equation

Ûe = a+ bx+ cy (392)

one can formulate the following system of equations

U1 = a+ bxi + cyi (393a)

U2 = a+ bxj + cyj (393b)

U3 = a+ bxk + cyk (393c)

for three different points (xi, yi), (xj, yj), (xk, yk).
Solving these for a, b and c results in

Ûe =
U1

2Se
(ai+bix+ciy)+

U2

2Se
(aj+bjx+cjy)+

U3

2Se
(ak+bkx+cky)

(394)
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The linear trial functions then are

N1 =
1

2Se
(ai + bix+ ciy) (395a)

N2 =
1

2Se
(aj + bjx+ cjy) (395b)

N3 =
1

2Se
(ak + bkx+ cky) (395c)

where

ai = xjyk − xkyj; aj = xkyi − xiyk; ak = xiyj − xjyi;
bi = yj − yk; bj = yk − yi; bk = yi − yj;
ci = xk − xj; cj = xi − xk; ck = xj − xi;

Se =
1

2
|ckbj − cjbk|
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Now it is possible to calculate necessary derivatives
appearing in the ‘stiffness’ matrix

∂N1

∂x
=

bi
2Se

,
∂N2

∂x
=

bj
2Se

,
∂N3

∂x
=

bk
2Se

, (397a)

∂N1

∂y
=

ci
2Se

,
∂N2

∂y
=

cj
2Se

,
∂N3

∂y
=

ck
2Se

(397b)

The same concerns integrals appearing in the
‘displacement’ vector

x
Se

Nα
1 N

β
2N

γ
3 dx dy = 2Se

α!β!γ!

(α + β + γ + 2)!
(397c)
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Now it is possible to simplify the matrices even further.
For the linear trial functions one gets the ‘stiffness’ matrix

Ke =
1

4Se




b2i + c2i bibj + cicj bibk + cick
bibj + cicj b2j + c2j bjbk + cjck
bibk + cick bjbk + cjck b2k + c2k


 (398)

and the ‘displacement vector’

Fe =
Se
3



a
a
a


 (399)



Four element example

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 266

1(0, 0) 2(10, 0)

3(10, 10)4(0, 10)

5(5, 5)

1

2

3

4Ω

∂Ω

U = 0

U = 0

U
=
0

U
=
0
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The global assembly process (coupling) for the considered
four element case:

K=











K11
1 +K11

4 K12
1 0 K12

4 K13
1 +K13

4
K12

1 K22
1 +K11

2 K12
2 0 K23

1 +K13
2

0 K12
2 K22

2 +K11
3 K12

3 K23
2 +K13

3
K12

4 0 K12
3 K22

3 +K22
4 K23

3 +K23
4

K13
1 +K13

4 K23
1 +K13

2 K23
2 +K13

3 K23
3 +K23

4 K33
1 +K33

2 +K33
3 +K33

4











(400)
The element matrices are identical

K1 = K2 = K3 = K4 =
1

2




1 0 −1
0 1 −1
−1 −1 2


 (401)

Finally, the global ‘stiffness’ matrix is

K =











1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
−1 −1 −1 −1 4











(402)
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The ‘displacement’ element vector for the considered four
elements

F1 = F2 = F3 = F4 =
25

3



1
1
1


 (403)

After the global assembly process one finally gets

F =




F 1
1 + F 1

4

F 2
1 + F 1

2

F 2
2 + F 1

3

F 2
3 + F 2

4

F 3
1 + F 3

2 + F 3
3 + F 3

4




=
50

3




1
1
1
1
2




(404)
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Data: Read N elements, nodes and BCs
Create global matrix K and vectors F, y;
for e := 1 to N do

Ke :=
s

Ωe

(
∂N
∂x

∂N
∂x

+ ∂N
∂y

∂N
∂y

)
dx dy;

Fe :=
s

Ωe
Na dx dy;

Add Ke to K;
Add Fe to F;

Apply BCs;
Solve linear system K · y = F;
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Let the two dimensional form of Laplace equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (405)

or ∇2ϕ = 0 on Ω be subjected to both boundary
conditions on ∂Ω:

■ Neumann

∂ϕ

∂n
= n̂ · ∇ϕ = n̂ · (Ux, Uy) = nxUx + nyUy = −fN

■ Dirichlet (as previously)

ϕ = const = fD (406)
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As previously, FEM formulation for Poisson equation
subjected to Dirichlet and Neumann BCs is

x
Ωe

(
∂N

∂x

∂Ûe
∂x

+
∂N

∂y

∂Ûe
∂y

)
dx dy

−
w
∂Ωe

N
∂Ûe
∂n

dL−
x

Ωe

Na dx dy = 0 (407)

■ Poisson ∇2ϕ = −a with Dirichlet BC

x

Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy ·Ue =

x
Ωe

Na dx dy (408)

■ Laplace ∇2ϕ = 0 with Dirichlet + Neumann BC

x

Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy ·ϕe = −

w
∂Ωe

NfN dL (409)
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Introducing the ‘stiffness’ matrix as previously for each
element e

Ke =
x

Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy (410)

and the ‘displacement’ vector

Fe = −
w
∂Ωe

NfN dL (411)

one may obtain the Galerkin residual condition for each
element in the form

Ke ·ϕe = Fe. (412)
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The expanded version of the ‘stiffness’ matrix look the
same as previously but the ‘displacement’ vector is now

Fe = fN
w
∂Ωe

N dL = −1

2
|L|fN1 (413)

The vector 1 may take of the three following forms



1
1
0


 ,



1
0
1


 ,



0
1
1


 (414)

|L| stands for element side length.
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Data: Read N elements, nodes and BCs
Create global matrix K and vectors F, y;
for e := 1 to N do

Ke :=
s

Ωe

(
∂N
∂x

∂N
∂x

+ ∂N
∂y

∂N
∂y

)
dx dy;

Fe := −
r
∂Ωe

NfN dL;

Add Ke to K;
Add Fe to F;

Apply BCs;
Solve linear system K · y = F;
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∂
ϕ
∂
x
=
U
x

∂ϕ
∂y

= 0

∂ϕ
∂y

= 0

∂ϕ
∂n

= 0

ϕ
=
c
o
n
s
t

456
nodes and 818 elements
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∂
ϕ
∂
x
=
U
x

∂ϕ
∂y

= 0

∂ϕ
∂y

= 0

∂ϕ
∂n

= 0
∂ϕ
∂y

= 0

ϕ
=
c
o
n
s
t

351
nodes and 607 elements
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Re≪ 1 (415)

0 = ρg −∇p+ µ∇2u (416a)

∇ · u = 0 (416b)

0 = ρgx −
∂p

∂x
+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
(417a)

0 = ρgy −
∂p

∂y
+ µ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
(417b)

∂ux
∂x

+
∂uy
∂y

= 0 (417c)
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The approximate solution is expressed as

