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Descriptions

Fluid motion may be described by three types of Contents
. . Description of
mathematical models according to the observed scales: il il ol
scales
" I inti Finite Differen
B Microscopic description (MD) Finite Difference
B Mesoscopic description i Vel
Method
‘ k|net|c theory Finite Element
Method
‘ LD Monte Carlo Method
Lattice Boltzmann
¢ BD
Method
‘ DPD Smoothed Particle
‘ SPH Hydrodynamics
Turbulence modelling
¢ L|LBM

References

B Macroscopic description — continuum
(FDM, FEM, FVM, LBM)

K. Tesch: Numerical Methods




Microscopic description — MD

Molecular mechanics takes advantage of classical
mechanics equations to model molecular systems whereas
molecular dynamics simulates movements of atoms in the
context of N-body simulation. The motion of molecules is
determined by solving the Newtons's equation of motion

N

d?r,

The force exerted on a molecule consists of the external
force such as gravity G; and the intermolecular force
f;; = —VV usually described by mans of the
Lennard—Jones potential
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Microscopic description — MD

~—

o\ 12 N
V= de () - () 2)
Iz (il
In the above equations ||r|| is the distance between
particles, ¢ — the depth of the potential well that
characterises the interaction strength and o — the finite
distance describing the interaction range.
Further, the ensemble average makes it possible to obtain
a macroscopic quantity from the corresponding
microscopic variable. The disadvantage of molecular
dynamics method is that the total number of molecules
even in small volume is too large — proportional to 10%°.
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Microscopic description — MD

12 6 Contents
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Molecular dynamics pseudocode

t = 0;
Calculate initial molecule position r;
while not the end of calculations do

a . — m_lfij;

r:=r-+vAt+ %aAt2;

t:=1t+ At
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Molecular dynamics - example
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Mesoscopic description — LBM

The key concept is the probability distribution function
fN) in the phase space. The phase space is constituted
of 3N spatial coordinates qi,...,qy and 3N momenta
Pi....,Pn. The probability distribution function f)
allows to express the probability to find a particle within
the infinitesimal phase space

(d1,91 + dq) x ... x (qn, gy + dq) X
(P1,P1 + dp) X ... X (PN, PN + dp) (4)

The total number of molecules within the infinitesimal
phase space is then
FN (au, - -

AN, P1,- -+, Pn) dg” dp” (5)
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Mesoscopic description — LBM

The time evolution of the probability distribution function
W) follows the Liouville equation

™ o™ +i (8f<N> dp,

dt ot

ofWN)  dq;
Lo dany

1=1

This means that the distribution function is constant
along any trajectory in phase space.
The reduced probability distribution function is defined as

Fs(qla"'7q87p17°"7p8):

f f Y qy,....,an,P1,...,py) dg¥ 5 dpN e
R3(N—s) R3(N—s)
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Mesoscopic description — LBM

The above function is called the s-particle probability S

distribution function. A chain of evolution equations for Description of
fluid/solid at different

Fs for 1 < s < N is derived and called BBGKY hierarchy. scales

This means that the s equation for the s-particle inite Difference
distributions contains s 4 1 distribution. That hierarchy P Yl
may be truncated. Truncating it at the first order results Finite Element
in Boltzmann equation rethes

af Monte Carlo Method

a + v - Vf — Q(f) (6) k/?;ELC:dBdtzmann

for the probability distribution function

Smoothed Particle
Hydrodynamics

Turbulence modelling
f(I', v, t) — mNFl (q17 P1, t) (7) References
for binary collisions with uncorrelated velocities before
that collision.
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Mesoscopic description — DPD

. Tesch; Numerical Methods
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Mesoscopic description — DPD

The DPD (Dissipative Particle Dynamics) method
simulate only a reduced number of degrees of freedom
(coarse-grained models). The motion of particles is
determined by solving the Newtons's equation of motion

d2I'z'

dt?

m

N
C D R
=G, + ) (£ +£] +1)
=1
where the interaction forces are the sum of

B f conservative or repulsion forces
m f dissipative forces
m {7 random force

K. Tesch: Numerical Methods

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References




Mesoscopic description — DPD

B Dissipative forces Contents

Description of
fluid/solid at different

D — — > o o ° o . » o . Scales
fz] o YWD (I.'LJ VZJ) rzj (8) Finite Difference
Method

Finite Volume
Method

B Random force Sl e
Method

Monte Carlo Method

n

fR = OowWprX; N (9) Lattice Boltzmann
v Rrtij At Method
Smoothed Particle
Hydrodynamics

Turbulence modelling

B Conservative forces

References

fz? — Oé(,de'ij (10)

wp = w% and 0? = 2vkpT
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Mesoscopic description — LD

The Langevin dynamics equation of motion Contents

Description of
fluid/solid at different

dZX_ . scales
v __eC . R Finite Differen
m dt2 fll/ ,yV,L —|_ fz (11) MetheOd Srenee

Finite Volume
Method

where

Finite Element
Method

B Dissipative forces —yv; Vorte Carlo Method
. Ra ndom fOrce f,LR Lattice Boltzmann

. Method
B Conservative forces

Smoothed Particle
Hydrodynamics

fC — _vv (12) Turbulence modelling
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Mesoscopic description — BD

The Brownian dynamics equation of motion

()

or

where

B Random force £
B Conservative forces
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Mesoscopic description — SPH

The Smoothed Particle Hydrodynamics equation of CeiEe
. Description of
motion fluid /solid at different
dui scales
—o. —f . +f 16 Finite Difference
dt Si pi T pi ( ) Method
Finite Volume
Where Method
Finite Element
B Body force g; Method
B Pressure gradient forces f, Monte Carlo Method

Lattice Boltzmann
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Macroscopic description — conservation

equations
Conservation of mass Contents
Description of
dp quiId/soIid at different
Sscales
E + pV -u=20 (17) Finite Difference
Method
. _ Finite Volume
Conservation of linear momentum M
Finite Element
Method
d_u — . Monte Carlo Method
0 pf +V.o 18
dt Lattice Boltzmann
Method
Decomposition of stress tensor oo rartcle
Turbulence modelling
0O = _p6 —I_ T (19) References
Another form of conservation of linear momentum
du
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Macroscopic description — energy equations

. Contents
Energy Equatlon Description of
. ) de fluid /solid at different
KlnetIC ’Od—tk :pfu—|—V (G'u) —Vq scales
Finite Difference
de. __ Op . . o . Method
TOtal ’0 dt Ot + v (T u) v q- Finite Volume
Method
Mechanical pcﬁ—? =V-.-(oc-u)—0o:D Finite Element
Method
Internal IO% = 0 . D - v . q Monte Carlo Method
dh d Lattice Boltzmann
Entha|py IOE = T D — v - q -+ d_zt? Method
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Macroscopic description — general transport

equations
a(pf) Conte-nts.
at _|_ v | (puf) — Sf o v . k (21) EE;C;;zT;jnafZifferent
scales
Left hand side represents transient and convection effects. Finite Difference
It expresses the rate of change pSL = % + V - (puf). Finite Volume

Method

Right hand side represents sources (positive and negative)
and fluxes (transport due to other mechanism than
convection).

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

B mass conservation equation Smoothed Particle
Hydrodynamics
f " 1’ Sf " O’ k T O Turbulence modelling

B linear momentum conservation equation References
Jfu S pf, k< —0

B energy conservation equation
Ji=eg, Sp=pt-u,ki=q—0-u
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Macroscopic description — laws of
thermodynamics

Second law of thermodynamics Contents

Description of
fluid/solid at different

dS scales
E > V T (22) Ili/llr;&eo([j)lfference

Finite Volume
Method

Entropy balance

Finite Element
Method

Monte Carlo Method

ds ) q
IO— — T e (23) Lattice Boltzmann
dt T T Method
Smoothed Particle

First law of thermodynamics Hydrodynamics

Turbulence modelling

de References
pE:T:D—pV-u—V-q (24)
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Macroscopic description — constitutive equations

B Mechanical (rheological) constitutive equations [C)°“te_“t5_ f
. escription o
| Eq uations Of state fluid /solid at different
scales
B Fluxes Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling
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Macroscopic description — mechanical
constitutive equations

B Newtonian fluids T = 2uD Contents
. . Description of
B Non-Newtonian fluids quifI/sind at different
¢ Generalised Newtonian fluids T = 2u(v)D s D Tarene:
‘ lefel’entla| type ﬂL“d T = f?(lAl7 A_Q, .. ) Finite Volume
Method
dA au . inite Elemen
Ai+1 — - ‘|‘A@ e ‘|‘VUAZ, 1 — 1,2,... Ili/letthogI '
dt or

Monte Carlo Method

¢ Integral type fluids

Lattice Boltzmann
Method

t
T = f f(t — T) (6 — Ct(T)) d’]' Smoothed Particle

Hydrodynamics

Turbulence modelling

References

¢ Rate type fluids T = f (T, D, D)
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Generalised Newtonian fluids

) Szilman ) Generalised Herschel
T = TOT + (k)™ T = 7'0 + EY"™ 4 foo?y Contents
= n—1
M% = 77—0 + km |7‘%_% | + kb RIES Description of
fluid/solid at different

1

scales

Finite Difference

Method

Finite Volume
Herschel-Bu Luo-Kuang Method

S|=

Generallsed Casson

; - TO 1(k7) T=To+ k’V T= TO + k\/7 + Hoo? Finite Element
n n—1 _
,u% = (ITTOI) + kw = |,y| + k| M= |W| + /—l | + Moo Method
Monte Carlo Method
Lattice Boltzmann
n:=2 n:=1 n:=1 70 : =0 Method
Casson Bingham Ostwald-de Waele amcj)ot;ed Pe'nrticle
VT = /To +Vky T—To+k7 T =ky" YRS
= T0. — — n—1 k:=0, H
VI A1 T Vk W= |W| + k = kl|v| et Turbulence modelling
7o = References
70 := 20 n:=1
70 := 0
Newton
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Macroscopic description — equations of state

B Fundamental equation of state e = f(s,p™') Coneiiis

Description of
fluid/solid at different

d@ dS p dp scales
- — T_ - 25 Finite Difference
dt dt + ,02 dt ( ) Method

B Thermal equation of state p = f(T,p~ 1) Method

Finite Element
Method

p — pRT (26) Monte Carlo Method

Lattice Boltzmann
Method

Finite Volume

m Caloric equation of state e = f(T,p™ ')

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

de—cvdT—|—< g—; — ) dp~! (27)
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Macroscopic description — fluxes

General form w = —T - V¢ due to assumption Contents

Description of

w = f(Vy). More precisely w depends only on ¢ and fluid solid at different

scales

VQO. Finite Difference

Method
. FOU I’Ier'S |aW Finite Volume

Method
q. — _A ) VT (28) Finite Element
B Fick's law | . | BiEHios
j’l, — _pD’Lj . Vg’l, (29) Monte Carlo Method

Lattice Boltzmann

B Darcy's law Method
u = _M_lK . vp (30) Smoothed Particle

Hydrodynamics

Turbulence modelling

In the case of isotropy T = o & and References

w=—abd -Vp=—aVyp (31)
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Macroscopic description — general transport
equations

General transport equations Contents

Description of
fluid/solid at different

a scales
% _|_ v . (puf) — Sf J— v . k (32) Ili/';r;jctheo([j)ifference

Finite Volume
Method

Fluxes

Finite Element

k=-108-Vf=-TIV{f (33) Method
Monte Carlo Method
In the case of isotropy the general transport equations Lot Balzzan
etho
becomeS Smoothed Particle

Hydrodynamics

a(gtf) v (puf) _ Sf v (va) (34) Turbulence modelling

References
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Macroscopic description

General form of the Navier—Stokes equation for Contents
. . Description of
NeWtorHan ﬂU|dS fluid /solid at different
scales
du Finite Difference
- . . D Method
p dt T pf Vp + v (Q/LD ) (35) Finite Volume
Method
N inCOm preSSible ﬂOW Ili/ilnithe Element
. t
B creeping flow =
. |nV|SC|d ﬂOW Monte Carlo Method
. . . Lattice Boltzmann
B Boussinesq approximation Method
B Oseen approximation Smoothed Particle
B filtration Hydrodynamics
B one-dimensional flows Turbulence modelling
B heat transfer References
B surface tension

K. Tesch: Numerical Methods




Macroscopic description

— incompressible fluid (p = const)

d
pd—?zpf—vp+v-(2uD)
(= const
d
p—u = pf — Vp + uViu
dt
p = pv q
u p 5
— =1 -V= V
T p—l—y u
Pr=,+8g-r
d
d—ltl:—VkaruVQu
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Macroscopic description

— creeping flow Contents

Description of
fluid/solid at different

au scales
pa — pf — Vp + V . (QILLD) (40) IIi/||r(;|ctheo([j)|fFerence
Finite Volume
Method

steady state

Finite Element

vp = v . (2/’6:[)) (41) Method
Monte Carlo Method
2D creeping flow Latice Boltzmann
v4¢ — O (42) Smoothed Particle

Hydrodynamics

Turbulence modelling
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Macroscopic description

— inviscid flow (u = 0) Contents

Description of
fluid/solid at different

d scales
p_u _— pf _ Vp (43) Finite Difference

Method

Finite Volume
Method

— potential flows (V xu=0 <= u

I
<
&

Finite Element
Method

(44) Monte Carlo Method

Lattice Boltzmann
Method

: Smoothed Particle
Hydrodynamics

T e Turbulence modelling

e
T T s eSS

References
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e
B i
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Macroscopic description

— Boussinesq approximation Contents

Description of
fluid/solid at different
scales

pf = pg = Pog + (/0 — ,00) g (45) it (D

Method

10 - /OO — _poﬂ(T — TO) (46) Finite Volume

Method
du Finite Element

po— = pog (1 =BT —Ty)) —Vp+V-(2uD) (47) Method

dt Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References

K. Tesch: Numerical Methods




Macroscopic description

— Oseen approximation (linearisation) Contents

Description of
fluid/solid at different

u-Vuru, - Vu (48) ==

Finite Difference
Method

au D IIi/ilr;ittheozl/olume
pa+puoo-Vu:pf—Vp+V-(2,uD ) (49)

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling
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Macroscopic description

— filtration Contents

Description of
fluid/solid at different
du 9 scales
10— — pf — Vp —l_ ,uv u — Rlu (50) Finite Difference
dt Method

Finite Volume

— one-dimensional flows Method

Finite Element
Method

VQU/ = (5].) Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Macroscopic description

— heat transfer The “fluid’ Fourier equation describes the Contents

Description of

temperature fl€|d in the ﬂU|d fluid /solid at different
Finite Difference

6 T etho
c, (%)t) V- (pTu)> G+ V-OAVT)  (52) oo
Method

Finite Element
Method

For solids where u = 0 the above equation simplifies to
Monte Carlo Method

the ‘solid’ Fourier—Kirchhoff equation Lattice Boltzmann
Method
o) i
c at B v . ()\VT) —l_ SE (53) Turbulence modelling

References

where internal energy sources are given by Sg.
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Comments

Generally, the ‘fluid’ equation should be solved together
with ‘solid” equation. This is called conjugate heat
transfer. Not having to know the heat transfer coefficient
Is an advantage of this approach. The disadvantage is the
necessity of increasing the total number of mesh elements
due to the additional solid volume.