ûe = N · ue (418)

where the quadratic trial functions N and the unknown
nodal values ue are

N = (N1, N2, N3, N4, N5, N6) (419a)

ue = (U1, U2, U3, U4, U5, U6) (419b)

For each element we have the Galerkin residual condition
x

Ωe

NR dx = 0 (420)
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The quadratic
trial functions
can be ex-
pressed in terms
of linear trial
functions

N1 = L1 (2L1 − 1)

N2 = L2 (2L2 − 1)

N3 = L3 (2L3 − 1)

N4 = 4L1L2

N5 = 4L2L3

N6 = 4L1L3
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The Galerkin residual condition

x
Ωe

N

(
ρgx −

∂p̂e
∂x

+ µ

(
∂2ûxe
∂x2

+
∂2ûxe
∂y2

))
dx dy = 0

(422)
by means of Green’s first identity

x
S

(
ψ
∂2ϕ

∂x2
+ ψ

∂2ϕ

∂y2

)
dx dy =

w
∂S
ψ
∂ϕ

∂n
dL

−
x

S

(
∂ψ

∂x

∂ϕ

∂x
+
∂ψ

∂y

∂ϕ

∂y

)
dx dy (423)



Momentum conservation equation

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 288

is

ρgx
x

Ωe

N dx dy −
x

Ωe

N
∂N

∂x
dx dy · pe

− µ
x

Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy · uxe = 0 (424)

or
Kpxe · pe +Kxye · uxe = gxFe (425)

Similarly
Kpye · pe +Kxye · uye = gyFe (426)
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Kpxe =
x

Ωe

N
∂N

∂x
dx dy (427)

Kpye =
x

Ωe

N
∂N

∂y
dx dy (428)

Kxye = µ
x

Ωe

(
∂N

∂x

∂N

∂x
+
∂N

∂y

∂N

∂y

)
dx dy (429)

Fe = ρ
x

Ωe

N dx dy (430)
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The Galerkin residual condition

x
Ωe

N

(
∂ûxe
∂x

+
∂ûye
∂y

)
dx dy = 0 (431)

The matrix form of the Galerkin residual condition for
each element can now be expressed

x
Ωe

N
∂N

∂x
dx dy · uxe +

x
Ωe

N
∂N

∂y
dx dy · uye = 0 (432)

or
Kuxe · uxe +Kuye · uye = 0 (433)
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Kuxe =
x

Ωe

N
∂N

∂x
dx dy (434)

Kuye =
x

Ωe

N
∂N

∂y
dx dy (435)
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Kpxe · pe +Kxye · uxe = gxFe (436a)

Kpye · pe +Kxye · uye = gyFe (436b)

Kuxe · uxe +Kuye · uye = 0 (436c)



K6×6
xye 06×6 K6×3

pxe

06×6 K6×6
xye K6×3

pye

K3×6
uxe K3×6

uye 03×3


 ·



u6×1
xe

u6×1
ye

p3×1
e


 =



gxF

6×1
e

gyF
6×1
e

03×1


 (437)

K15×15
e · u15×1

e = f15×1
e (438)
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The simplest Monte Carlo integration is based on
sampling uniformly distributed points (U ,U)

w 1

0
f(x) dx ≈ 1

n

n∑

i=1

F (U ,U) (439)

where

F (x, y) =

{
1; if f(x) ≥ y

0; otherwise
(440)
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The area |D| = π of an unit circle

D =
{
(x, y) : x2 + y2 ≤ 1

}
(441)

is estimated as

π =
x

D
F (x) dx ≈ 4

n

n∑

i=1

F (U ,U) (442)

where

F (x, y) =

{
1; if x2 + y2 ≤ 1

0; otherwise
(443)
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Poisson equation subjected to the Dirichlet boundary
condition

∇2φ(x) = −f(x); ∀x ∈ Ω (444a)

φ(x) = g(x); ∀x ∈ ∂Ω (444b)

It can be solved as an expected value of random paths of
a stochastic process

φ(x) = E
[
g(Wτ ) +

1
2

w τ

0
f(Wt) dt

]
(445)

where t is a terminal time of a random walk

τ = inf {t : Wt ∈ ∂Ω} (446)
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If the Dirichlet boundary condition is g(x) = 0 then

φ(x) = 1
2
E
[w τ

0
f(Wt) dt

]
(447)

We can also estimate

w τ

0
f(Wt) dt ≈

m∑

i=1

fi(Wτ )∆t =
m∑

i=1

fi(Wτ )
h

V (h)
(448)

Let us consider an ordinary differential equation
y′′(x) = −20x subjected to boundary conditions
y(0) = y(1) = 0 (i.e. φ = y, f(x) = 20x, g(x) = 0).
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Data: Read input variables
for i := 1 to imax do

if not boundary(xi) then
S := 0;
for k := 1 to n do

I := 0;
α := i;
while not boundary(xα) do

α := α + 2⌊U(0, 1) + 1
2
⌋ − 1;

I := I + 20f(xα);

S := S + I;

yi :=
h2

2
S
n
;
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Data: Read input variables and BCs
for i := 1 to imax do

for j := 1 to jmax do
if not boundary(xij) then

τn := 0;
for k := 1 to n do

S := 0;
α := i; β := j;
while not boundary(xαβ) do

α := α + 2⌊U(0, 1) + 1
2
⌋ − 1;

β := β + 2⌊U(0, 1) + 1
2
⌋ − 1;

S := S + 1;
τn := τn + S;

φij := −a h2

2
τn
n
;
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The kinetic theory of gases treats gas as a large number
of small molecules. They are in constant (and random)
motion and constantly collide with one another.
Knowing the position and velocity of each particle at
some instant in time it would be possible to know the
exact dynamical state of the whole system. The motion
of particles could then be described by means of classical
mechanics. This would allow for prediction of all future
states of the system.
Due to the large number of molecules a statistical
treatment is possible and necessary.
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■ The gas is compose of small molecules which means
that the average distance separating particles is large
in comparison with their size.