It is not always possible because of storage limitations.
Then either the temperature or heat flux must be
specified at the wall. Alternatives, through boundary
conditions, are discussed further such as specified
temperature, specified heat flux, specified temperature
and heat flux, adiabatic or specified heat transfer
coefficient.
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Macroscopic description

— surface tension

Contents

9 Description of
—  =f V< +vVeu (54) fluid /solid at different
d p scales

Finite Difference
Method

body forces Finite Volume
f _ g —|— p_lfo. (55) Method

Finite Element
Method

Monte Carlo Method

fO‘ j— O‘/{;VO& (56) Lattice Boltzmann

Method
Smoothed Particle
K = —v . ﬁ — _v . & (57) Hydrodynamics

H VOZ ‘ ’ Turbulence modelling

References

« transport equation

o
E—I—V-(au):() (58)
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Macroscopic description — dimensionless form of

equations
Mass conservation equation Conizifs
Description of
v_|_ . u_|_ _ O (59) Zl:ailde/ssolid at different
Linear momentum conservation equation Fite Diference
etho
+ Sh8u+ Lut.vtat vethod
pr|Shp +u”-Viu' ) = =
at+ Finite Element
Method
+p+ +
IO f + 4+ ILL 24+ _+ Monte Carlo Method
— o Euv p _|_ —v u (60) Lattice Boltzmann
Fr Re Method
Fourier—Kirchhoff (internal energy) Smoothed Particle
Hydrodynamics
aT_|_ Turbulence modelling
pret <Sh(%+ +ut v+T+> _
+
_ %Qb: e )\—v2+T—I— (61)
Re Pr Re
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Macroscopic description — dimensionless
numbers

u
— — L] _ 1o Contents
- - - 2
Uto to U MT Description of
fluid/solid at different

2
poU
FI. _ Z/[2 _ L scales
— fol  pofo Finite Difference
pol/[2 Method
Re _ »CUPO _ LU __ L Finite Volume
o o 7 Ut Method
2
o8 £ Finite Element
Fu = Po _ _C Method
_ 2 2
pou Poi/l Monte Carlo Method
E _ Z/{2 Lattice Boltzmann
C = %oTo Method
PI‘ — Sw0H0 Yo Smoothed Particle
)\O - >‘0p Hydrodynamics
v0 PO
. MO0 __ o Turbulence modelling
C= %Dy _ D
POLI0 0 References
Da = &
= 73
Ao
De = 22
to
W1 = Ap70
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Macroscopic description — compatibility
conditions

General transport equation Contents

Description of
fluid/solid at different

a scales
% _|_ v . (puf) — Sf - v . k (62) Ili/ilr;jctheo([j)ifference

Finite Volume
Method

From Reynolds’ transport theorem arises general ——
compatibility condition 7 - [puf + k| =0 Method

Monte Carlo Method

Lattice Boltzmann

B Mass conservation: f:=1, 5;:=0, k:=0. C.C. Method
takes form fi - [pu] = 0 or 7 - [u] = [u,] = 0 Fivirodynamics
B Linear momentum: f < u, Sy < pf, k <~ —0 and Turbulence modelling
CCn-jpuu—o]=0orn-|c]=[0,]=0 References

B Energy conservation: f := ey, Sy := pf - u,
k:=q—oc-uand C.C.nn-[puey, —o-u+q] =0 or
- [q] or [AZL] =0
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Macroscopic description — boundary conditions

Compatibility conditions are insufficient! Further Contents
. Description of
conditions are needed: fluid /solid at different
scales
N adheSIOH l i § R— 'U,l — O Finite Difference
.y . Method
B thermal equilibrium on surfaces [T] = 0 Finite Volume
Method
Boundary condition related to heat transfer (arise from i e
etho
CC) Monte Carlo Method
. . Lattice Bol
. DII’ICh|et: T p— fl (ajj y; Z, t) Nélaéc;c;]coed oltzmann
. = _ S i
m Neumann: g, =7 q or 4, = fo(r,9,2.1) o Pl
|| mIXGdZ CVT - )\8_77, — f3(P7 t) Turbulence modelling
References
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Macroscopic description — boundary conditions

Other surfaces than walls Contents

Description of

. - fluid lid diff
B inlet: n — 1 conditions where n stands for the number fluid/solid at different
I Finite Difference
of equations o Finite C
B outlet: Generally, o, = 7 - 0 plus 1" distribution. Finite Volume

Method

Usually p distribution due to 0, = —pn plus 5~ =0

Finite Element
Method

B symmetry: g—i = ( for all scalar variables ¢
Monte Carlo Method

B periodicity (translation and rotation): ¢(P) = ()
where P, and P; are corresponding points on periodic gﬂeth‘z: —

Su I’fa ces Hydrodynamics

Turbulence modelling

Lattice Boltzmann

References
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Mathematical classification

General partial differential equation Contents

Description of
fluid/solid at different

a]{f ak—lf af scfa?es .
F L, — f X — O Finite Difference
Oxyt...0xm Ox™ ... 0x"" T Oxy’ " Method

Finite Volume
(63) Method

Finite Element

B linear Method
] Semi—linear Monte Carlo Method

o~ f OFLf of
Z a;(x)

Method
+ a 9 ) =
ozt ... Oxnn oz ...0xm" " O

Smoothed Particle
0 Hydrodynamics

1 Turbulence modelling

(64) References

B quasi-linear
B fully non-linear
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Mathematical classification

The Navier-Stokes equations are second order nonlinear Contents
. . . . Description of
partial differential equations. In general, they cannot be fluid/solid at different

scales

easily classified. However they posses properties of
semi-linear and linear second order partial differential

Finite Difference
Method

Finite Volume

equations. Sometimes they can be simplified to those and Method
.. . Finite Element
can be divided into: Method
. Monte Carlo Method
. hyperbOhC Lattice Boltzmann
B parabolic Mg
. . Smoothed Particle
. el | I pt|C Hydrodynamics

Turbulence modelling

References
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Semi-linear second order PDEs

For two independent variables z, v: Contents

Description of
fluid/solid at different

0 f 0 0° f ——
A < B C - J Flr(;LteoleFerence
(CC7 y) axQ —|_ (x, y) 8x8y —|_ (CC7 y) 8y2 _|_ :ilnithe sl/olume

af 8f I\/.Ie.thod
F (ij Yy, J, %7 ay) — () (65) Ili/llgjctheoglement

Monte Carlo Method

for all (x,y) over a domain €2 the above equation is: attice Boltzmann
.. Smoothed Particle

. hyperbOhC |f BZ — 414 C > O Hydrotdynamicz

B parabolicif B2 —4AC =0 Turbulence modelling

m ellipticif B —4AC <0 References
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Important elliptic second order PDEs

B Llaplace equation Contents

Description of
fluid/solid at different

2 2 scales
a_f ﬁ — () (66) Finite Difference

8[132 ay2 Method
Finite Volume

B Poisson equation Method

Finite Element
Method

- -
_f _|_ _f — f(x, y) (67) Monte Carlo Method

8332 ay2 Lattice Boltzmann
Method

. H6|mh0|tZ equat|on Smoothed Particle

Hydrodynamics

a2f a2f 5 Turbulence modelling
@ —+ a—y2 -+ k’ f p— 0 (68) References
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Important parabolic second order PDEs

B Heat equation Contents

Description of
fluid/solid at different

8 82 scales
_f _ Oé_f — 0 (69) Finite Difference

Method

Finite Volume
Method

5~ g = 9@t (10) s

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

— tu—=v—= (71)

References
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Important hyperbolic second order PDEs

H Wave eq Uation Contents

Description of
fluid/solid at different

02 62 scales
_f _ a2_f — () (72) Finite Difference

Method

Finite Volume

B Telegraph equations Method

Finite Element
Method

82f 82f af Monte Carlo Method
o2 Y Vg el =0 U ) B —

Method

Smoothed Particle
Hydrodynamics

B Convection equations

Turbulence modelling

References

— +u-—=0 (74)
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Important mixed type second order PDEs

B Euler-Tricomi equation Contents

Description of
fluid/solid at different

82 82 scales
_f _ :E_f — 0 (75) Finite Difference

Method

Finite Volume
Method

It is of hyperbolic type for x > 0, parabolic at x = 0 Finite Element
and elliptic for z < 0. ethes
B Generalised Euler-Tricomi equation

Monte Carlo Method

Lattice Boltzmann

Method
2 2 Smoothed Particl
a f (aj) a f L O (76) Hr;c(i)r%d;nam?zslc )
2 2 o Turbulence modelling
2 Y

References
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Important mixed type second order PDEs

B Potential gas flow

82¢/ a2¢/
1 — Ma’ =0 77
(1= Ma2) 55+ 50 (77)
It is of hyperbolic type for MaZ_ > 1, parabolic at
MaZ_ = 1 and elliptic for MaZ_ < 1

The velocity potential for the x axis dominated flow is

P(7,Y) = st + ¢'(2,y) (78)
Velocity components are then given as
0 /
wey) = 5 = e Fus(ry)  (79)
a /
(@) = 5 =y (2,9) (80)
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VoF method

VoF — Volume of Fluid Contents

Description of
fluid/solid at different
scales

Finite Difference

p=ap+(1-a)p, (8la) b

Finite Volume

1= o+ (1— a)u, (81b) e

Finite Element
Method

8 |S d VOIUme fraCt|On Monte Carlo Method

Lattice Boltzmann
Method

; ||q u |d§ Smoothed Particle

o = < O, gas; (82) Hydrodynamics

Turbulence modelling

\O S 84 S 1, Intel’face References
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VoF method

Mass conservation Contents

Description of

V - U = O (83) fluid /solid at different

scales

' ' Finite Differen
the Navier—Stokes equation Pl Biftare:

Finite Volume
a Method

57 (PW)+V-(puu) = okVa—Vpg,—ghVp+V-(2uD) e temen
(84) Monte Carlo Method

modified pressure p,,, =p — pg - h Lattice Boltzmann

« transport equation Smoothed Particle

Hydrodynamics

a Turbulence modelling
87

E -+ v . (OKU) = O (85) References
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Complex phenomena

B Free surface flows

B Cavitation
B Melting

K. Tesch; Numerical Methods
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Free surface flows

Mixture mass conservation equation
V-u=0 (86)
Mixture Navier—Stokes equation

9 (pu) + V - (puu) = grVa

ot
—0,#0
— Vprgn —g-hVp+ V- (2uD) (87)

Volume fraction transport equation

oJe)
E—I—V-(au):() (88)
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Cavitation

Mixture mass conservation equation

V-u=0
Mixture Navier—Stokes equation
0
o (pu) + V- (puu) = grVa

=0,70

(89)

— Vprgn —g-hVp+ V- (2uD) (90)

Volume fraction transport equation

(9041 Sm
E + V . (oqu) = E

B Merkle S, = ...
B Kunz
B Schnerr—Sauer
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Melting

Mixture mass conservation equation

V-u=0
Mixture Navier—Stokes equation

9,

Y (pu) + V- (puu) = pog — poB(T —Ty)g

— Vp+ V- (2uD) + S,

Volume fraction transport equation

(9045 Sm
o TVl =)
Enthalpy equation
0
ot (pcpyT) + V- (peyTu) =V - (AVT) + S,
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(95)
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Finite Difference Method
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The method

The finite difference method (introduced by Euler in
XVIII century) replaces the region by a finite mesh of
points at which the dependent variable is approximated.

|
e J
h r Ny T
/ U,(x,y+h)
* ¢ ¢ ¢
UZ(X—h,y) Uz(X,}’) UZ(X+hay)
o, O L L2 o 7y ® L ¢
. h
\ « h
O @ @ ’ Y o L
} U,(x,y-h)
\k\/ 4 ‘ @ L 4 <
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All partial derivatives
at each mesh point

are approximated from
neighbouring values

by means of Taylor's
theorem. This means
that derivatives at each
point are approximated
by difference quotients.
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Taylor’s theorem

Assuming that f has continuous derivatives over certain Contents
. . . Description of
interval the Taylor expansion is used il il ol
SCales
1 Finite Difference
m— Method
d™ f(xq d™f(c
f(x() —+ Aflf) — E (' ) + '( ) (96) IIi/ilr(;ittheozl/olume
n! m!
n=0 Finite Element
Method
where v = z9 + Az, ¢ = 29 + Az and 6 E]O; 1[_ The Monte Carlo Method
. . Lattice Boltzmann
above equation may also be written as Method

Smoothed Particle
Hydrodynamics

1 .
f(CE'() + ACC) — f(.fCo) -+ f/(x())A.fC + §f//(x0)Ax2 Turbulence modelling

References

+ —f"(xo) Az + ...+ %ﬂm(c)mm (97)

@)
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Taylor’s theorem

Contents

Instead of f(™ at unknown point c it is rewritten in

Description of

terms of another unknown quantity of order Azx™ sl 2 s
Finite Difference
ACEQ Method
— ! & Finite Vol
o+ Ax) = f(wo) + /(o)A + (20) =5 -

Finite Element

Axm_l Method

—|_ O(Aajm) (98) Monte Carlo Method

+ A S (o)

(m —1)! .
Lattice Boltzmann
Method
Discarding (truncating) O(Ax™) one gets an Smoothed Particl
approximation to f. The error in this approximation is o
O(Az™). Roughly speaking it says that knowing the T

value of f and the values of its derivatives at x it is
possible to write down the equation for its value at the
point xo + Ax.
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First order finite difference

Taking under consideration the Taylor expansion up to
the first derivative

flxo + Ax) = f(xo) + f (o) Az + O(Az?)  (99)

then neglecting O(Ax) and rearranging gives the first
order finite difference approximation to f’(xg)

flzg + Az) — f(x0)
Ax

f'(wo) = (100)
This approximation is called a forward approximation.
Replacing Ax by —Ax in Taylor expansion one gets
backward approximation

f/(xO) ~ f(QjO) - i(;;o - A:E)

(101)
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Second order finite difference

Taking under consideration the Taylor expansion up to Contents

Description of

the SeCOI’ld derivative fluid /solid at different

scales

2 Finite Difference
Ax

flzo+ Az) = f(zo) + f'(w0) Az + f" (o) —— + O(Az®) o=

2 Finite Volume
(102)

Method
then neglecting O(Az?). Doing the same for —Ax and
combining the two above we have

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann

Method
f/(xO) ~ f(ZIZ'() + ACU) — f(CU() — AZIZ’) (103) ar;éarzt;;:arlj‘?gicle
ZA‘CE Turbulence modelling

References

after neglecting O(Ax?). This is so called the second
order central difference approximation to f'(xg).
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Second order finite difference

Higher order approximation to derivatives is also possible.

Contents

This can be done by taking more terms in the Taylor Description of
. . . fluid /solid at different
expansion. Doing so up to the third we get scales

Finite Difference
Method

]- inite Volume
f(zo+ Ax) = f(xg) + f'(x0)Ax + §f”(:170)A:1:2 Method

Finite Element

Method

1
—|— éf///(,CUO)AZC?) —|_ O(AZE4) (104) Monte Carlo Method

Lattice Boltzmann
Method

Replacing Ax for —Ax and combing the results then Smoothed Particle
dropping O(Ax?) gives the second order symmetric L i
difference approximation to f”

f(xo + Az) —2f(x0) + f(x0 — AZ)
Ax?

Turbulence modelling

References

(o) = (105)

K. Tesch: Numerical Methods




Differences

Selected finite differences approximation to first and Centeris
. . . . . Description of
second derivatives are given in the following table. These fluid /solid at different

scales

can be used to solve ordinary differential equations by
replacing derivatives by their approximations.

Finite Difference
Method

Finite Volume

Approximation Type Order Mt
Finite Element
Method
/ f (wo-+ Az) ~ f (o) ;
f ('CUO) Az forwa rd 18 Monte Carlo Method
flag) — feefldn padagard 1o
0 Ax .
(ro+Ax)—f(xog—Ax) d Eumﬁrztﬁe:amts'de
/ f L0 L) — 0— n y y I
f (CCO) 2Ax Central 2 Turbulence modellin
g
Ax)—2 —A .
JHEY I ];(;US /0= 82)  symmetric 27 References
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Differences

Equations for f’ approximate the slope of the tangent in
ro by means of chords (backward, forward and central

finite difference).

K. Tesch: Numerical Methods
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Xo

Xo+AX
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Differences

The typical subscript notation is

Contents

Description of

— fluid/solid at different
f(xO —|_ m h7 yO —|_ n h) — fi+mj—|—'n (106) s:ales
Finite Difference
.. . . . . Method
Now it is possible to express selected finite differences -
inite Volume
approximations to derivatives in somewhat simpler Method
Finite Element
Manner Method
Monte Carlo Method
Approximation Type Order Latice Boltzmann
etho
/ 7 —J S thed Particl
fi % forwa rd 1St Hr;c(i)r%d;namai'czs -
R Turbulence modelling
f! fimfiz }{1‘1 backward 1%
References
/ Jit1—fi—1 nd
b o central 2
7 Jit1—2fitfi—1 ' nd
; 5 symmetric 2

K. Tesch: Numerical Methods




Convection-diffusion equation

a Conte-nts.
L)LY (pow) =V (V) (107) g

fluid/solid at different
scales

Finite Difference

B parabolic. Additionally, f u=20 Ethod
5 Method
(10¢) _ v . (Fv¢) (]_08) E/;Z*Ictheoglement

Monte Carlo Method

Ot
Lattice Boltzmann

B hyperbolic, if ' =0 Method

Smoothed Particle
d(p9)

Hydrodynamics
at References

_l_ V . (p¢u) — O (109) Turbulence modelling

B elliptic, if % = (0 or at the same time % = 0 and
u=~0

V. (IV§) =0 (110)
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Convection equation

If F — O and IO == 1 we have Contents

Description of
fluid/solid at different

a¢ scales
E _|_ v . (¢u) — O (]_]_]_) Ili/;r;&eo([j)lfference

Finite Volume
Method

One dimensional version

Finite Element

Method
% + U % L O (112) Monte Carlo Method
at v a,flj - Lattice Boltzmann
Method

Smoothed Particle

The analytical solution of the above is Hydrodynamics

Turbulence modelling

o(x,t) = flr — uyt) (113) References
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Convection equation — FTCS scheme

Fany
Y.

SN

¢ O—O a¢ a¢ Conte-nts.
— + Uz~ = 0 (114) Dol o
i1 i it 8t T uid /solid at different
scales
FTCS discretisation scheme (Forward Time Centred Finite Difference
Space) Finite Volume
n—+1 n n n Method
qbz' T ¢7, _I_ 1+1 =1 L O (115) Finite Element
At uﬂj QAIL' _ Method
o Monte Carlo Method
or explicitly Lattice Boltzmann
Method
n+l  n 1 n n Smoothed Particle
¢i _ ¢z o §CO (¢i—{—1 o ¢i—1) (116) Hydrodynamics
. Turbul delli
where Co is the Courant number I
References
(TPWAN;
Co = (117)
Ax

K. Tesch: Numerical Methods




Convection equation — FOU scheme

n+1

U

a
\

)/ a¢ Contents

)
-

a a
\ \

- _|_ ru/x - — O (118) Description of
nol fluid /solid at different
i—1 i i+l 01'; 8x SCl,Ja|eS
FOU discretisation scheme (First Order Upwind) Finite Difference
Finite Volume
¢n—|—1 L ¢T." ¢n __ AN Method
t v _|_ uw ¢ U — O (119) Finite Element

Method

At Az

Monte Carlo Method

or eXp| |C|t|y Lattice Boltzmann
Method

Smoothed Particle

o = g — Co (47 — 0L, (120)  ‘hssmanis

Turbulence modelling

References
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Convection equation — BTCS scheme

Fan
\%
Fan
A%
Fan
A%

)
-

a¢ Contents

N - _|_ um_ — O (121) Description of
it fluid /solid at different
i1 i it at 8% scales
BTCS discretisation scheme (Backward Time Centred Finite Difference
Space) Finite Volume
n+1 n qbn—}—l . ¢n—|—1 Method
QS?: T ¢z _|_ U 1+1 7—1 L O (122) Finite Element
— Method
At : 2A\x
] ] Monte Carlo Method
FOI’ ComparISOn, FTCS SCheme IS Lattice Boltzmann
Method
Smoothed Particle
¢?+1 T (fbn ’f?_|_1 — Q7 Hydrodynamics

Lt =L -0 (123)

Turbulence modelling

At YA

References

K. Tesch: Numerical Methods




Convection equation — Crank—Nicolson

n O/O o a¢ a¢ Conte-nts.
- - _|_ fu/x_ — O (124) De§cr|pt!on of_
o Ot or fIU|Id/soI|d at different
scales
The Crank—Nicolson scheme is a combination of the AR
etho
FTCS and BTCS Finite Volume
Method
Finite Element
¢,LT-H_1 - ¢? Method
At —|— Monte Carlo Method
1 n n n-+1 n-+1 k/zlatt;]cedBoltzmann
i+1 — Pi—1 ¢i+1 — ¢, <o
— U’CE —|_ ux — O (125) Smoothed Particle
2 ZAZU QA.CC Hydrodynamics

Turbulence modelling

References
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Convection equation — backward

A Contents
- O> aa—f —|_ uﬂj% — O (126) EE;C;;zT;SnaSZifferent
i1 i i+l X scales
Second-order backward using two previous time-step Ao Dz are:
Va|ueS QS,?, ¢,?_1 Finite Volume
Method
3P — Aol + ¢! . ol — it

=0 (127)

Monte Carlo Method

VAN v YA

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Convection equation — Lax—Wendroff

n+1

vy

Vai
\

A\

0/( \0 0 Qb agb
ot N

QIS éxpanded up to the third order

0d; _ ¢F T —o¢ 1079,

~ — — A
ot At 2 Ot? t

Also, the centred space approximation is used

Cb?H = ¢; — %CO (gb?ﬂ — ¢?—1) +

(128)

(129)

;Co” (of — 207 + 97 1) (130)
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Convection equation — Lax—Friedrichs

vy

Vai
\

v

\/ L a a Contents
D D _¢ _|_ ux_¢ — O (131) Description of

n-1 fluid/solid at different
. i at scales

Lax-Friedrichs scheme is a modification of the FTCS Ao Dz are:

SCheme Finite Volume
Method

;7!_1 _|_ ¢;’L+1 Finite Element

5 = A0 (o, —of,)  (132) e

2 Monte Carlo Method

a
\

Lattice Boltzmann

For comparison, FTCS scheme is Method
Smoothed Particle
Hydrodynamics

¢?+1 — ¢n L 1CO ( ?’_*_1 — ¢?_1) (133) Turbulence modelling

U 2

References
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Transient diffusion equation

If u = O and p — 1 we have Contents

Description of
fluid/solid at different

a scales
_¢ — v . (FVQS) (134) Finite Difference

Ot Method

Finite Volume
Method

One dimensional version for I' = const

06 _ 0%
ot Ox?

Finite Element
Method

Monte Carlo Method
(135)

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Transient diffusion equation — FTCS

vy

Vai
\

v

W

a
\

A\

/ ¢
n 5 8 02 ontents
- _¢ — _¢ ( 1 36) De§cription of

fluid /solid at different
i—1 i i+1 at 6:62 /

scales

FTCS discretisation scheme (Forward Time Centred Finite Difference

SpaCE) Finite Volume
n-+1 n n Method
¢i o ¢7, L F ’L—I—l o 2¢ —|_ ¢ (137) Finite Element
== Method
At Az =
Monte Carlo Method

or eXp|ICIt|y Lattice Boltzmann
Method

F At Smoothed Particle
Hydrodynamics

¢?*1:¢?+A—x2(¢z+l 207 + 1) (138)

Turbulence modelling

References
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Transient diffusion equation — BTCS

Fan
\%
Fan
A%
Fan
A%

o
A\

a¢ 82¢ Conte-nts.
S E p— @ (139) Description of

fluid/solid at different

scales
BTCS discretisation scheme (Backward Time Centred inite Difference
S ace Finite Volume
p ) Method

Finite El
ortt — g oPH = 200t + ot
7 7 (4 (] 11—
— F 2 (140) Monte Carlo Method
At A e
attice Boltzmann

Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Transient diffusion equation — Crank—Nicolson

Ay

Fan
U

Fan

m

Fan
U

W

nAe 90 _ 0% (141)
LT ot  Ox?

The Crank—Nicolson scheme is a combination of the
FTCS and BTCS

prTt —
At
! (F BT 200 Oy L0 — 200 + as"“)

I
Az? + Az?

(142)
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Transient diffusion equation — backward

W

n—1

(;—\ a¢ 02¢ Conte-nts.
>> E — @ (143) Description of

fluid/solid at different

i—1 i i+1 scales
Second-order backward using two previous time-step Finite Difference
1 ethod
values o, o' Finite Vol
b ¢
Finite Element
n—+1 n n—1 n+1 n—+1 n+1 Method
3p; T — AP + ¢ @i — 207 T o
— F (144) Monte Carlo Method
2At AZEQ Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Steady diffusion equation

H: u = O, p — 1 and % — O we have Contents

Description of
fluid/solid at different
scales

V- (I'Vo) =S5 (145)

Finite Difference
Method

Finite Volume

Two types of equations can be distinguished for Method

_ Finite Element
[' = const onite £

B Poisson equation, S =T715 Monte Carlo Method

Lattice Boltzmann
Method

v2¢ — S (146) Smoothed Particle

Hydrodynamics

Turbulence modelling

References

B Llaplace equation, S =0

Vi =0 (147)
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Poisson equation

Poisson equation is V¢, = a. Two dimensional versions
of this equation is written as
Fo. 079,
Ox? i 0y?
The next step would be to replace second order
derivatives by symmetric finite difference approximation

Git1j — 2045 + Qi1 n Gij+1 — 2045 + Qij—1

= q (148)

2 2 =a (149)
It can be rewritten to give ¢;; as a function of
surrounding variables
it1i + Gi1i + Giie1 + D1 — ah?
¢Z9 — ¢ —|—1] ¢ 1] ¢ ]+1 ¢ ] 1 (150)

4
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Poisson equation - mesh and boundary

conditions

The domain is discretised in the = and y directions by
means of constant mesh size h (figure on the left). ¢, is
unknown at black mesh points and known at white points
from the boundary condition.

<
U,(x,y+h)
z —1, z X’ z

[
[
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For instance

the Dirichlet boundary
condition specifies the values
of ¢, directly. In this case
¢, = 0 meaning no slip wall.
If the boundary values are
known then discrete Poisson
equation gives a system

of linear equations for ¢;;.
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Poisson equation - solution methods

The accuracy of results depends on the size of the mesh
represented here by h. Mesh size should be decreased
until there is no significant influence on numerical results.
The set of linear equations can be solved either directly
by means of an appropriate method (Gauss elimination
for instance) or indirectly by means of iterative solution
methods or the relaxation method (point-Jacobi iteration)

n n 9
n+l __ 1+1y ¢z 14 ¢i]-|—1 + ¢7,j 1 ah
i 1 (151)
or point-Gauss—Seidel (faster than point-Jacobi)
n+1 n+1 9
n—l—l Z—I—lj ¢7, 17 ¢z3_|_1 ¢7§j—1 — ah
i 1 (152)
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Poisson equation - solution methods

Another indirect method is so called Successive Contents
. Description of
Over-Relaxation method fuidsofd at diffren
scales
Finite Difference
n+1 __ . n Method
¢7’j o (1 w)¢7’3+ Finite Volume
n n+1 n n+1 9 Method
it1j T ¢i—1j + ¢¢j+1 + ¢z'j—1 — ah Sl S
4 (153) Method
Monte Carlo Method
. . Lattice Bolt
where w is a relaxation parameter. For w €]1,2[ we have Method
over-relaxation and for w = 1 this method corresponds to smoothed Particle
ydrodynamics
the point-Gauss—Seidel method. One can also consider Turbulence modelling
under-relaxation method for w €]0, 1]. References

The best choice of w value needs numerical experiments.
It also depends on specific problems.
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Poisson FDM pseudocode

Data: Read input variables and BCs Contents
. . . . Description of
W = ]" n = 1’ fluid /solid at different
scales
repeat Finite Difference
R :=0; Method
. . Finite Vol
for i :== 1 to i,,,, do Method
rp— y Finite Element
lf nOt bounda’IY(¢n ) then Monte Carlo Method
n+1 ¢z+1j+¢?+1lj wa_|_1 qb;n]—l_ll—ahQ Lattice Boltzmann
¢’Lj e , Method
1 i Smoothed Particl
R — INnax (’¢n+ ¢n ) Hr;c(i)r%d;nam?zsce
¢n+1 i (1 — ) —|— W ¢n+1 Turbulence modelling
1 ' !
- J References
n:=n-+1;

until n <n,,,, and R > R.....;
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Results - Poisson equation
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Laplace equation

Laplace equation is V?¢ = 0. Two dimensional versions
of this equation is written as
2 2
Op 00
or?  0y?
Replacing second order derivatives by symmetric finite
difference approximation

(154)