■ Molecules are in constant and random motion
■ The large number of molecules make it possible to

apply statistical treatment
■ Molecules have the same mass and spherical shape
■ Molecules constantly and elastically collide
■ The only interaction is due to collision (no other

forces on one another)
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For N molecules we can think of phase space in which
the coordinates consist of the position xi, velocity vectors
(vi) and the time t. For a three dimensional case we have
6N dimensional phase space (three coordinates + three
velocities times N molecules). The system can be
described by a probability distribution function f that
depends on 6N variables plus time t.
For a single molecule this reduces to 6 dimensional phase
space (x1, x2, x3, v1, v2, v3). This can be treated as a
statistical approach in which a system is represented by
an ensemble of many copies.
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The elementary volume and dV and product dv of
elementary velocities are defined as

dV =
D∏

i=1

dxi, dv =
D∏

i=1

dvi (449)

where D means the physical dimension size. The
distribution f that depends on r,v, t represents the
probability of finding a particular molecule mass with a
given position and velocity per unit phase space.w

RD

w

RD

f(r,v, t) dV dv (450)

The above integrate represents the total mass of
molecules.
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If no collisions occur then the probability of finding a
particular molecule mass with a given position and
velocity at (r,v, t) equals the probability at
(r+ dr,v + dv, t+ dt)

f(r+ dr,v + dv, t+ dt) dV dv − f(r,v, t) dV dv = 0
(451)

If, however, collisions take place then

f(r+ dr,v + dv, t+ dt) dV dv − f(r,v, t) dV dv =

Ω(f) dV dv dt (452)

where Ω is so called collision operator. It takes under
consideration collisions during dt interval.
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We can now expand the left hand side of the previous
equation by means of Taylor’s theorem

f(r+ dr,v + dv, t+ dt) ≈

f(r,v, t) + dr · ∇f + dv · ∇vf +
∂f

∂t
dt (453)

The two above equations give the Boltzmann equation

∂f

∂t
+ v · ∇f +

F

m
· ∇vf = Ω(f) (454)

where v = dr
dt

and mdv
dt

= F.
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The simplification of the complicated collision operator Ω
is needed. It should, however, fulfil at least two
conditions:

■ conservation of collision invariants ϕ

w

RD

ϕΩdv = 0 (455)

where collision invariants are: 1 (obvious), v and
1
2
‖v‖2.

■ tendency to the Maxwell–Boltzmann distribution
(relaxation to local equilibrium)



BGK approximation

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 319

The BGK (Bhatnagar–Gross–Krook) approximation is the
most popular simplification of the collision operator

Ω =
1

τ
(f eq − f) (456)

It expresses relaxation to local equilibrium f eq with the
relaxation time τ . Both conditions are fulfilled.
The Boltzmann equations without external forces F is
now

∂f

∂t
+ v · ∇f =

1

τ
(f eq − f) (457)

Now the equation is linear! More precisely, it is a linear
partial differential equation.
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It is the basic law of the kinetic theory of gases. The
Maxwell–Boltzmann distribution is used for molecules
being not far from thermodynamic equilibrium. Other
effects like quantum effects and relativistic speeds are
neglected. The distribution is

f eq = ρ (2πRT )−
D
2 e−

‖v−u‖2

2RT =

ρ
(√

2πcs

)−D
e
− ‖c‖2

2c2s (458)

This distribution is valid for freely moving molecules
without interacting with one another. The exceptions are
only elastic collisions.
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It is possible to derive the conservation laws from the
Boltzmann equation. Firstly, from the interpretation of
distribution function f it arises the definition of
macroscopic density

ρ(r, t) =
w

RD

f(r,v, t) dv (459)

The average value of a quantity ϕ is defined as

〈ϕ〉 =

r
RD

ϕf dv

r
RD

f dv
=

1

ρ

w

RD

ϕf dv (460)

The integration is carried out over velocity space.
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Multiplying the Boltzmann equation by ϕ and then
integrating over velocity space results in

w

RD

ϕ
∂f

∂t
dv +

w

RD

ϕv · ∇f dv +
w

RD

ϕ
F

m
· ∇vf dv =

w

RD

ϕΩ(f) dv (461)

Taking advantage of the average definition the averaged
Boltzmann equation may now be rewritten as

∂

∂t
(ρ〈ϕ〉) +∇ · (ρ〈ϕv〉)− ρf · 〈∇vϕ〉 = 0 (462)
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Substituting ϕ = 1 into the averaged Boltzmann equation
we have

∂ρ

∂t
+∇ · (ρ〈v〉) = 0 (463)

Comparing the above equation with the mass
conservation equation

∂ρ

∂t
+∇ · (ρu) = 0 (464)

it becomes obvious that the macroscopic velocity u must
be

u = 〈v〉 = 1

ρ

w

RD

v f dv (465)
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Substituting ϕ← v into the averaged Boltzmann
equation we have

∂

∂t
(ρu) +∇ · (ρ〈vv〉)− ρf = 0 (466)

Introducing the microscopic velocity c in the mean
velocity frame

c(r,v, t) = v − u(r, t) (467)

it is possible to define the stress tensor

σ = −ρ〈cc〉 = −
w

RD

ccf dv (468)

Now, the averaged Boltzmann equations becomes the
macroscopic momentum conservation equation

∂

∂t
(ρu) +∇ · (ρuu) = ρf +∇ · σ (469)
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Substituting ϕ = 1
2
‖v‖2 ≡ 1

2
v · v into the averaged

Boltzmann equation we have

e =
1

2
〈‖c‖2〉 = 1

2ρ

w

RD

‖c‖2f dv (470)

Introducing the heat vector q definition

q =
1

2
ρ〈c‖c‖2〉 = 1

2

w

RD

c‖c‖2f dv (471)

we have the macroscopic energy conservation equation

∂

∂t

(
ρ

(
e+

1

2
‖u‖2

))
+∇ ·

(
ρ

(
e+

1

2
‖u‖2

)
u

)
=

ρf · u+∇ · (σ · u− q) (472)
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From the definition of the stress tensor σ = −ρ〈cc〉 and
the internal energy e = 2−1〈c · c〉 we have

tr〈cc〉 = 2e (473)

Additionally, by means of the stress tensor we have
pressure definition p = −D−1 trσ. Combining these
results in

2ρe = pD (474)

The above equation together with the equipartition of
energy for mono-atomic gases gives the equation of state

p = ρRT = ρc2s (475)
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The velocity space v is discretised into a finite set of Q
velocities {vn} where Q = |{vn}|. Discrete distributions
are defined by means of the discretised velocity space

fn(r, t) = Wn f(r,vn, t) (476a)

f eqn (r, t) = Wn f
eq(r,vn, t) (476b)

Wn are the weights of the Gaussian quadrature rule. The
density may now be approximated as

w
RD
f(r,v, t) dv ≈

∑

n

Wnf(r,vn, t) =
∑

n

fn(r, t)

(477)
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Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 328

The discrete distribution function fn satisfies the discrete
Boltzmann equation (with BGK approximation)

∂fn
∂t

+ vn · ∇fn =
1

τ
(f eqn − fn) (478)

The fluid density, velocity and internal energy are now
calculated from the discrete distribution function:

Quantity Continuous discrete
ρ

r
RD f dv

∑
n fn

ρu
r
RD v f dv

∑
n vnfn

ρe 1
2

r
RD ‖v − u‖2f dv 1

2

∑
n ‖vn − u‖2fn
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To recover correct form of the Navier–Stokes equations
the discrete velocity set has to be chosen so the following
quadratures hold exactly

∀
0≤m≤3

w

RD

f eq
m∏

i=0

v dv =
∑

n

f 0
n

m∏

i=0

vn (479)