Pit1j — 205 T Pic1j | Pijr1 — 205 + Y1
2 + 72 =0 (155)
It can be rewritten to give y;; as a function of
surrounding variables
Dit1j T Pi—1j T Pij+1 T Pij—1
pij = T — : (156)

4
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Laplace eq. — Neumann boundary condition

Neumann boundary condition specifies values of the

derivative % of a solution ¢ on boundary 02 to fulfil
Oy
“r — N 157
2~ N(z,y) (157)
where the normal derivatives is defined as
do Oy Oy
— =N -V ="n,— — 158
on vy n8x+ny8y (158)
and (z,y) € 0Q. If u =YV we get
0
a—z =—Nn-u= Mg Ug + Tl Uy (159)
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Laplace eq. — Neumann boundary condition

We have two equation for a point

(AT Contents
s located on boundary 2 N
J fluid /solid at different
fiaj fisaj fior 2 scales
| f 1 ; a f _ f7’+1] B 2f’L] _|_ fi_lj Finite Difference
fij1 '0“_0_5” 2 T 9 Method
ax h Finite Volume
oOf, O f fz 415 — fz‘—lj Method
Q - — — NZ ' Finite Element
h ox 2h Method
] ] . Monte Carlo Method
6 4 5 Point f;_1, is located outside the Lattice Boltzmann
. . . . Method
() area. Eliminating it we get ot Pt

Hydrodynamics

2 o L h — .
2 1 3 8 f _ 2f’L—|—1] QNZ] h 2f7a7 Turbulence modelling
8272 h2 References
0) and
! > ° Jij

_ 2fiv1j + Jigr1 + fij—1 — 2Nih
4
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Laplace FDM pseudocode

Data: Read input variables and BCs

w:=1;, n:=1; Contents
repeat Description of
R :=0; fluid /solid at different

scales

Finite Difference

0 J - 0 th Method
[ oundar . then
. Y(SOW) 75 Finite Volume
switch ¢ do Method
J n n—+1 n n—+1
] n+1 (pi—l—lj—'_goi—lj—'_(pij—}-l—'_(pij—l ] Finite Element
case 1:do ¢,." " := 1 ) Method
1 +1 Monte Carlo Method
2- do ot — 207 1t te —2hN;
case 2. do Qpij = 4 ' Lattice Boltzmann

Method

Smoothed Particle
Hydrodynamics

. Turbulence modelling

1 _ References
R = max (ygp;”fj — o], R),
1 1
e = (L w)el Fwel

n:=n-++ 1;
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Results - Laplace equation
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Biharmonic equation

The biharmonic equation is V4 = V2. V2 = 0. Two
dimensional versions of this equation is written as
64 4 (94
v, I o
83:4 8x28y Oy
It is a fourth-order elliptic partial differential equation
that describes creeping flows in terms of a stream

function 1) where the velocity components are u, = oy

dy
_ o

The Dirichlet boundary condition specifies both: a stream
function ) and its normal derivative g—:f. Two conditions
are needed due to the fourth order of the biharmonic

equation.

(161)
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Biharmonic equation - approximation to

derivatives
The finite difference approximations to 57, 5y are S
Description of
84 4 4 6 quisd/szlid at different
Qp L ¢’i—|—2j + wi—Qj T w’i—i—lj T wi—lj + w’tj (1623) scales
Ot o hA4 If/ilzittheo([;ifference
4 .
0™ - Vij+2 + %‘j—Q — A1 — 4%‘;‘-1 + 6@%‘ (162b) Linite Volume
ay4 h4 Finite Element
Method
The fourth order mixed derivative is approximated as ["t T;rl'° Method
attice boltzmann
4 Method
a w —_ ¢Z+1]+1 —|_ wi_lj—l —|_ wi_lj"'_l + wi""lj_l Smoothed Particle
anQayQ - h4 Hydrodynamics
4¢ Zw 2¢ 2¢ Zw Turbulence modelling
.o 117 — 1 — ] — i1
+ () +17 ? J 19+ () (163) References

h4
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Biharmonic equation - discrete equation

From the discrete biharmonic equations ;; can be .
ontents

expressed as a function of surrounding variables Description of
fluid/solid at different
scales

B _¢i+2j — ¢z’—2j — wij+2 — wij—Q + 4¢z’j Finite Difference

Method
20 Finite Volume

Method
_|_ 8¢i—1j _|_ w’l,j—kl —"_ ¢ij_1 —I_ ¢Z+1] Finite Element
20 Method

Monte Carlo Method
_ 2 w’l,—i—lj—i-l —|_ ¢z—1]—1 —|_ wz_lj—'_l + ¢Z+1j_1 (164) Lattice Boltzmann
20

wz’j

Method

Smoothed Particle
Hydrodynamics

7 d Pl Turbulence modelling
\

References
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Biharmonic equation - boundary conditions

From the below figure two purely geometric relationships Contents
aw aw Description of
arise =n- -V =—uy, 5 = —1. Vi = u,. For an flid/sold t diferent
SCales
|mpermeab|e boundary one gets U, = 0= aw = (0. The Finite Difference
Method
general relationship between volumetric flow rate and the -
inite Volume
stream functions is BEtho:
Finite Element

Method

— ju. ndlL :f%—?}bdlj — j dw — wA _@DB (165) Monte Carlo Method
L L L

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Biharmonic FDM pseudocode

Data: Read input variables and BCs
w:=1;n:=1,
repeat
R :=0;
for::=1 to i,,,, do
for j :=1 to j,4, doO
if not boundary(¢7;) then
w;zjnd . TWire Vi 2j_@2béj+2_¢w— 2 H4vi; +
Sw?—lj—'_w?j—kl—l_w?j—l—i_w?—{—lj .
20

2w?—}—lj—i—l—'_w?—lj—l+w?—1j+1+¢?—{—1j—1 )
20 '

R _max(w”“ WLl R);
Y= (1= w0y +w¢”“.

¥

n:=n-++1;
until n < n,,,, and R > R,,in;
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Results - biharmonic equation
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Convection-diffusion equation

If ' = v = const and p = 1 we have Contents

Description of
fluid/solid at different

a¢ 9 scfa?es .
E _|_ v . (¢u) — VV ¢ (]_66) Ili/;r;&eo([j)lfference

Finite Volume
Method

One dimensional version

Finite Element

5 Method
a¢ _|_ ” a¢ — a ¢ (167) Monte Carlo Method
at x ax 8332 k/zla(;c;c;]coedBoltzmann

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Convection-diffusion equation — FTCS

n+1

A\

a
\J

SN

Vai
\

A4
Fan)
A4

- 0p = ¢ 0%

o ot T "o 0z (168)
Forward time centred space discretisation scheme
P — o Iy i1 — Pic1 y i1 — 207 + o7y
At Y 2Ax B Ax?
(169)
or explicitly

207 + &7 1)
(170)

¢?+1 — Qb? — % (¢?+1 - ?—1) - RL (¢z+1

where
Re = — (171)
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Convection-diffusion equation — BTCS

O 2 Contents
-1 % _|_ U % — Va ¢ (172) De§cription of_
T 8t € 3$ axQ Zl:a:lde/ssolld at different
Backward time centred space discretisation scheme Finite Difference
1 11 11 1 11 41 Finite Volume
n—+ n n n n n n Method
¢o; " — @ Giv1 — Qi1 O — 20+ o —
_|_ U — U Finite Element
At . IAT A2 Method

(173) Monte Carlo Method

Lattice Boltzmann
or Method

Smoothed Particle
Hydrodynamics

n—+1 n Co n+1 n+1\ __
QS,I: T ¢z —|_ 7 (¢z—|—1 T ¢z’—1 ) _ Turbulence modelling

L (gl 9gntl 4 gitl)  (174)  fetenes
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Complex geometry

Point 1 is located inside the

é

1 2
__\OTQ_ () area
— _ hijot+df

fi= "k )

1\ , Point 1 is located outside
l‘N_ﬁ__ the ) area

Chfo—dfs
h f1 = — (176)
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Stability analysis

The decomposition of ¢} into a Fourier series is

N
or = Anelhmine (177)
m=—N
where the wave number £,,, is
mm 6
kyp = —— = — 178
NAx Az (178)
A single mode determines the time evolution of ¢7
¢ = Al e’ (179)
A numerical scheme is stable if and only if
An—l—l
—— | =G| <1 180
| =6l < (180)
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Stability analysis — FTCS

B convection equation Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

G| = V1+ Co’sin® > 1 (181)

Finite Volume

B diffusion equation Method

Finite Element
Method

2Re™ ' <1 (182)

Monte Carlo Method

Lattice Boltzmann
Method

B convection-diffusion equation

Smoothed Particle
Hydrodynamics

CO2 S 2Re_1 S ]. (183) Turbulence modelling

o) References

\(

m

Fan
U

W
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Stability analysis — BTCS

B convection equation Contents

Description of
fluid/solid at different
1 scales

j— 5 . 9 S 1 (184) Finite Difference
1 + Co”sin” 0 e
Finite Volume
Method

GJ*

B diffusion equation

Finite Element

‘G’ S 1 (185) Method

Monte Carlo Method

B convection-diffusion equation Lattice Boltzmann
€tno

Smoothed Particle
1 Hydrodynamics

GI° = 5 <1 (186)
5 (1 + 4 Re ! sin? g) + Co’sin? 0

Turbulence modelling

N
v

Y
%
P

References

m

N
U

K. Tesch: Numerical Methods




Stability analysis — Crank—Nicolson

B convection equation Contents

Description of
fluid/solid at different

scales
‘G‘ T 1 (187) Finite Difference
Method

Iffusi ' Finite Vol
B diffusion equation Pl s

‘G‘ <1 (]_88) Finite Element

Method

B convection-diffusion equation Monte Carlo Method

Lattice Boltzmann
Method

‘G| S 1 (189) Smoothed Particle

Hydrodynamics

A\

an a

U \

\ Turbulence modelling
a
\

Fan
U

W

References
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Modified equation

Using a specific discretisation scheme one obtains a
discrete counterpart of the original PDE;

Taylor's expansion is applied around gb?“ and
substituted into the specific scheme;

Resulting equation is rearranged in order to recover
the original PDE;

The remaining terms are the truncation errors
associated with the specific discretisation scheme;
The modified equation is actually solved rather than
the original PDE;

Numerical diffusion and dispersion can be analysed
now;
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Model equations

Convection-diffusion equation

0¢ 0p _ 0°¢

ot Y Ox Ox?
N

diffusion

Korteweg-de Vries equation

00 00

ot~ “or  Cord
N——

dispresion
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Convection equation — FTCS scheme

o
A\

N
k Oo—©0O a a Contents
n1 —¢ —|— ’U/x —¢ p— O (192) Description of

fluid/solid at different
i—1 i i+1 8t scales

FTCS discretisation scheme (Forward Time Centred Al Pl

Space) Finite Volume
¢n+1 ¢n n . n Method
1+1 1—1 0 193 Finite Element
33 - Method
At 2Ax (193) =
Monte Carlo Method

The mOdIerd equatlon Lattice Boltzmann
Method

Smoothed Particle
a¢?—|—1 a¢;’b—|—1 82 ¢n‘|‘1 Hydrodynamics

at ax - _uxAx CO 8:132 Turbulence modelling

References

1 2 2 3¢n+1
— suyAz? (2Co0” +1) 5 T (194)
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Convection equation — FTCS scheme

n+1

o
Y.

SN

O—O0 (‘kb agb

— 4 Up— =0 195
AR ot T ox (195)
FTCS discretisation scheme (Forward Time Centred
Space)
& — ¢f it1 — Pia
. - . =0 196
At T oAy (196
The modified equation
O qyﬁ—l O qyﬁ—l o2 ¢n+1 O3 ¢n+1
- r—— =UN——— —en———+... (197
ot u Ox N gz TN T gy e (197)
or a n+1 a n+1 02 n+1

ox - N Ox?

ot
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Convection equation — FOU scheme

n+1

Fan
U

v r\/r
A\ v

w2l =0 199
AR o U (199)

FOU discretisation scheme (First Order Upwind)

Gt —gr o= o,
At Y Ax

)
-
)
-

=0 (200)
The modified equation

a¢n+1 8¢n+1 62¢n+1

— Lo Ax (1 — T
" + u, 5 suz Az (1 — Co) 92 +
1 2 2 0%
tuyAz? (3Co —2Co” — 1) 8—:;3 + ... (201)

K. Tesch: Numerical Methods

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References




Convection equation — FOU scheme

Ay

Vai
\J

/ Contents
5 0
- _|_ um_¢ — O (202) Description of

n-1 at fluid /solid at different
i +1 scales

FOU discretisation scheme (First Order Upwind) Finite Difference

Method
o — o) i i—1
— Finite Element
At _I_ Ug ACB O (203) Method

)
-

Val Va
\ \

Finite Volume
¢7’L n Method

Monte Carlo Method

The modified equation Lattice Boltzmann
Method

Smoothed Particle

83¢n+1 Hydrodynamics
__rt _|_ L. Turbulence modelling

a¢n+1 a¢n+1 82¢n+1

x — — &
ot i ox YN Ox? N o3

References

(204)

What if Co =17
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Convection equation — BTCS scheme

n+1

o
A\
Fan
A\
Fan
A\

m
A\

| op 0o

— +Uuy—=— =0 205
i-1 i i+l (975 —|_ U ( )
BTCS discretisation scheme (Backward Time Centred

Space)

n n n—+1 n+1
Cbz' o sz T, Cszl o gszl
At 2Ax
The modified equation

=0 (206)

82 ¢n—|—1

n—+1 n—+1
% 99, —uxA:U Co————+
Ox?

ot e Ox
83¢n+1
Lu,Az? (Co® — 1) ——+... (207)

6 axiﬂ
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Convection equation — BTCS scheme

) T ; T a¢ a¢ Conte-nts.
- _|_ um_ — O (208) Description of
n—1 fluid/solid at different
L o at 8% s:ales
BTCS discretisation scheme (Backward Time Centred Finite Difference
Space Finite Vol
R g g
) — W i+1  Yi—1 Finite Element
+ Uy =0 (209) Method
At 2Ax
o ] Monte Carlo Method
The mOdIerd equatIOn Lattice Boltzmann
Method
Smoothed Particle
0¢n+ 1 a¢n+1 82 gbn‘i_ 1 83 ¢7?'+1 Hydrodynamics
1 1 1 7
_|_ ua; — VN— - 5]\7— _|_ o« o Turbulence modelling
ot Ox 0x? ox3 iy
(210) eferences
What if Co =17
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Convection equation — Crank—Nicolson

()/O\O a¢ a¢ Contents
. 5 T ez =0 (211) Y drn
i—1 i i+l scales
The Crank-Nicolson scheme is a combination of the Ao Dz are:
etho
FTCS and BTCS Finite Volume
Method
Finite Element
¢Z‘H—1 T ¢? Method
At —|— Monte Carlo Method

Lattice Boltzmann

1 no— o ntl _ pntl Method
<’U/a; Z+12Ax =1 —|_ ux ¢/L+12A:C¢z_1 > — O (212) Smoothed Particle

Hydrodynamics

2

Turbulence modelling

The mOdIerd equation References

03¢n+1

ox3

op; ™ 0Tt
ot Tt gr 6

AN v (% Co? + 1) + ...