The above may be reduced to

I =
w

RD

e
− ‖v‖2

2c2s ψ(v) dv ≈
∑

n

Wne
− ‖vn‖2

2c2s ψ(vn) (480)

where

Wn = e
‖vn‖2

2c2s

(√
2πcs

)D
wn (481)

and

wn = π−D
2

D∏

i=1

ωi (482)
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The space discretisation follows the velocity space
discretisation. This means it is discretised into a lattices
(D1Q3, D2Q9, D3Q27 discussed further). From the
quadratures it arises speed of the model

c =
√
3cs (483)

The speed c is used for space discretisation in the
following manner ∆xi = c∆t where ∆t represents time
step (time space discretisation).
One may also introduce dimensionless lattice velocities

en =
vn

c
(484)
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Introducing the substantial derivative symbol
dn
dt

= ∂
∂t
+ vn · ∇ makes it possible to rewrite the

discretised Boltzmann equation

dnfn
dt

=
1

τ
(f eqn − fn) (485)

The substantial derivative is approximated by means of

dnfn(r, t)

dt
=
fn(r+ vn∆t, t+∆t)− fn(r, t)

∆t
+O (∆t)

(486)
From the two above one gets the Lattice Boltzmann
equation

fn(r+ vn∆t, t+∆t)− fn(r, t) =
1

τ̂

(
f 0
n(r, t)− fn(r, t)

)

(487)where dimensionless collision time is τ̂ = τ
∆t
.
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Continuous Boltzmann equation
∂f

∂t
+ v · ∇f = Ω(f) (488)

Continuous Boltzmann equation with BGK approximation

∂f

∂t
+ v · ∇f =

1

τ
(f eq − f) (489)

Discrete Boltzmann equation

∂fn
∂t

+ vn · ∇fn =
1

τ
(f eqn − fn) (490)

Lattice Boltzmann equation

fn(r+ vn∆t, t+∆t)− fn(r, t) =
1

τ̂

(
f 0
n(r, t)− fn(r, t)

)

(491)
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D1Q3 lattice
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wn =

{
2
3 , n = 0;
1
6 , n ∈ {1, 2}.



D2Q9 lattice
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wn =





4
9 , n = 0;
1
9 , n ∈ {1, . . . , 4};
1
36 , n ∈ {5, . . . , 8}.
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wn =





8
27 , n = 0;
2
27 , n ∈ {1, . . . , 6};
1
54 , n ∈ {15, . . . , 26};
1

216 , n ∈ {7, . . . , 14};
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wn =





1
3 , n = 0;
2
18 , n ∈ {1, . . . , 6};
1
36 , n ∈ {7, . . . , 18};



D3Q15 lattice
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wn =





2
9 , n = 0;
1
9 , n ∈ {1, . . . , 6};
1
72 , n ∈ {7, . . . , 14};



Expansion of the Maxwell–Boltzmann
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The Maxwell–Boltzmann distribution can be rearranged

f eq = ρ
(√

2πcs

)−D
e
− ‖v‖2

2c2s e
−

(

‖u‖2

2c2s
−v·u

c2s

)

(492)

Now f eq can be expanded into a Taylor series in terms of
the fluid velocity

f 0 = ρ
(√

2πcs

)−D
e
− ‖v‖2

2c2s

(
1 +

v · u
c2s

+
(v · u)2
2c4s

− ‖u‖
2

2c2s

)

(493)
This is valid for low Mach numbers

f eq = f 0 +O
(‖u‖3

c3s

)
= f 0 +O

(
Ma3

)
(494)



Discrete Maxwell–Boltzmann distribution
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The discrete equilibrium distribution is defined by means
of the discretised velocity space

f 0
n(r, t) = Wnf

0(r,vn, t) (495)

where weights are

Wn = e
‖vn‖2

2c2s

(√
2πcs

)D
wn (496)

Together with the Taylor expansion for low Mach
numbers we have

f 0
n = wnρ

(
1 +

vn · u
c2s

+
(vn · u)2

2c4s
− ‖u‖

2

2c2s

)
(497)
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The Lattice Boltzmann equation

fn(r+ vn∆t, t+∆t) = fn(r, t) +
1

τ̂

(
f 0
n(r, t)− fn(r, t)

)

(498)
The collision step

f tn(r, t+∆t) = fn(r, t) +
1

τ̂

(
f 0
n(r, t)− fn(r, t)

)
(499)

The streaming step

fn(r+ vn∆t, t+∆t) = f tn(r, t+∆t) (500)
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Streaming
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Streaming
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LBM pseudocode
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k := 0;
repeat

R := 0;
ρ :=

∑
n fn;

u := 1
ρ

∑
n vnfn;

Calculate residue;

f 0
n := wnρ

(
1 + vn·u

c2s
+ (vn·u)

2

2c4s
− ‖u‖2

2c2s

)
;

f tn(r, t+∆t) := fn(r, t) +
1
τ̂
(f 0
n(r, t)− fn(r, t));

Apply Bounceback;
fn(r+ vn∆t, t+∆t) := f tn(r, t+∆t);
Apply other BCs;
k := k + 1;

until k < kmax and R > Rmin;
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✶

✷

✸

✹

✺✻

✼ ✽

f t5 = f t7 (501a)

f t2 = f t4 (501b)

f t6 = f t8 (501c)



Chapman–Enskog expansion
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The Navier–Stokes equations can be recovered from the
Lattice Boltzmann equation

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+ µ∇2u (502)

through the Chapman–Enskog expansion (multi-scale
analysis). The expansion of the discrete
Maxwell–Boltzmann distribution is used

f 0
n = wnρ

(
1 +

vn · u
c2s

+
(vn · u)2

2c4s
− ‖u‖

2

2c2s

)
(503)

The first RHS term is responsible for ∇p, the second for
∇2u, the last two terms are related to ρuu.
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Knowing the structure of the discrete Maxwell–Boltzmann
distribution we can now drop the nonlinear terms

f 0
n = wnρ

(
1 +

vn · u
c2s

)
(504)

to recover Stokes equations

∂

∂t
(ρu) = −∇p+ µ∇2u (505)

For both cases the dynamic viscosity is defined as

µ = ρ

(
τ̂ − 1

2

)
c2s∆t (506)



Smoothed Particle Hydrodynamics
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■ the flow domain is divided into a set of particles,
■ the particles are assigned a mass and velocity,
■ Lagrangian description of motion is utilised,
■ properties of a particle are calculated as summations

over all the neighbouring particles (smoothed as an
average),

■ SPH can be classified as meshfree method,
■ takes advantage of the integral representation and

approximation of a function.



Integral representation of a function
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The basis of SPH method is the integral representation of
a function f where δ is the Dirac delta

f(x) =
y

Ω

f(x′) δ(x− x′) dV ′ (507)

−3 −2 −1 0 1 2 3
0

2

4

6

r

h
−
1
w
(r
)

w(r) := σe−r2

h = 0.3

h = 0.2

h = 0.1



Smoothing kernel
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If the Dirac delta is replaced in the integral (exact)
representation of a function

f(x) =
y

Ω

f(x′) δ(x− x′) dV ′ (508)

by a smoothing function (smoothing kernel) W , the
following approximation of a function is obtained

f(x) ≈
y

Ω

f(x′)W (x− x′, h) dV ′ (509)

where h is the smoothing length.