(213)
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Convection equation — Crank—Nicolson

Ay

a
AV \

N
J/ \

Fan) a

A\ AN

n—1

A\
A\

(214)

T

1 i+1

he Crank—Nicolson scheme is a combination of the

FTCS and BTCS
Tt — ¢
N
1 no ntl __ pntl
5 <Ug; Z+12A£C 1—1 1o, ¢z—|—12Ax¢z—1 > — 0 (215)
The modified equation
O n+1 O n+1 (93 n+1
0 + U, il — —5NL+... (216)
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Navier-Stokes equations

Typical numerical approaches for the incompressible Contents
. . Description of
Navier—Stokes equations: fluid/solid at different
SCales
B (.- (vorticity-stream function) formulation method Finite Difference
[ [ [l [l [] [ ethOd
B Artificial compressibility method Finite Volume
. . .. Method
B Pressure/velocity correction (operator splitting e
methods) Method
Monte Carlo Method
Projection methods Latice Boltzmann
. . . - . . etho
Explicit and implicit operator splitting methods S

Hydrodynamics

Fractional step method
PISO, SIMPLE, PIMPLE (Plso + siMPLE)

Turbulence modelling

L 2 2R R 2

References
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Bad idea

The incompressible Navier—Stokes equations

0 1
A u-Vu= —~Vp+vViu (217)
ot 0
Explicit forward difference in time
n+l  in 1
1 1 +u"-Vu" = —-Vp" +vV*u" (218)

At 0

Problems:

v . un+1 7& O,
pn—i—l :7
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Better idea

The incompressible Navier—-Stokes equations Contents

Description of
fluid/solid at different

au v B 1v v2 219 scfa?es .
E _|_ u - u = —; p —|— 1 u ( a) Ili/;r;&eo([j)lfference

Vw0 2lob) D

Finite Element
Method

Monte Carlo Method

1
+u”-Vu" = ——Vp" + V" 220a .
At p p ( ) k/?;ELC:dBdtzmann

v . un+1 — O (220b) Smoothed Particle

Hydrodynamics

Turbulence modelling

PrOblemS References

Viphtl = £V . (u" — Atu” - Vu" + At vV2u")
BCs?
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Semi implicit — non-linear

The incompressible Navier—Stokes equations

1
8—u+u-Vu: —-Vp+vViu
ot 0

V-u=0

Semi implicit approach

1
i yn ] VUZ _ __vpn—i—l i Vv2un—|—1
~ p

non-linear
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Semi implicit — linearised

The incompressible Navier—-Stokes equations Contents

Description of
fluid/solid at different

au v B 1v v2 223 scfa?es .
E _|_ u - u = —; p —|— 1 u ( a) Ili/;r;&eo([j)lfference

Vw0 Q23b) G

Finite Element
Method

Semi implicit approach Monte Carlo Method

Lattice Boltzmann
n Method

1
_|_ un . vUn+1 p— ——an—l_l —|_ yv2un+1 (2243) Smoothed Pa'nrticle
At - ~~ - p Hydrodynamics

linearised

Turbulence modelling

v * un+1 — O (224b) References
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Fully implicit — non-linear

The incompressible Navier—-Stokes equations Contents

Description of
fluid/solid at different

au 1 9 scales
— +u-Vu=—-Vp+rV-au (2253) Finite Difference
at 10 Method

Finite Volume

V - = O (225b) Method

Finite Element
Method

Fully implicit approach Monte Carlo Method

Lattice Boltzmann
n Method

1
n+1 n+l _ _ — n+1 2. n+1 moothed Particle
; +u vu = pvp + Vv u (2263) aydroc?y:arlzics |

V - u*tl = 0 (226b) Turbulence modelling

References

K. Tesch: Numerical Methods




Artificial compressibility method

The incompressible Navier—-Stokes equations Contents

Description of
fluid/solid at different

au Vu = 1v v? 297 Sfa?es .
E _|_ u - u = —; p —|— 1 u ( a) Ili/;r;&eo([j)lfference

Vou—o (o7b)

Finite Element

Method
Explicit forward difference in time Monte Carlo Method

Lattice Boltzmann
Method

1
_|_ un . V'un p— ——an —|_ Vv2un (2283) Smoothed Pa'nrticle
At /00 Hydrodynamics
Turbulence modelling
— P

At

n

_"_ v . un — 0 (228b) References
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Projection method

* n Contents

u —u
= —u’"- n 2q™ Description of
At o u vu —i_ Vv u (229) fluid /solid at different
scales

V-u® # 0, BC Finite Difference

Method

Finite Volume

u”t — u* 1 Method

— — — ntl inite Element
L (230) e

Monte Carlo Method

. n+1 _ Lattice Boltzmann
V-u =0, —BC Method

Smoothed Particle

v2p’n—|—1 — _v . u>|< (231) Hydrodynamics

Turbulence modelling
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Decomposition method

1
N —u" - Vu" — ;Vp" + V" (232) .

Description of

V - u* # 0 fluid/solid at different

scales

Finite Difference
Method

1
— 4, n__ _ n+1 2™ inite Volume
A = —u"’-Vu pr +vV-u (233) Fnite Vol

Finite Element
Method

un—|—1 L un

Monte Carlo Method

1 Lattice Boltzmann

uc = un+1 - u* — __At v (pn+1 T pn) (234) g/lr:f):i:ed Particle

p Hydrodynamics

Turbulence modelling

1
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Vorticity-stream function formulation

The incompressible 2D Navier—Stokes equations

au 1 5 Contents
— _I— u - Vu = ——vp —I— Vv u (2363) De§cription of_
at 0 fluid /solid at different
scales
8’& 6u inite Difference
QZ — Y — L (236b) Ili/lethoc[i)fF
8:1? &y Finite Volume
Method
2D Helmholtz equation (u, = 3=, u, = —3%) Tt
Monte Carlo Method
aQ Lattice Boltzmann
(%Z +u-VQ, =V, (237a) e ——
Hydrodynamics
v2¢ — _QZ (237b) Turbulence modelling
References
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: A7 2 u” -V = vVEQT (238a)
2 1 1
V2t = —Qnt (238b)
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Transport eqution

Since all the transport equation have common terms, the Contents
. . Description of
general transport equation for a quantity ¢ has the form flid/solid at diffrent
SCales
Of Finite Difference
Method
a p¢ Finite Volume
P0) 4 (pgu) = V- ([V6) +5,  (230)
at Finite Element
Method
Four transport effects can be summarised at least, namely Monte Carlo Method
Lattice Boltzmann
B unsteadiness 2 (po), e
moothe article
| convection v . (p¢ﬂ), Hydrodynamics
B difFUSion v . (Fv¢) Turbulence modelling
- Ref
B overall source term Sy. In the above I' is the

diffusivity for ¢.

K. Tesch: Numerical Methods




Integral form

The integral form of the transport equation over a control Contents
. Description of
volume Vp Is now expressed as fluid/solid at different

scales

Finite Difference

% fv [[ poav + fvﬂ V- (ppu) dV = S—

Finite Element

Method

([[V-@96) av + ([ SodV (240) i com e
Vp Vp

Lattice Boltzmann
Method

Smoothed Particle

where a finite volume Vp and its measure is |Vp]. Hydrodynamics

Turbulence modelling
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Integral form

B the finite volume centroid P located at xp,

B the vector d connects the centroid P with its
neighbour centroid NV,

B the surface Sy is oriented by means of a surface
normal vector S¢ pointing outward and the face S
centroid is located at x;.
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Spatial terms

The order of discretisation is usually equal or higher in Contenis
. . . . . Description of
comparison with the order of the discretised equation. el i) 5t e

scales

Exceptions to this rule are sometimes permitted.
In order to keep the second order accuracy of spatial

Finite Difference
Method

Finite Volume

dicretisation the following variation of ¢ around P is Method
Finite Element
assumed Method
Monte Carlo Method
- Lattice Bol
¢(X) — ¢P —+ (X — XP) . (V¢)P (241) N’Tl(;c;c;]coed oltzmann

Smoothed Particle
Hydrodynamics

This can be proved by means of Taylor series expansion.
Also, the unknown variable ¢p, located at the centroid
xp of a control volume Vp, is calculated as ¢p = ¢(xp).

Turbulence modelling

References
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Volume integrals

In order to transform volume integrals into surface Sezails
: , . . . Description of
integrals the Gauss's (divergence) theorem is applied fluid /solid at different

scales

Finite Difference

IIIV wdV = 9{;6 w - dS (242) :_I':it::f/olume

8VP Method

Finite Element
Method

where dS stands for the differential of the surface area Vonte Carlo Method
vector pointing outward. Now the general transport Lattice Boltzmann

. . Method
equation can be rewritten as

Smoothed Particle
Hydrodynamics

Turbulence modelling

dt fjf ppdV + SEB pou - dS = References

oVp

{prve- s+ fﬂ SydV (243)

oVp
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Volume integrals

- fﬂ podV + (f pou - dS =

Description of
oVp fluid /solid at different

@ I'Vo¢ - dS + jff S¢ dV 244) SF(:I.: Difference

Method
oVp

Finite Volume
Method

The following definition of an average value ¢p of the At e
function ¢ located at the centroid of Vp is assumed

Monte Carlo Method

Lattice Boltzmann

1 Method
¢P = — J:]if qs dv (245) Smoothed Pe'nrticle
’ VP ’ Hydrodynamics
VP Turbulence modelling
The volume integral is expressed by means of the feficiees

averaged value ¢ of unknown function ¢ and the control
volume measure |Vp|. Next, the averaged value is
replaced by the value at Vp centroid ¢p.
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Volume integrals

If the source term S, i.e. the fourth integral in the
general transport equation, depends on the unknown
function ¢ it should be linearised first

Se(@) = Sc + Sp¢ (246)
Subsequently, it can be integrated similarly and the
discretised source terms is now
(247)

[[] Sodv = Sc|Ve| + Sp|Velor
Vp

If, however, the source term S, does not depend on ¢ the
discretised form is simpler since Sp = 0.
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Volume integrals

For the sake of simplicity let us assume further Contents
. ey ege . . . Description of
incompressibility p = const. This assumptions is also il il ol
. . ] scales
valid for gases provided that Ma < 0.3. Furthermore, if Finite Difference
the control volume Vp is constant in time, i.e. is not 2’_'6_1“:'”
Inite volume
deforming, then it is now possible to express the general Method
. Finite Element
transport equation as Method

Monte Carlo Method

d Lattice Boltzmann
¢P ’VP‘ —l_ p @ ¢u dS - g/lr:f):i:ed Particle
oVp Hydrodynamics
Turbulence modelling
@ Fv¢ y dS —I_ SC’VP‘ —I_ SP"/P’¢P (248) References

oVp
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Convection terms

Convection terms involving V - (pou) are already Jeatauts

Description of

transformed by means of the Gauss's theorem and il il ol
Scales
expressed as surface integrals. The surface integral over Finite Difference
. . . Method
the individual surface S; is now expressed by means of o
_ Finite Volume
the vector w value located the face Sy centroid and the Mzl
. . Finite Element
surface area vector Sy pointing outward, namely Method
Monte Carlo Method
Lattice Bolt
[[w-as=w,-s; (249) s pttamar
g Smoothed Particle
f Hydrodynamics

Turbulence modelling

This also means that the vector w distribution over the
surface Sy Is now expressed by means of a single value
Wr.
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Convection terms

Since the boundary 0Vp of a control volume Vp consists
of f planar surfaces Sy, i.e. |J, Sy = 9Vp, the
convection terms is now given by the following
approximation being second order accurate

ﬁgbu dS = Z(/bfuf Sf (250)

OVp

The term ¢suy - Sy is also referred to as a face flux. The
general transport equations is now given by

d
gbp ’VP‘ + PZ@“H Sy =

gf;ﬁ qus - dS + Sc|Vp| + Sp|Vplop (251)

oVp
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Convection terms

What is important, is the fact that the discretised
convection term needs to be interpolated further by
means of cell centred values because the values ¢ are
located at the face centroids. Several methods are in
common use. These include, among others:

B linear interpolation or central differencing (CD),
upwind differencing (UD),

blending differencing,

second order upwind differencing (SOU) or linear
upwind differencing (LUD).
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Convection terms — linear interpolation

A linear distribution of ¢ between two points P and N is Contents
. . Description of
assumed. This leads to the following face value ¢+ fluid /solid at different

scales

Finite Difference

O = fodp + (1= fo)on (252)  Methos

Finite Volume
Method

where the weighting factor f, is a ratio of respective Fiio Eewari
etho
d ISta NCES Monte Carlo Method
f L HXd o XNH (253) Lattice Boltzmann
r HdH Method

Smoothed Particle
Hydrodynamics

This method is known to be second order accurate.
Nonetheless, it may lead to non-physical oscillations for
some convection dominated flows or in the presence of
strong gradients.

Turbulence modelling
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Convection terms — upwind differencing

This interpolation depends on the flow direction u; - Sy. Contents
. . Description of
The face value ¢ is interpolated by means of the il il ol
. . . SCales
upstream node P or N, depending of the flow direction, Finite Difference
namely Hethod
Finite Volume
. Ur - S > O Method
¢f p— ¢P7 f f o 7 (254) Finite Element
¢N7 ufo < O Method
Monte Carlo Method
Boundedness of the solution is guaranteed, however, it Lattice Boltzmann
comes at a price of having to sacrifice accuracy. This is Smoothed Particle

Hydrodynamics

because the numerical diffusion term is implicitly
introduced. Additionally, upwind differencing is only first
order accurate.

Turbulence modelling
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Convection terms — blending differencing

This type of interpolation tries to maintain reasonable Contents
. Description of
accuracy and boundedness of the solution at the same fluid /solid at different

scales

time. Typically, it combines upwind differencing and
central differencing in the following manner

Finite Difference
Method

Finite Volume
Method

¢f e /‘Y¢fCD —|— (1 — f)/)¢fUD (255) Ili/ilgltheOdElement

Monte Carlo Method
Other methods also exist. In the above equation 7 is the Lattice Boltzmann

so called flux limiter also referred to as a blending Q”m“‘t:d Darticle
coefficient. The idea of flux limiter makes it possible, E—
among others, to limit towards first order upwind in

regions of rapidly changing gradients.

Turbulence modelling
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Convection terms — SOU or LUD

Second order upwind differencing (SOU) or linear upwind [C)°“te_“t:_ f
. . . . . . escription o
differencing (LUD). More information is required than the fludsold at diferent
nearest neighbours of the control volume. This leads to Finite Difference
. Method
hlgher_orde.r accuracy. The face value ¢ depends on the I
flow direction and is interpolated by means of two the Method
Finite Elemen
upstream nodes P, PP or N, NN Method
Monte Carlo Method
Lattice Boltzmann
l L . . Method
¢f — ¢P _|_ 2 (¢P ¢PP) ! Uf Sf > 07 (256) Smoothed Particle

Hydrodynamics

On + 5 (On — dnn); up- Sy <0

Turbulence modelling

References

LUD interpolation is second order accurate and
unbounded.
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Convection terms — limiters

Flux limiter formulation (us-S; > 0) Contents

Description of
fluid/solid at different
scales

¢f = ¢p + %@D(T) (¢P - ¢Pp) (257) Finite Difference

Method

Finite Volume

. . . . . . . . Method
where 9 is a limiter function. The limiter ¢ is a function -
inite Element
of gradients ratio r (1D version) Method
Monte Carlo Method
Lattice Boltzmann
N — 9P

(258) Method

Smoothed Particle

¢P T ¢PP Hydrodynamics

Turbulence modelling

General 3D version

References

r =2

Q.| A

—1 (259)
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Convection terms — TVD
Total Variation Diminishing

Y =1, SOU

¥ =1, SOU

¢ =0, UD

K. Tesch; Numerical Methods
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()2

TVD conditions:

B 0<y(r

< 2r,

B 0<y(r)<2
Second order TVD conditions:
B 0<¢(r)<2r rel0;1],

1 < 9(r)
0 < Y(r)
(1) =1

<r rell;2],

<2, r>2,
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Convection terms — NVF
Normalised Variables Formulation

~  ¢c— YU
P = o o0

(261)

NN

T
S
SO
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Convection terms — NVD
Normalised Variables Diagram

NVD conditions: Contents

Description of

1 B qu is continuous, i sl . i
. Gl <ldcelnt  fmpe
B ¢s(oc) = oc, ¢c ¢ (0;1] Fnite Volume
: Second (or above) order NVD con- Finite Element
" ; ! ditions: Monte Carlo Method
m all above, Method

B ¢:(0.5)=0.75 oo rartcle

Turbulence modelling
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Convection terms — example
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Convection terms — UD

Upwind Differencing (First Order Contents
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o ¢<T) — O Method
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Convection terms — UD
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Convection terms — SOU

Second Order Upwind (Linear Up-

| b y‘“& wind Differencing)
) ¥ =1, SOU ¢<T) — 1
0 / ¥ =0,UD m Not TVD, not NVD,

. B 2" order
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Convection terms — SOU
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Convection terms — QUICK

Quadratic  Upwind Interpola-

1 tion Ttor Convective Inematics
7 o for € ki .
(Quadratic Upwind Differencing)
& For a uniform mesh
4 3 3 1
: 1 Qf = §¢D + Z¢C — éCbU
7
B not NVD,
m 3" order
- 3 -
Pf(pc) = 3 (1 + 2¢C)
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Convection terms — QUICK
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Convection terms

- LD

Linear Differencing (Central Dif-
5 ferencing)

{ /¢1,SOU U(r)=r

0 / ¥ =0,UD B Not TVD, not NVD,
' B 2" order

s | bs(dc) = % (1 + 50)
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Convection terms — LD
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Convection terms — minmod

: v =2 Y(r) = max(0, min(1,r))

Y =1, SOU

/ m TVD, NVD,
0 $=0,UD B 2" order,

0 L 3 B piecewise linear

< /.~ ~
%¢CS 0 < oc < %
o or(dc) = {5 (14 d0); 3<do <1,
0 S 1 \505 otherwise
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Convection terms — minmod

Contents

Description of
fluid /solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

1.2 ] 1.2F ‘ B

exact

09 = 09 minmed Turbulence modelling
References
< 06| . < 06| ]

03 B exact N 03 B N
—— minmod
0 b . | | : ‘ 0k | | ; : ‘
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
X X

K. Tesch: Numerical Methods




Convection terms — superbee
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Convection terms — superbee
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Convection terms — UMIST
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Convection terms — UMIST
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Convection terms — MUSCL

Monotonic Upwind Scheme for
3 5 D Conservation Laws

’ | / Y (r) = max(0, min(2r, %—I—%r, 2))
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Convection terms — MUSCL

Contents

Description of
fluid /solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle

L2 N L2 e‘xact h Hydrodynamics
0.9 . 09 Musel ] Turbulence modelling
References
< 0.6 8 < 0.6} N
03 B exact N 03 | n
MUSCL
0 b : | | : ‘ 0k | | : : ‘
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
e xr

K. Tesch: Numerical Methods




Convection terms — van Leer
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Convection terms — van Leer
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Diffusion terms

Diffusion terms involving V - (I'V¢) are treated in the coments
. escription o
same way as convection terms fluifl/solid at different
scales
Finite Difference
Method
ﬁ Fv¢ dS Z F‘f v¢ (265) Finite Volume
an Method
. . . . . Finite Element
Most importantly, the discretised diffusion term needs to Method
. Carlo Method
be interpolated further by means of cell centred values. Monte Larlo Methe
. . . . . Lattice Boltzmann
The spatially discretised general transport equations is Method
. Smoothed Particle
now given by Hydrodynarics
d¢ Turbulence modelling
P Z
’VP| _|_ p ¢fuf Sf — References

> Iy <v¢>f .S; 4 Sc|Vp| + Sp|Vplop  (266)
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Diffusion terms

If the considered mesh is orthogonal the dot product of Contents

. Description of
the face centred gradient (V¢), and surface normal flid/sold at different
vector S¢, being in fact the surface normal gradient, is o Drfferonce

Method

calculated according to the following equation

Finite Volume
Method

¢N — ¢P Finite Element

(ng)f . Sf — HSfH (267) Method

Hd H Monte Carlo Method

Lattice Boltzmann

which takes under considerations two two centroids P s
Smoothed Particle

and N values around the surface S;. This approach is Hydrodynamics

the central difference approximation of the first order iR lencelnodel g
. . . Ref:

derivative and is know to be second order accurate.
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Diffusion terms

For generic non-orthogonal meshes a correction is

Contents

introduced. The two contributing parts are considered Description of
based upon the following decomposition S; = S, + k. e o cerent
Here, S is parallel with d. Finally, the corrected rnite Difference
equat|0n |S ¢ . ¢ Finite Volume
N P Method
(VQS)]C | Sf N HdH HSJ_H —I_ (v¢)f . k (268) Finite Element
Method
The right hand side of the above formula represents the tomia oy o
. . Lattice Boltzmann
orthogonal and non-orthogonal contributions. The latter Viethod
requires the face centred gradient interpolation. This is oo rartcle
usually achieved by the linear interpolation of cell centred Turbulence modelling
gradients (V¢), and (Vo)y, i.e. References
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Diffusion terms

Contents

(Vo) ; = fo (VO)p + (1 — f2) (Vo) y (270)  oesripionor

Two most commonly met methods of cell centred

Finite Difference

gradients evaluations are Gaussian integration and least Hezdnod
Finite Volume

squares method: Method
. . . Finite Element

B Gaussian integration, Method

Monte Carlo Method

B |east squares method.

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Diffusion terms — Gaussian integration

Gaussian integration. Cell centred gradients are evaluated

by means of the Gauss's theorem for w = ¢c where ¢ Contents
Description of
stands for a constant vector fluid/alid at different

scales

fff VodV = @ ¢ dS (271) Finite Diference

Finite Volume
oVp Method

Finite Element
Method

These terms are converted by means of Gaussian
integration. Secondly, the average value of V¢ is
replaced by the cell centred value (V¢),

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

(Vo = Vi H VedV =
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Diffusion terms — least squares method

Eq u at|on Contents
Description of
fluid/solid at different
¢N — ¢P =+ (XN o XP) ’ (V¢)P (273) scales
. Finite Difference
allows for extrapolation of the values ¢p by means of e
. . . . . Finite Volume
their gradients (V¢)p to the neighbouring points ¢ . Method
Introducing the following vector connecting point P with rnite Element
|tS nEIgthurS N, namely dN — XN - XP, |t |S now Monte Carlo Method
possible to provide N equations Lt Bl
Smoothed Particle
Hydrod i
dN . (V¢)P — ¢N L ¢P (274) ydrodynamics

Turbulence modelling

References

where N stands for the total number of neighbours of P
and is always larger or equal four. This is because the
simplest polyhedral volume consists of four faces.
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Diffusion terms — least squares method

Since N is larger than the three components of the Centents
. .. Description of
gradient (V¢)p to be computed, it is necessary to flid/sold at different
. . . ] scales
minimise the sum of the square of weighted errors for all P ———
N neighbours. In order to find the gradient (V¢)p a —
. . . Finite Volume
linear system of equations is formulated Method
Finite Element
Method

A . (V¢)P — y (275) Monte Carlo Method

Lattice Boltzmann
Method

where known N x 3 matrix is A = (dy,...)", the TSI
unknown 3 x 1 gradient is (V¢)p and finally the known P

. Turbulence modellin
N x 1 vectorisy = (¢ — ¢p,...)" -

References
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Diffusion terms — least squares method

The sum of squared residuals or the the norm to be Contents
. e . . . Description of
minimised is defined by fluid /solid at different

scales

Finite Difference

|A-(Vé)p —vI* = =

Finite Volume

Method

Z (dN ) (v¢)P T (¢N T ¢P>)2 (276) IIi/';nJicthe dElement
N Monte Carlo Method
Finally, the unknown gradient (V¢)p is the solution of Miethod
the following linear equations system Er;;’rﬁffai?fsic'e
T T Turbulence modelling
<A ) A') ) (v¢)P — A‘ ) y (277) References
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Temporal discretisation

Time dependent (transient) problems require temporal [C)°“te_“t'°j f
. . . . escription o
discretisation of the general transport equation. il il ol
scales
Integration it with respect to time from ¢ to ¢t + At T —
|t . Method
resuits in Finite Volume
Method
t+At d¢ t+At Finite Element
p Method
p‘VP‘ dt dt — f _p : :qbfuf ) Sf dt—|_ Monte Carlo Method
4 4 f Lattice Boltzmann
A A Method
t+AL t+At

Smoothed Particle

f ZF]L‘ (v¢)f . Sf dt_l_ f (SC‘VP‘ _|_ SP’VP‘¢P) dt Hydrodynamics
f t

Turbulence modelling
t

References

(278)

The right hand side of the above represents the time
integral of all the spatial values.
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Temporal discretisation

The following abbreviations are assumed: Contents

Description of

. fluid /solid diff
B the new value @57 = ¢p(t + At), i.e. value the fluisolid at different
solver is calculating for, Fints Difftence
. ] ethod
B old value ¢} = ¢p(t), i.e. known from the previous Firie Vislie
. Method
tlme Step’ Finite Element

B old old value gb"]g—l = ¢p(t — At) known from the Eeti"dc —
time step prior to the previous. tice Bottamann

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Temporal discretisation

The left hand side of the dicretised equation can be SealEE

Description of

evaluated directly and the right hand side integrand is fluid /solid at different

scales

denOted das f(¢f, ¢P) Finite Difference

Method

Finite Volume
t+At Method

p( ?fl — ¢7175) ‘Vp‘ = f f(be(t), ¢P(t)) dt (279) St =emer

Method

Monte Carlo Method

Lattice Boltzmann

This time, however, the right hand side cannot be Method
integrated directly. This means that it has to be oo rartcle
approximated by F'(¢¢, op)At. Above equation now T mekf:
Fea d S References
n+1 _mn
o Oy = Plop0r)  (280)
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Temporal discretisation

Several treatments of the spatial derivatives in a transient
problem are possible. The most popular are:

B explicit Euler,

B implicit Euler,

B Crank—Nicolson (linear interpolation),
B backward differencing.

Euler methods as well as Crank—Nicolson method require
only values of the unknown function at two different times
2+t and ¢ and are referred to as two-level methods.
Backward differencing is the so called three-level method
because it require the values of the unknown function ¢p

: : +1 ~1
at three different times, namely ¢'2"", ¢ and ¢ .
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Temporal discretisation — explicit Euler

The right hand side of previous equation is approximated
explicitly by means of old values ¢™ which is denoted as
F'(¢%, ¢p). The discrete version of the general transport
equation Is

n—+1

_¢n .
f

er (Vo) - Sy + Sc|Ve| + Sp|Vplep (281)
f

The method is first order accurate in time. However, it is
also unstable if Co > 1. Despite this, explicit Euler
discretisation is very easy to implement and does not
require substantial computer resources.
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Temporal discretisation — implicit Euler

This time the right hand side of previous equation is

approximated implicitly by means of current values ¢! [C)°“te_“t-°_* f
. . escription o
WhICh IS denoted as F(gbm_l n+1) The d|screte version fluid /solid at different

scales

of the general transport equation is

Finite Difference
Method

Finite Volume
'”+1 Method

p ¢P ‘VP‘ _|_ /0 Z ¢n+1uf y Sf — Finite Element

Method

Monte Carlo Method

Z Ff qu n+1 Sf + SC‘VP’ + Sp‘Vp‘én—H (282) Lattice Boltzmann

Method

Smoothed Particle
Hydrodynamics

The method is first order accurate in time and is Lurbulence modefling
unconditionally stable in contrast to explicit method. Reeenees
Implicit Euler discretisation is more complicated to

iImplement in comparison with its explicit formulation and

requires iterative approach.
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Temporal discretisation — Crank—Nicolson

Formally, the method utilises the trapezoid rule. This is Contents
. . . Description of
equivalent to an arithmetical average of current and old il il ol
SCales
Va|ueS Finite Difference
Method
n+1 n n+1 n+1 Finite Vol
— b F9F08) + F (9] ) (opz) e
IO At ’ P’ o 2 ( ) Finite Element

Method

Monte Carlo Method

The method is known to be second order accurate in time .
o Lattice Boltzmann
and unconditionally stable. lfzied

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Temporal discretisation — backward differencing

The integrand =; d¢P of the left hand side of the previous
equation is dlscretlsed first rather than being evaluated Descrintion of
direCtly Zl:ailde/ssolid at different
dop 3gbn+1 40 + gb?’)_l Finite Difference
— = (284) Method
dt 2At Finite Volume

Method

Contents

Now the left hand side of the previous equation can be
integrated. The implicit discrete version of the general
transport equation Is

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particl
3007~ A0h + 0 ot
= !V \+p§ ¢y - Sy =
2At P f f Turbulence modelling

References

Z L'y (v@?H Sy + SC\VP’ + Sp|Vp|op™  (285)

f . .
The method is known to be second order accurate in
time.