Smoothing kernel – properties
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■ normalisation condition
y

Ω

W (x− x′, h) dV ′ = 1 (510)

■ approaching to Dirac delta property

lim
h→0

W (x− x′, h) = δ(x− x′) (511)

■ symmetry condition – symmetric property

W (x− x′, h) = W (x′ − x, h) (512)



Smoothing kernel – properties

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 354

■ compact support condition

∀‖x−x′‖>khW (x− x′, h) = 0 (513)

■ positivity
W (x− x′, h) ≥ 0 (514)

■ monotonically decreasing W as h increase – decay
property,

■ smoothness (continues and differentiable W ) up to
the second order at least.
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①

②

③



Smoothing kernel
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There are many forms of W . To simplify the notation,
the following substitutions are adopted

W (x− x′, h) = W

(‖x− x′‖
h

)
= W (r) =

w(r)

hD
(515)

where r is the relative distance (related to the smoothing
length h). Therefore, the kernel W decomposes into the
kernel w relative to hD. Thus, w has the same properties
as W , but is dimensionless and simpler to analyse and
write.
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The Gaussian smoothing kernel is given by

w(r) = σe−r
2

, r ∈ [0;∞[ (516)

The value of the normalization coefficient σ, depending
on the dimension of the space D, is

σ = π−D/2 (517)

The Gaussian kernel fulfils the conditions of
normalisation, symmetry, positivity and decay property.
What is more, the Gaussian kernel is also smooth
(continuous with derivatives). The compactness condition
is not met. Approaches to the Dirac delta as h→ 0.
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①

②

③



Super Gaussian kernel
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w(r) =

(
D

2
+ 1− r2

)
σe−r

2

, r ∈ [0;∞[ (518)

where
σ = π−D/2 (519)

Similar to original Gaussian kernel but lacks positivity!



Quadratic kernel

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 360

w(r) = σ

{
(2− r)2, r ∈ [0; 2[,

0, r ∈ [2;∞[
(520)

where σ = 3
16

for D = 1, σ = 3
8π

for D = 2, σ = 15
64π

for
D = 3.
However, w is continues but w′ is only piecewise linear
and w′′ is discontinues!
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x

y

z
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w(r) = σ





1
4
(2− r)3 − (1− r)3, r ∈ [0; 1[,

1
4
(2− r)3, r ∈ [1; 2[,

0, r ∈ [2;∞[

(521)

where σ = 2
3
for D = 1, σ = 10

7π
for D = 2, σ = 1

π
for

D = 3.
However, w, w′ are continues but w′′ is only piecewise
linear.
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w(r) = σ





(
5
2
− r
)4 − 5

(
3
2
− r
)4

+ 10
(
1
2
− r
)4
, r ∈ [0; 1

2
[,(

5
2
− r
)4 − 5

(
3
2
− r
)4
, r ∈ [1

2
; 3
2
[,(

5
2
− r
)4
, r ∈ [3

2
; 5
2
[,

0 r ∈ [5
2
;∞[

(522)
where σ = 1

24
for D = 1, σ = 96

1199π
for D = 2, σ = 1

20π

for D = 3.
This time w, w′ and w′′ are continuous.
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The approximation of a function comes directly from the
integral representation of the function

f(x) ≈
y

Ω

f(x′)W (x− x′, h) dV ′ (523)

when discretising the integral by means of a finite sum

f(x) ≈
∑

j

f(xj)W (x− xj, h)∆|Vj| (524)

Elementary volume is ∆|Vj| = mj

ρj
so

f(x) ≈
∑

j

mj

ρj
f(xj)W (x− xj, h) (525)
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The function f(xj) is related to the particles j inside the
smoothing kernel of the W approximation. Thus, the
approximation

f(x) ≈
∑

j

mj

ρj
f(xj)W (x− xj, h) (526)

is a discrete approximation of the continuous function f
at any point x that belongs to the area Ω. If the value of
the function f is to be calculated at the point xi, then

f(xi) ≈
∑

j

mj

ρj
f(xj)W (xi − xj, h) =

∑

j

mj

ρj
f(xj)Wij

(527)
where Wij means W (xi − xj, h).
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The gradient of the function f relative to the x

coordinates is obtained from the integral representation
of the function

∇f(x) ≈
y

Ω

f(x′)∇W (x− x′, h) dV ′ (528)

By discretising the integral, we have a gradient at xi

∇f(xi) ≈
∑

j

mj

ρj
f(xj)∇iWij (529)

Spatial differentiation is performed on the known form of
the smoothing kernel W .
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∇f(xi) ≈
∑

j

mj

ρj
(f(xj)− f(xi))∇iWij (530)

gives exact 0 for constant f .

∇f(xi) ≈ ρi
∑

j

mj

(
f(xi)

ρ2i
+
f(xj)

ρ2j

)
∇iWij (531)

is symmetric for i and j.
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The divergence approximation of the vector f is similar to
the gradient approximation. This is because the
divergence operator is computed relative to the x

coordinates

∇ · f(x) ≈
y

Ω

f(x′) · ∇W (x− x′, h) dV ′ (532)

The simplest approximation of divergence is obtained by
discretising the above integral

∇ · f(xi) ≈
∑

j

mj

ρj
f(xj) · ∇iWij (533)
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∇ · f(xi) ≈
∑

j

mj

ρj
(f(xj)− f(xi)) · ∇iWij (534)

gives exact 0 for constant f .

∇ · f(xi) ≈ ρi
∑

j

mj

(
f(xi)

ρ2i
+

f(xj)

ρ2j

)
· ∇iWij (535)

is symmetric for i and j.
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The Laplacian approximation of a scalar can be
represented by the same method as in the case of the
gradient

∇2f(x) ≈
y

Ω

f(x′)∇2W (x− x′, h) dV ′ (536)

The simplest approximation of the Laplacian is obtained
by discretizing the above integral

∇2f(xi) ≈
∑

j

mj

ρj
f(xj)∇2

iWij (537)
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ν∇2ui =
µ

ρ
∇ · ∇ui ≈ µ

∑

j

mj

ρiρj
uj∇2

iWij (538)

ν∇2ui =
µ

ρ
∇ · ∇ui ≈ −µ

∑

j

mj

ρiρj
(ui − uj)∇2

iWij

(539)

∇ · (νi∇ui) =
1

ρ
∇ · (µi∇ui)

≈
∑

j

(µi + µj)mj uij

ρiρj

xij · ∇iWij

r2ij + 0.01h2
(540)
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The mass conservation equation

dρ

dt
= −ρ∇ · u (541)

is approximated using the velocity divergence
approximation

dρi
dt

= −ρi
∑

j

mj

ρj
uj · ∇iWij (542)