K. Tesch: Numerical Methods




The method in 2D

Let us consider differential form of the general transport Contents

Description of

eq Uation fluid /solid at different

scales

Finite Difference

0 Method
% +V - (ppu) =V - (I'Ve) + S, (286) Finite Volume

Finite Element

To obtain the integral form of this equation one needs etho
' ' ' - - Monte Carlo Method
Gauss's (divergence) theorem. Two dimensional version onte Carlo Metho
) Lattice Boltzmann
has the following form Method

Smoothed Particle

Hydrodynamics

ff V - W dQ == W - dL (287) Turbulence modelling
Q; o+

References

where d{) = drdy and dL =ndL =%dy — 3dx
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Integral form in 2D

Integrating over the two dimensional domain (finite S

‘'volume') €2; and utilising Gauss's theorem results in Description of
fluid/solid at different
scales

Finite Difference

d - Method
T fo po d€2 + bt pou - dL =

Finite Volume
Method

Jyor VO AL+ [[ 5,d0 (288)  fucgerr

Monte Carlo Method

First and last integral in the above equation suggest the rattice Boltzmann
following definition of an average ¢; value of f over (), Smoothed Particle

Hydrodynamics

Turbulence modelling

- 1
¢’I: — m f Q, ¢ dQ (289) References

The average value ¢; is typically located at the centre of
the volume ().
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Spatial discretisation in 2D

The next step would be the spatial discretisation over the
volume €); boundary 0€);. The line integral represents the
total flux out of volume €2; and is replaced by a sum

Yo W dL ~ %: wi - AL (290)
Boundary 0f2; consists of lines indexed by subscript k.
There are at least three lines (triangle). The vector w is
either pu or I'V¢. Because that vector w is typically not

constant along each line it has to be approximated by a
single value wy, at the centre of each line.
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Time discretisation

The last step would be time discretisation. Among many

Contents

possibilities the simplest is the first order forward finite St o
. . . fluid /solid at different
difference approximation scales
- Finite Differen
d¢@ ¢n—|—1 ¢;’L (291) MetheOd erence
~ Finite Vol
Y
Time step of this approximation is denoted here as At. e Slement
Finally, one gets the following discretised version of Monte Carlo Method
transport equation (i.e. Finite Volume Scheme) Lattice Boltzmann
¢n_|_1 an Smoothed Particle
— Hydrodynamics
p ‘Q ’ —"_ p Z ¢u ALk o Turbulence modelling

References

Z (TV ), - ALy + Seil€%[  (292)
k
€2;| stands for the area of control volume §2;
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2D FVM diffusion problem

Two dimensional and steady state diffusion equation of a Contents
. . . Description of
f quantity arises, as previously, from the general fluid/salid ot cifferent
. . . . . Scales
transport equation (convection-diffusion equation) Firite Difference
Method
Finite Volume
v . (FV¢) _I— S¢ — O (293) Method
Finite Element

Method

If the diffusion coefficient is constant I' = 1 and the Monte Carlo Method

source term Sy = a then the above equation simplifies to Lattce Boltzmann
Metho
Smoothed Particle
V y VQb —I_ a = O (294) Hydrodynamics

Turbulence modelling

or V3¢ = —a which is Poisson equation. References
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2D FVM diffusion problem

The discrete version of the diffusion equation (simplified
version of general transport equation) is

Y (DV¢),, - ALy, + S4i5|€5) = 0 (295)
k

For a structural and Cartesian mesh (next slide) the
normal AL vectors are
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2D FVM diffusion problem
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2D FVM diffusion problem

The discrete version of two dimensional diffusion equation S

IS NOW Description of
fluid/solid at different

scales
a¢i+ %] A F a¢1]+ 1 a¢l_ ij A Finite Difference
Y; + i Yi— Method
Ox oy Ox —
Finite Volume

a . Method

Psi 1 _
I’ 0; 2Ax; + Sgbz’j‘Qij‘ =0 (297) e

where the area of volume €2;; is |Q2;;| = Ax;Ay; and the
diffusion coefficient is constant I' = 1. If so, then

I'

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

a¢+ 1 . a¢ .1 a¢ 1 - Turbulence modelling

. 59 A ) —|_ Zj+§ ACE - Z_§J A ; eferences

Ox & oy ‘ Ox & .
a¢m—%

dy
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2D FVM diffusion problem

The average value of Sy at the centre of finite volume is
approximated by means of known values of S, at the
boundary of finite volume

_ 1
Seij = A (Sm'—%j—% T quiJr%j—% pi-ij+3 T S¢z‘+§j+%)
(299)
Derivatives at the boundary of finite volume are
approximated by means of the second order scheme as

01, - Cir1j — Pij _ Pir1j — Pij (300a)
Ox Lit15 — Lij ACUz'+1

8¢ij+% -~ Dij+1 — Pij _ Gij+1 — Pij (300b)
y Yij+1 — Yij ij—l—l
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2D FVM diffusion problem

~ = 301
Ox Lij Li—1; Aﬂﬁi_l ( a)
0@]'—% -~ Gij — Gij—1 _ Gij — Pij—1 (301b)
0y Yij — Yij—1 ij—1

The specific form of a finite volume scheme is now

Cbz'—UAyz ¢z+13Ayz Cbzg 1Az,
Az AT ij 1
il —+———"—+ —— =0 (302

(b‘?(A%l Ariyr Ay A:‘/JJrl (302)

¢z]—|—1sz
ij+1

S@'j AZE’szZ +
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2D FVM diffusion problem

It can also be rewritten to give ¢;; as a function of .
ontents

Surrounding Varlab|eS Description of
fluid/solid at different
scales

sz'—lj Ayi sz'—l—lj Ayi qbij_lACEi ¢29+1 AZEz Finite Difference
¢. o Aa:i_l —|_ ACEZ'+1 —|_ ij—l _|_ Ayg+ —I_ S¢’L] AxlAyZ I\/.Ietchod
1] Ayi —I— Ayi —|— Ax; Azx; Ili/llr(;lt‘cheoz]/olume
Ax;_1 Axiiq Ay; 1 Ayjt1

Finite Element

(303) Method

Monte Carlo Method
Lattice Bolt
For AZEZ = Ayz = Aﬂfi_l = ACIZ’H_l = Ayi—l = Ayi—{—l = h I\/Zlaetllwcoed ermann
(i.e. uniform mesh) the finite volume scheme reduced to Smopthed erice
L. . . . ydrodynamics
a finite difference scheme for Poisson equation

Turbulence modelling

References

i—1j T Qit1j + Qij— ij S pij 1
¢ij _ 0 1j—|—¢+1g+¢j41—|—¢3+1—|—5¢] (304)
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2D FVM pseudocode

Data: Read volumes data and BCs
Create nodes and ghost nodes;

n = 1;
repeat
R :=0;

for::=2to 7,,,,, — 1 do
for j :=2 to j,0: — 1 do

¢n+1 .
1] T
mn n mn n
Pi—152Yq ¢¢+1jAyz’+¢z‘j—1A%‘+¢¢j+1A=’Bz‘ 48, Aas A,
Aazi_l Aml—l—l ij 1 ij+1 qﬁl.] 1 1
Ay,i Ay'l, A:B,L ACB,L '

Az; 1 Az;iq  Ay;_1  Ayiyqq

R := max (]gb:?rl — O ,R>;

Update ghost nodes;
n:=n-+1;
until n < nyee and R > Roin;
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Nonuniform and uniform volumes and nodes

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] Contents
: : : : : : : : : : Description of
ol . . . . . o * y y y y y y g . . fluid /solid at different
scales
el o | . . e e le]e R R R Finite Difference
[ [ ] [ ] [ ] [ ] [ ] [ ] [ [ [ MethOd
ole| o o o o o o |ofe Finite Volume
° ° ° ° ° ° ° ° ° ° |\/|ethod
. . . . . . . . . . Finite Element
ole . ° ° ° ° ° ol o Method
* ¢ ¢ ¢ ¢ ¢ ¢ * * * Monte Carlo Method
1° e * ° ° * N o o o o N o N o o o Lattice Boltzmann
Method
S PR . . . . T s ¢ ¢ ¢ ¢ ¢ ¢ ¢ y y y Smoothed Particle
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Results for nonuniform and uniform mesh
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Results for nonuniform and uniform mesh
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1D FVM diffusion problem
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Finite Element
Method

Azy Az pn Monte Carlo Method

Lattice Boltzmann
Method

Zo TN+1 Smoothed Particle
L1 L2 L3 = TN Hydrodynamics

Az Az pn Turbulence modelling

References
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1D FVM diffusion problem

One dimensional and steady state diffusion equation of a
f quantity arises from the general transport equation
(convection-diffusion equation)

N09) L G (pug) = V - (IV9) + 5,

. (305)

If the diffusion coefficient I' is constant then the above
equation simplifies to
V- (I'V¢)+ Sy, =0 (306)

or more precisely

(307)
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1D FVM diffusion problem

The integral form of one dimensional diffusion equation Contents
. Description of
takeS the fO”OW”]g form fluid /solid at different

scales

Finite Difference

it d¢ Method
Bk o+ 2 ..
f d,’L' ( dx‘) dx —|_ j S¢ dx o O (308) Finite Volume

L1 Method
=3

Finite Element

Method
There is no need to take advantage of Gauss's theorem. onte Carlo Method
This is because the first term can be integrated directly Lattice Boltzmann
etho

Smoothed Particle
d¢ d¢ ~ Hydrodynamics
( d:lj) 1 - (Fd_aj> .1 —|_ S¢z sz — O (309) Turbulence modelling

2 2 References

where Az; =z, 1 — x;_1
2 2
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1D FVM diffusion problem - Dirichlet BC

The average value of S at the centre of finite volume can Contents
. . Description of
be approximated by means of trapezoidal rule by means lid/sold a diferent
. . scales
of known values of S at the boundary of finite volume o Drfferonce
Method
- Spio1 + Syl Method
Spi = ? 2 310
Ji — ( ) Finite Element
2 Method
. Monte Carlo Method
Let us ConSIder ODE Lattice Boltzmann
Method
Smoothed Particle
y//(gj) —I_ 203: — O (3].].) Hydrodynamics
Turbulence modelling
subjected to the Dirichlet boundary conditions References

y(0) = y(1) = 0. The specific solution is

y(z) = —— (2" —2) (312)
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1D FVM diffusion problem

In other word, the diffusion coefficient I' = 1 and source

term Sy = 20z. If so, then discrete version of one Contents
. . . . . . Description of
dimensional diffusion equation is now fluid/solid at different
scales
Finite Difference
d¢’i—l—l d¢i—l — Method
— 2 + S¢Z sz — O (313) Finite Volume
d:C dZE Method
Finite Element

Method

Derivatives or diffusive fluxes at the boundary of finite
volume are approximated by means of the second order ctice Bofeamann
scheme as —

Smoothed Particle
Hydrodynamics

Monte Carlo Method

d¢z—|—% ~ ¢7j_|_1 - ¢7, (3143) Turbulence modelling
dilj' $i+1 _ '/EZ' References
do;_1 ¢, — o,
=3 () 1—1
—2 314b
dx Ti — Tij_1 ( )
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1D FVM diffusion problem

The specific form of a finite volume scheme is now

Git1 — Qi i — Qi

Liv1 — Iy Xy — Lj—1

+ Sy Az =0 (315)

It can also be rewritten to give ¢; as a function of
surrounding variables

AT Qi1+ AT 1P + §¢¢A$¢—1A$i+1A$¢
B Azi_1+ Awiq

Gi
(316)
where Az, 1 = x; — x;_1 and Az, 1 = ;41 — x;.
For Az, 1 = Ax;; 1 = Ax; = h (i.e. uniform mesh) the
finite volume scheme is reduced to a finite difference

scheme .
_ Gi—1 + Qit1 + Sgih
2

Pi (317)
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1D FVM pseudocode

Data: Read volumes data and BCs Contents
Create nodes and ghost nodes; S
n — 1 scales
T Finite Difference
repeat Method
R=0, e
for 7: :: 2 to /l:max - 1 do :i/ilgltheOdElement
¢n+1 = Ami+1¢i_1+Awi_1¢i+l+SCMA$Z._1A$H—1A3% ’ Monte Carlo Method
¢ 1 Awi_1+Axi+1 Lattice Boltzmann
R := max (\gbwr — o7, R); Method
¢ ¢ Smoothed Pe'nrticle
Update ghost nodes; Liydliodynees
Turbulence modelling
n:=n-+1;
References

until n <n,,,, and R > R,....;
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Results for nonuniform and uniform grids

1.5
Contents
Description of
1 fluid /solid at different
scales
= St DT
Method
0.5
Finite Volume
Method
0 } } } ‘ Finite Element
Method
0.2 0.5 0.72 0.92
T Monte Carlo Method
15 Lattice Boltzmann
Method
Smoothed Particle
1 Hydrodynamics
Turbulence modelling
N
References
0.5
‘ o } @ } @
0

0.13 0.38 0.63 0.88
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1D FVM diffusion problem - Neumann BC

Let us consider the same ordinary differential equation Contents

Description of
fluid/solid at different

y"(x) + 202 =0 (318) ==

Finite Difference
Method

subjected to both the Dirichlet y(0) = 0 and Neumann Finite Volume
/(1) = 0 boundary conditions. The specific solution is Finice Element
now

Monte Carlo Method

2
y(,fl:) — —103:‘ <Q; — 1) (319) k/?;ELC:dBdtzmann

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Results for nonuniform and uniform grids

6 Contents

Description of
fluid/solid at different

- 4 scales

Finite Difference
Method

2 N
Finite Volume
Method

O ® i ® i ® —® Finite Element

0.2 0.5 0.72 0.92 Method
€T Monte Carlo Method

Lattice Boltzmann

6 Method
Smoothed Particle
Hydrodynamics

4

> Turbulence modelling

References

2

0 ‘ o } @ } @

0.13 0.38 0.63 0.88
xT
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Method of weighted residuals

The mathematical foundation of the finite element
method is in the method of weighted residuals.
Imagine ordinary differential equation

y'(z) + 20z =0 (320)

subjected to boundary conditions y(0) = y(1) = 0. The
exact general solution of this equation is

10
y(r) = ——a° + Ciz + C,

: (321)

and a specific solution subjected to boundary conditions

10

5 (@ =)

y(x) = (322)
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Method of weighted residuals

The method seeks an approximate solution ¥ in the
general form

Contents

N Description of
fluid /solid at different
y(x) = E C;N;(x) (323) sl
Finite Difference
1=1 Method
where N, are known trial functions which should be it s

Method

continuous and fulfilled boundary conditions. The
constants C; are unknown and they will be determined. A
residual [? appears when substituting approximate ttice Boftamann
solution ¢ into the differential equations Method

Smoothed Particle

Finite Element
Method

Monte Carlo Method

R(aj) - :g”(x) —I_ 20:6 # O (324) :Z:::Iiir::aemniwcosdelling
The unknown Cj; constant are determined for: =1,... N References
from
1
fo Wi(z)R(z)dz = 0 (325)
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Method of weighted residuals