In most cases, a function approximation is used, assuming
f = ρ. Therefore

ρi =
∑

j

mjWij (543)
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The momentum conservation equation in its most general
form, taking into account the mass forces from gravity g,
is written as

du

dt
= g +

1

ρ
∇ · σ (544)

The approximation of this equation in the SPH method
can be obtained by means of the divergence
approximation

dui
dt

= gi +
1

ρi

∑

j

mj

ρj
σj · ∇iWij (545)
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In the approximation of the Navier–Stokes equation in the
SPH method, particular types of forces are distinguished:
forces from the pressure gradient fpi and forces related to
viscosity fµi. The equation of motion then has the
following form

dui
dt

= gi − fpi + fµi (546)

Assuming the following notation for each type of force
together with the gravity acceleration g in the form
fi = gi − fpi + fµi, the equation of motion can be
presented in a form that occurs in other Lagrangian
methods

dui
dt

= fi (547)
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The determination of pressure in the SPH method
involves the use of an artificial equation of state in which
pressure is explicitly related to density. One possible form
for such an equation could be

p = p0 +B

((
ρ

ρ0

)γ
− 1

)
(548)

In this case, it is referred to as a weakly compressible
fluid. The γ exponent is usually taken as γ ≈ 7, and ρ0 is
the reference fluid density. Often, due to simplicity,
p0 = 0 is assumed.



SPH pseudocode

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 376

t := 0;
foreach i do

Generate xi(0), ui(0), ρi(0), hi(0);

foreach i do
f0i := fi := gi − fpi + fµi;

repeat
foreach i do

Find Ni;
Calculate ρi, pi;

foreach i do
Calculate fpi, fµi;

foreach i do
Calculate new xi, ui;
Apply BCs;

t := t+∆t;

until t < tmax;
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■ Irregularity
■ Unsteadiness
■ 3-D in terms of space and vortex structures
■ Diffusivity
■ Dissipation
■ Energy cascade
■ Need for constant energy supply

U L

LK
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Kolmogorov scales are the smallest vorticity scales where
nearly the whole dissipation takes place. There are three

scales, for velocity UK = (νε)1/4, length LK = (ν3ε−1)
1/4

and time tK = (νε−1)
1/2

.
The Reynolds number for these scales

ReK =
UKLK
ν

=
(νε)1/4 (ν3ε−1)

1/4

ν
= 1 (549)

It means that at this level the inertial forces are of the
same order as the viscous forces.
The dissipation intensity of the kinetic energy of
fluctuation can also be estimated in terms of a length
scale for large scale motion (vorticity) as
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ε ∼ U
2

t
=
U2

L/U =
U3

L (550)

It means that the energy U2 of the large scales is
dissipated proportionally to time L/U . Substituting the
dissipation in equation for LK with that for ε we have

LK =

(
ν3L
U3

)1/4

(551)

Introducing a Reynolds number for large scales ReL = UL
ν

it is possible to find a relation for the ratio of length
scales by means of this Reynolds number in the form of

L
LK
∼
( U3

ν3L

)1/4

L =

(UL
ν

)3/4

= Re
3/4
L (552)
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The ratio of length scales, as a function of the Reynolds
number is

L
LK
∼ Re

3/4
L (553)

A three dimensional mesh (number of nodes) is then
proportional to ( L

LK

)3

∼ Re
9/4
L (554)

If, for instance, Re = 104 then

( L
LK

)3

∼ 109 (555)
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A minimal number of time steps ∆t ≤ LK/U of a
simulation time t can be estimated by means of LK

t

∆t
=

t

LK/U
=

t

L/URe
3/4 (556)

The necessary number of operations equals a number of
nodes times a number of time steps

( L
LK

)3
t

∆t
=

t

L/URe
3 (557)
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The computation time equals a number of necessary
operations times a number of evaluations per operation
(e.g. 103) over a CPU performance expressed in e.g.
TFLOPS = 1012 s−1

103

1012

( L
LK

)3
t

∆t
=

103

1012
t

L/URe
3 s (558)

For instance, if the time of a numerical simulation is
t = 10L/U then the following CPU time is estimated

103

1012

( L
LK

)3
t

∆t
=

104 Re3

1012
s (559)



Calculation time

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 384

Estimated 1 teraFLOPS CPU time is

103

1012

( L
LK

)3
t

∆t
=

104 Re3

1012
s (560)

for Re = 103 it takes 10 second,
for Re = 104 it takes 3 hours,
for Re = 105 it takes 115 days,
for Re = 106 it takes 327 years...

only for a short period of simulated time

t = 10L/U (561)
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CPU @ TFLOPS†

i3 M380 2.53 GHz x 2(4) 0.017
i7 930 2.80 GHz x 4(8) 0.034
i7 870 2.93 GHz x 4(8) 0.041
i7 2670QM 2.20 GHz x 4(8) 0.064
i5 1035G1 1.00 GHz x 4(8) 0.132
i7 10700T 2.00 GHz x 8(16) 0.257
i7 6850K 3.60 GHz x 6(12) 0.284
2 x Xeon Gold 5120 2.20 GHz x 28 0.673

†Intel® LINPACK Benchmark for Linux
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■ Reynolds experiment (Reynolds number Re)

Re =
uL

ν
(562)

■ Taylor instability or vortices (Taylor number Ta)

Ta =
ωR1

ν2
(R2 −R1)

3 (563)

■ Rayleigh-Bénard instability (Rayleigh number Ra)

Ra =
gβh3

να
(Tb − Tu) (564)



Turbulence glossary

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods 387

■ DNS – Direct Numerical Simulation
■ LES – Large Eddy Simulation
■ RANS – Reynolds Averaged Navier–Stokes
■ RAS – Reynolds Averaged Simulation
■ URANS – Unsteady Reynolds Averaged Navier–Stokes
■ URAS – Unsteady Reynolds Averaged Simulation
■ DES – Detached Eddy Simulation
■ SST – Shear Stress Transport
■ RNG – ReNormalisation Group
■ EARSM – Explicit Algebraic Reynolds Stress Models
■ RST – Reynolds Stress Transport
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■ DNS
■ LES
■ DES
■ URAS/RAS

◆ Models based on the Boussinesq hypothesis
(0-eq, 1-eq, 2-eq models)

◆ Models which do not take advantage of the
Boussinesq hypothesis

■ RST models
■ EARSM
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Decomposition

f(r, t) = f̄(r) + f ′(r, t) (565)

■ Realisations f̄(r) = lim
N→∞

1
N

N∑
i=1

fi(r, t)

■ Time f̄τ (r) = lim
τ→∞

1
τ

τr
0

f(r, t) dt

■ Time f̄t(r, t) =
1
∆t

t+∆tr
t

f(r, t) dt

■ Spatial f̄V (r, t) =
1
|V |

t
V
f(r, t) dV
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In practice it is usually enough to know what the average
velocity is (not the fluctuation). The velocity vector field
is be decomposed into average and fluctuation
components u = ū+ u′. The time of averaging ∆t
should be chosen to be greater than the fluctuation range
and smaller than the function that is going to be
averaged. The averaging process of the Navier–Stokes
equation introduces a number of new unknown functions.
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■ Averaged mass conservation equation

∇ · ū = 0 (566)

■ Averaged Navier–Stokes equation

∂ū

∂t
+∇ · (ūū) = f̄ −∇p̄k + ν∇2ū−∇ · u′u′ (567)

Reynolds stress tensor R = −u′u′ and the total
stress tensor σ̄ = −p̄δ+ 2µD̄+ ρR makes it possible
to obtain the averaged momentum equation

ρ
dū

dt
= ρf̄ +∇ · σ̄ (568)
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■ Averaged Fourier–Kirchhoff equation

cv

(
∂(ρT̄ )

∂t
+∇ ·

(
ρT̄ ū

))
=

2µD̄2 +∇ · (λ∇T̄ )− cv∇ ·
(
ρT ′u′

)
+ ρε (569)

The averaging process of the Navier–Stokes equation
introduces six unknown (because of the symmetry)
components of the Reynolds stress tensor. The averaged
Fourier–Kirchhoff equations gives a further three of the
vector T ′u′.
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It is important to realise that the closure of system of the
mass conservation and Navier–Stokes equations has been
lost. Further modelling is required.
Formulating additional relationships for unknown
functions to achieve closure of equations is called
turbulence modelling. Any additional closure equation
must fulfil a few basic criteria such as coordinate
invariance. This is fulfilled by proper tensor formulation
of the exact and modelled equations. Another criterion is
called realisability meaning that a solution must be
physical.
Practically, however, it is difficult to achieve all these
requirements. This is because some parts of the exact
transport equations are modelled or even dropped.
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There are two main approaches to achieve closure. The
models may be divided between those which assume the
eddy viscosity hypothesis and those which do not

■ Models not assuming the eddy viscosity hypothesis

◆ Reynolds stress transport equation
◆ Algebraic stress tensor models

■ Boussinesq hypothesis assumed
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∂R

∂t
+∇ · (ūR) = −∇ū · (RT +R)+

∇ ·
((
Ck2ε−1 + ν

)
∇R

)
−Π+ 2

3
εδ (570)

The left hand side represents unsteadiness and
convection. On the right hand side the two first terms
represent production. The two terms under divergence
are responsible for diffusion.
The right hand side fourth term is the second unknown
tensor Π need to be modelled. The last right hand side
term 2

3
ρεδ is the so called dissipation tensor for isotropic

turbulence.
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Without using the eddy viscosity hypothesis two transport
equations for k and a second variable are formulated.
Instead of the linear Boussinesq hypothesis – algebraic,
non-linear relationships are formulated between the stress
anisotropy tensor a and the average flow properties. The
tensor a is related to the Reynolds stress tensor by:

a =
R

k
− 2

3
δ (571)

Typically, relationships depend on average strain rate and
spin tensors

a = f(D̄, Ω̄) (572)
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The turbulence stresses is related to the mean flow
Rxy = µt

∂Ūx

∂y
. This linear relationship is

R = a0δ+ 2νtD̄ (573)

The trace of this relations allows to find a constant
−2k = 3a0 which gives

R = −2
3
kδ+ 2νtD̄ (574)

The Reynolds equation becomes

∂u

∂t
+∇ · (ūū) = f̄ −∇pe +∇ ·

(
2νeD̄

)
(575)

where νe = νt + ν, pe = p̄k +
2
3
k.
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The eddy diffusivity hypothesis is introduced by direct
analogy with the eddy viscosity hypothesis. It reduces the
number of unknown functions in the Fourier–Kirchhoff
equation −cvρT ′u′ = λt∇T̄ .
The Fourier–Kirchhoff equation then becomes

cv

(
∂(ρT̄ )

∂t
+∇ ·

(
ρT̄ ū

))
= 2µD̄2 +∇ ·

(
λe∇T̄

)
+ ρε

(576)
where λt can be estimated by means of the turbulent
Prandtl number λt =

µtcv
Prt

. Effective conductivity is
introduced by means of the definition
λe = λt + λ = µtcv

Prt
+ λ.
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Calculating the trace of the Reynolds stress transport
equation

∂R

∂t
+∇ · (ūR) = −∇ū · (RT +R)+

∇ ·
((
Ck2ε−1 + ν

)
∇R

)
−Π+

2

3
εδ (577)

results in kinetic energy k transport equation which is
used in the preceding one- and two-equation turbulence
models trR = −2k for νt = Cµk

2ε−1.
The traces of Π by definition trΠ = 0 and the transport
equation for k takes the following form

∂k

∂t
+∇ · (ρkū) = ∇ū : R+∇ ·

((
νtσ

−1
k + ν

)
∇k
)
− ε
(578)
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Zero k and ε are assumed. It allows the Boussinesq
equation to be reduced to R = 2νtD̄.
Eddy viscosity µt is modelled by means of the
Prandtl–Kolmogorov hypothesis. This hypothesis comes
directly from dimensionless analysis νt = cUL.
The velocity scale U is often approximated by means of
the maximal velocity |ū|max and length scale L by the
volume of the flow domain |V | by U ∼ |ū|max,
L ∼ 3

√
|V |.

The Boussinesq hypothesis takes the following form

R = C 3
√
|V ||ū|maxD̄ (579)

No new unknown functions! However, zero-equation
models are not as accurate but they are robust (first
approximation for more complex models).
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One transport equation for k is introduced

dk

dt
= ∇ū : R+∇ ·

((
νtσ

−1
k + ν

)
∇k
)
− ε (580)

where ‘production’ ∇ū : R = 2νtD̄
2. According to

Prandtl–Kolmogorov hypothesis U =
√
k and ε ∼ U3

L
so

ε = k3/2L−1. Finally, the k transport equation arrives

dk

dt
= 2νtD̄

2 +∇ ·
((
νtσ

−1
k + ν

)
∇k
)
− k3/2L−1 (581)

where eddy viscosity is estimated as νt =
√
kL by means

of another Prandtl hypothesis.
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Two additional equations have to be formulated. The
first, for the kinetic energy k, comes from the Reynolds
stress transport equation

dk

dt
= 2νtD̄

2 +∇ ·
((

νt
σk

+ ν

)
∇k
)
− ε (582)

and that for the dissipation ε is analogous to it

dε

dt
= Cε1

ε

k
2νtD̄

2+∇·
((

νt
σε

+ ν

)
∇ε
)
−Cε2

ε2

k
(583)

Both of them are transport equations for a scalar
function. The eddy viscosity depends on both k and ε and
is postulated, as previously, to have the form νt = Cν

k2

ε
.
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The five constants in equations are empirical, that is,
should be deduced from experiment for a specific
geometry. This ‘standard’ set is given by

σk = 1, σε = 1.3,

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92 (584)
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The turbulent frequency ω is proportional to the ratio of
dissipation and kinetic energy ω ∼ ε

k
and using the

constant Cµ, they are then related by ε = Cµkω. The
eddy viscosity takes the form νt =

k
ω
. The two transport

equations take the following form

dk

dt
= 2νtD̄

2 +∇ ·
((

νt
σk1

+ ν

)
∇k
)
− Cµkω (585)

dω

dt
= α1

ω

k
2νtD̄

2+∇·
((

νt
σω1

+ ν

)
∇ω
)
−β1ω2 (586)

This ‘standard’ set is constant is σk1 = 2, σω1 = 2,
Cµ = 0.09, α1 =

5
9
, β1 =

3
40
.
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The shear stress model combines the k-ω model near the
wall with the k-ε far from it. Firstly, the k-ε model has to
be transformed to the k-ω formulation by means of
relation ε = Cµkω. This results in

dk

dt
= 2νtD̄

2 +∇ ·
((

νt
σk2

+ ν

)
∇k
)
− Cµkω (587)

dω

dt
= α2

ω

k
2νtD̄

2 +∇ ·
((

νt
σω2

+ ν

)
∇ω
)
−

β2ω
2 + 2

ω

σω2
∇k · ∇ω (588)

Additional cross-diffusion terms now appear. The
‘standard’ set of constants is different from that for the
original k-ε σk2 = 1, σω2 = 0.856, Cµ = 0.09, α2 = 0.44,
β2 = 0.0828.
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Secondly, the equations for the k-ω model are multiplied
by a blending function F1 and the transformed k-ε
equations by (1− F1). The equations then are added.
This results in

dk

dt
= 2νtD̄

2 +∇ ·
((

νt
σk3

+ ν

)
∇k
)
− Cµkω (589)

dω

dt
= α3

ω

k
2νtD̄

2 +∇ ·
((

νt
σω3

+ ν

)
∇ω
)
−

β3ω
2 + (1− F1)

2

ω
σω3∇k · ∇ω (590)

Constants marked with the subscript ‘3’, namely σk3, σω3,
α3, β3 are linear combinations of constants from the
component models C3 = F1C1 + (1− F1)C2.
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The additional variable transport equation may be added
to the closed system after averaging, as

∂f̄

∂t
+∇ ·

(
f̄ ū
)
= −∇ ·

(
f ′u′

)
−∇ · k̄+ S̄f (591)

The first term of the right hand side can be modelled by
means of the eddy diffusivity hypothesis and the turbulent
diffusivity coefficient Γ, −f ′u′ = Γ∇f̄ and the additional
transport equation takes the form

∂f̄

∂t
+∇ ·

(
f̄ ū
)
= ∇ ·

((
νt
Sct

+D

)
∇f̄
)
+ S̄f (592)

where the turbulent diffusivity coefficient Γ may be
represented as a function of the eddy viscosity and the
turbulent Schmidt number Γ = νt

Sct
where Sc = ν

D
.
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Fric-
tion velocity Uτ =

√

τ̄0
ρ

Characteristic length l = ν
Uτ

dimensionless distance y+ = y
l

dimensionless velocity U+ = Ūx

Uτ

■ y+ < 11 laminar sub-
layer

■ 5 < y+ < 30 buffer re-
gion

■ 11 < y+ < 250 tur-
bulent sublayer (log-law
layer)

■ y+ < 250 inner turbu-
lent boundary layer

■ y+ > 250 outer turbu-
lent boundary layer
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Filtration of the N–S equations is associated with LES
method. Small scales are removed by means of filtering

f̄(r, t) =
y

R3

+∞w

−∞

f(r ′′, t′′)G(r− r ′′, t− t′′) dt′′ dV ′′

(593)
where G is a filter. Typically it is a product

G(r− r ′′, t− t′′) = Gt(t− t′′)
3∏

i=1

Gvi(xi − x′′i ) (594)

For Gt(t− t′′) = τ−1H(t′′) and Gvi(xi− x′′i ) = δ(xi− x′′i )
we have time average f̄τ (r) = lim

τ→∞

1
τ

τr
0

f(r, t) dt.
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Filtration of the N–S equations results in

∂ū

∂t
+∇ · (ūū) = f̄ −∇pk +∇ ·

(
2νD̄+ τ

)
(595)

where Leonard’s decomposition τ = −L−C−R

L = ūū− ūū, C = ūu′ + u′ū, R = u′u′ (596)

represents the cross stress tensor C (interactions between
large and small scales), Reynolds subgrid tensor R
(interactions among subgrid scales) and Leonard tensor L
(interactions among the large scales).
For L = 0 and C = 0 we have Reynolds equations.
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Subgrid stress tensor need to be modelled

τ = ūū− uu (597)

Boussinesq like hypothesis assumed

τ = −2
3
ksgsδ+ 2νsgsD̄ (598)

Filtered Navier–Stokes equation

∂ū

∂t
+∇ · (ūū) = −∇pe +∇ ·

(
2(ν + νsgs)D̄

)
(599)
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Most popular SGS LES models

■ zero-equation

◆ Smagorinsky
◆ WALE (Wall-Adapting Local Eddy-viscosity)

■ one-equation ksgs
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Smagorinsky – the simplest model. The SGS eddy
viscosity is modelled as

νsgs = Ck∆
√
ksgs (600)

where ∆ is the filter width.
The SGS kinetic energy is modelled by means of an
algebraic equation – zero-equation model

ksgs = CkC
−1
ε ∆2D̄2 (601)

Finally, the SGS νt is

νsgs = CS∆
2
√

2D̄2 (602)
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WALE (Wall-Adapting Local Eddy-viscosity)
The SGS kinetic energy is modelled by means of an
algebraic equation – zero-equation model

ksgs =
C4
w∆

2

C2
k

(
S̄:S̄
)3

((
D̄:D̄

) 5
2 +

(
S̄:S̄
) 5

4

)2 (603)

where

S̄ = 1
2

(
∇u · ∇u+ (∇u)T · (∇u)T

)
(604)
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One-equation ksgs – one transport (differential) equation
is introduced by direct analogy with the one-equation
RAS k transport equation

dksgs
dt

= 2νsgsD̄
2 +∇ · ((ν + νsgs)∇ksgs)− Cεk

3
2
sgs∆

−1

(605)
The reduced version of the above

2νsgsD̄
2 = −Cεk

3
2
sgs∆

−1 (606)

leads to Smagorinsky model.
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DES is a combination of LES and RAS. RAS is used near
the wall and LES is used when the mesh if fine enough
(far from the wall). DES modification is introduce by
means of DES length scale

d̃ = min (CDES∆,L) (607)

in the k transport equation

dk

dt
= 2νtD̄

2 +∇ ·
((
ν + νtσ

−1
k

)
∇k
)
− Cεk

3
2 d̃−1 (608)
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