Contents

1
|, Wi@R@de =0 i=1,... N (326) peserss
scales

Choices for the weighting functions W} Finite Difference
Method

B Collocation method W;(x) = 0(x — x;) P Vil

. SUbdoma|n methOd Finite Element
Method

WZ(IL‘) — H(CE - xi_l) - H(:Ij B CEZ) Mo;te Carlo Method

. Galerkin,s methOd Wz(x) — NZ(CI;) Lattice Boltzmann

Method

Smoothed Particle

1
JO N’[, (Z[})R(ﬂj) daj — O 7/ — 17 e N (327) Hydrodynamics

Turbulence modelling

M Least Squares Method W;(z) = 2£ References

oC;
1 OR ,
OaOiR(x)dx:O i=1,....N (328)
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Method of weighted residuals - example

A polynomial trial functions can be assumed
N(z)=2x2"(z —1)° (329)

It is continuous and fulfils boundary conditions. Just one

trial function for r = s = 1 is the simplest case
Ni(z)=x(z —1) (330)

The approximate solution §j(z) = ;' , C;N;(x) where
N =1 takes the following form

Residual may now be expressed as
R(z) =2C; 4+ 20z # 0 (332)
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Method of weighted residuals - example

The unknown constant C'; may be determined upon
integrating (Galerkin's method of weighted residuals)

fl r(x —1)(2C) 4+ 20z)dz =0 (333)

0

This gives —%(5 + C}) = 0 and allows to determine

(1 = —5. The approximate solution is now

y(r) = =bz(xr — 1) (334)
and can be compared with the exact solution

y(z) =~ (& — ) (335)
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Method of weighted residuals - example

The simplest case with just one trial function Contents
. . Description of
approximates the exact solution more or less acceptably. fluid/salid ot cifferent
. . . . scales
Better agreement is possible with more than one trial

functions. »
Finite Volume
1.5 Method

Finite Difference
Method

Finite Element
it Method

1 Monte Carlo Method

Lattice Boltzmann
D
Method

0.5 Smoothed Particle
Hydrodynamics

Turbulence modelling

0 0.2 0.4 0.6 0.8 1 References
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Method of weighted residuals - example

The two polynomial trial functions can be assumed
Ni(z)=x(x—1), Ny(z)=2*(x—1) (336)
Both are continuous and fulfil boundary conditions. The

approximate solution §(z) = >_. | C;N;(z) where N = 2
takes the following form

§(z) = C1Ny(2) + O3Ny(2) = Cy(2° — ) + Co(a® — 2?)
(337)
Residual may now be expressed as

R(x) =2C7 +2C5(3x — 1) +20x # 0 (338)
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Method of weighted residuals - example

The unknown constants C', Cs; may be determined upon [C)°“te_“t5_ f
. . escription o
|ntegrat|ng quiId/sIZIid at different
1 Finite Difference
Method
fo r(xr —1)(2C) + 2053z — 1) + 20x)dx =0 S—
etho
1 »
[(ea— D+ 206r - 1) + W) de =0 s
Monte Carlo Method
This gives 10+ 2C, + Co =0 and 1+ 10 + 2Cy = 0 Method
and allows to determine '} = (5 = —%. The Smoothed Partcl
approximate solution is now Torbalence modelling
References
. 10
y(zr) = —gx(x —1)(x+1) (339)
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Method of weighted residuals - example

The case with two trial function approximates the exact Contents
. . . Description of
solution very well. It is far better that the previous case. lid/sld at diferen
. - - . . scales
There is no visible difference. In fact, it is even the exact o Differoce
solution Method
Finite Volume
10 10 Method
Finite El t
_§ZE(I’ - 1)(1’ —|— 1) o _§(x3 L Qj) (340) Mr;theOd emen

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Method of weighted residuals - comments

B The method of weighted residuals constitutes
foundation of the final element method

B The method exploits an integral formulation to
minimise residual errors

B Trail functions of this method are global. It is usually
difficult task to find a proper one that satisfies
boundary conditions. The more dimensions the worse.
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‘Element’ formulation

The approximate solution is expressed as

Ye = YiN1(x) + yj41NV2(z) = N - y. (341)

where the known local trial functions N and the unknown
nodal values y. are collected as vectors

N = (Nl, NQ) (3423)
Ye = (Y5 Yj+1) (342b)
The local trial functions are simply a linear interpolation
Nl — Lt — L j S X S Ljt1 (3433)
Li+1 =&
N2 — el L S X S Lj+1 (343b)
Li+1 = &
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‘Element’ formulation

For each element we have the Galerkin residual condition oz

Description of
fluid/solid at different

Ti+1 . scales
. NRdz =0 J = 1’ T N (344) Finite Difference
J Method
] ] ] ] ] . Finite Volume
Taking under consideration our differential equation Method
: : N e Finite Element
y" + 202 = 0 and the approximate solution . it is now Method
possible to express the residual as Monte Carlo Method
Lattice Boltzmann
Method
LTj+1 d2 Ae Smoothed Particle
N d 5 —|_ 203: d:l:’ — 0 (345) Hydrodynamics
i x Turbulence modelling

References

The second derivative has to be replaced. This is due to
linear nature of the trial functions.
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‘Element’ formulation

Integration by parts makes it possible to replace the Contents
. . Description of
SeCOHd der|Vat|Ve fluild/solid at different
scales
A €T, ~ Finite Differen
dye Ak zj+1 AN dy. Tj+1 Method
N d B d d dx + NQOCC dx — O Finite Volume
£ T T L AL i Method
Finite Element
(346) Method
Finally, matrix form of the Galerkin residual condition for ot Gl i
each element is now Lattice Boltzmann
Method
' Smoothed Particle
Tj+1 dN dN Tj41 d@e Lj+1 Hydrodynamics
j d d dx ) Ye — NQO:U d.flj —‘l_ N d Turbulence modelling
Z;j h T Z j i

Z 5 References

j=1,...,N (347)
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Element equations

The so called ‘stiffness’ matrix for each element e may be
introduced

zj+1 AN dN
K., = d 348
The above matrix is symmetric. The so called
‘displacement’ vector is also introduced
Tiy1 dAe LTj+1
F.— [ N20zde + N dy (349)
T T z;

The Galerkin residual condition for each element may
now be written as

(350)
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Element equations

K. =

It is possible to simplify the matrices even further. For
the linear trial functions one gets the ‘stiffness’ matrix

it (ddfgl aNy -y ddf\f) N ( 1 _1)
dNy dNy  dN, dN =

i d:cl dx2 daz2 da:2 Lj+1 — Ly —1 1

(351)
and the ‘displacement vector’
dje |Ti+1
ziv1 ( N120x Ny dz | 2.

]:_“e — jxj <N2205L‘> dLU + NQ% iBg'_|_1 (352)

If the gradients are dropped, as discussed further, we have

10 2ZEJ' + Ljt1 (353)

Fe = —g(aj‘] — xj—|—1) CUJ _|_ 2£Ej_*_1
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Element equations - example

For the interval |0; 1] divided equally into 3 elements we S

have the element matrices Description of
fluid/solid at different

S scales
K1 — K2 — K3 — ( 3 3) (354) Finite Difference

- 3 3 Method

The global assembly process (coupling): Finite Volume
etho

Finite Element

/Klﬂ K112 0 0 \ Method
Ko |57 EC AR KT 0 e oo
O K212 K222 —l_ K§1 K§2 Method :
\ 0 ’ kP K ot
reSU|tS in Turbulence modelling
/ 3 —3 0 0 \ References
-3 6 -3 0
K=1l0 3 6 -3 (356)
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Element equations - example

The ‘displacement’ vector for equally divided interval Gl
Description of
[O, 1] ta ke fOI’m fluid /solid at different
scales
1 Finite Difference
10 _ dy(0) 40 dy(3) 70 dy(%) Method
— 27 dx — 27 o dx — ﬁ T dz Finite Volume
Fy 20 4 dy(3) o 50 , dy(2) B 80 | dy(l) Method
27 dz 2_7 dx 27 dz Finite Element

(357) Method

Monte Carlo Method

After the global assembly process one finally gets

Lattice Boltzmann

Method
Fl m L dy(O) Smoothed Pe'nrticle
1 27 60 dz Hydrodynamics
F F12 _|_ F21 ﬁ 358 Turbulence modelling
o F22 —|— F31 o 12_270 ( ) References
2 80 dy(1
\ £ 0+

K. Tesch: Numerical Methods




System of equations — example

The global (assembled) system of linear equations is Contents

Description of
fluid/solid at different

10 du(0 scales
( 3 —3 0 0 \ /y1\ 7 ZEU)\ Finite Difference
-3 6 —3 0 Yo 60 Method
—_— 27 (359) Finite Volume
O _3 6 _3 yg %70 Method
\ o0 0 -3 3/ \u/ 80 4 dyll) ) ethed
Monte Carlo Method
It cannot, however, be solved yet. This is due to necessity Lattice Boltzmann
of applying the global boundary conditions. These are Smoothed Particle

Hydrodynamics

y1 = ys = 0. Two typical methods of applying them are
discussed further.

Turbulence modelling

References
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Boundary conditions

Extracting only these equations that are related to Contents
. ) Description of
unknown functions y, and y3 for y; = y4 = 0 results in fluid /solid at different

scales

Finite Difference
/. . . \ /\ ( . \ Method
60 Finite Volume
' 1| Y2 o7

6 _3 _ 2 (360) Method

_ 3 6 Finite Element

' . Ys 27 Method
\. . ) ) \) K ) ) Monte Carlo Method

Lattice Boltzmann
Method

or simpler in

Smoothed Particle
Hydrodynamics

6 _3 y2 B % Turbulence modelling
(_3 6 > <y3) o (12270 (361) References

The above system may now be solved to obtain the
unknown values 15, vs.

K. Tesch: Numerical Methods




Boundary conditions

The second method does not change the layout of the Contents
. .. . . . Description of
matrices. However, it involves modification of specific fluid /solid at different

scales

elements by multiplying them by a ‘large’ number. These
elements are located on the diagonal of the ‘stiffness’

Finite Difference
Method

Finite Volume

matrix and corresponding positions of the ‘displacement’ Method
. Finite Element
vector (if non-zero) Method

Monte Carlo Method

/3 107 =3 0 0 \ (y1\ (600\ Lattice Boltzmann
- Y2

N — | & | G2 e

y 27 .
\ 0 0 —3 3. 107) \yz) K 207) Turbulence modelling

References
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ODE FEM pseudocode

Data: Read N elements, nodes and BCs

Create global matrix K and vectors F, y;

fore'—ltoNdo

dN dN
e dr dx

F, = fe N20x dx,
Add K. to K;
Add F. to F;

Apply BCs;
Solve linear system K -y = F’;

K. Tesch: Numerical Methods
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Results - ODE

1 ) 5 Contents

Description of
fluid/solid at different
scales

1 Finite Difference
Method

Finite Volume
Method

0.5

Finite Element
Method

Monte Carlo Method

0 Lattice Boltzmann

0 0.2 0.4 0.6 0.8 1 Method

€T Smoothed Particle
Hydrodynamics

3 elements, 4 nodes

Turbulence modelling

References
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Results - ODE

1 ) 5 Contents

Description of
fluid/solid at different
scales

1 Finite Difference
Method

Finite Volume
Method

0.5

Finite Element
Method

Monte Carlo Method
0 i) Lattice Boltzmann

0 0.2 0.4 0.6 0.8 Method

€T Smoothed Particle
Hydrodynamics

6 elements, 7 nodes

Turbulence modelling

References
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Results - ODE

1 ) 5 Contents

Description of
fluid/solid at different
scales

1 Finite Difference
Method

Finite Volume
Method

0.5

Finite Element
Method

Monte Carlo Method
0 i) Lattice Boltzmann

0 0.2 0.4 0.6 0.8 Method

€T Smoothed Particle
Hydrodynamics

0 elements, 10 nodes

Turbulence modelling

References
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Results - ODE

1 ) 5 Contents

Description of
fluid/solid at different
scales

1 Finite Difference
Method

Finite Volume
Method

0.5

Finite Element
Method

Monte Carlo Method
0 i) Lattice Boltzmann

0 0.2 0.4 0.6 0.8 Method

€T Smoothed Particle

Hydrodynamics
15 elements, 16 nodes

Turbulence modelling

References
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Linear and quadratic interpolation

Ye = a + bxr = Y; +

Considering line equation ¢, = a + bx and utilising it for
two different points (z;, ;) and (241, y,4+1) We can get
the following system of equations

iy = (tom) (e 363
) =G ) G) oo
It can be easily solved for a and b
~1
a I x; Y;
= : 364
<b> (1 %’+1> (%’H) (364

Keeping in mind that y. = N -y, where N = (N, N>)
and y. = (y;,¥y,+1) we can utilise the solution for a and b
to get

Ljt1 — X L — T,

“Yj+1 = N1y; + Nayj

Ljiy1 — Lj Ljit1 — L
365
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Linear and quadratic interpolation

Introducing L, and Ly for a one-dimensional element

Contents

.CCJ'_|_1 — X Description of

Ll — Nl — (3663) fluid /solid at different
xj—i—l — 333 scfa?es .
Finite Difference
xr — Method
_ _ J
L2 - N2 - (366b) Finite Volume
Ljt1 — Xy Method
Finite Element
Method

one can formulate similar system of equation for
quadratic interpolation 9. = a + bz + cz? through the

points (:Ejayj)' (ajj—|—%ayj—|—%) and (ajj—I—lvyj—l—l)

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

y] 1 x] x? a Turbulence modelling
. L 1 T. 1 ZEQ b (367) References
y]—|—§ T J+§ ]24—%
Yi+1 1 i x5,
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Linear and quadratic interpolation

The quadratic
trial  functions
can be also
0 expressed in
terms of linear

0.5

1 ' ' : trial functions
Nl N2 NS
Ny = L4 (2L1 — 1) :
0.5
No =41, Lo,
Ny = Ly (2Ly — 1)
0
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Quadratic interpolation

The ‘stiffness’ matrix for each element e may now be S

Ca|CU|ated as Description of
fluid/solid at different
scales

Lj+1 dN dN 1 7 _8 1 Ili/ilr;jctheo([j)ifference

Ke = dz = —8 16 —8 £
e dr dz 3($j.|_1 — .CUJ) 1 _8 v Ili/llzlt;eozl/olume
(369) IIi/ilZJicthemljlement

The ‘displacement’ vector is now Monte Carlo Method

Lattice Boltzmann
Method

Lj+1 1 O 213] Smoothed Particle

]E?6 = f NQO.CU dx — ?(ij—l—l _ij) 2(£UJ —|_ CCJ_|_1) (370) Hydrodynamics

Turbulence modelling

X xj+ 1 References
The Galerkin residual condition for each element is the
same as previously

K. y.=F, (371)
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ODE quadratic FEM pseudocode

Contents

Data: Read N linear elements, n nodes and BCs

Description of

' ' o TitTi41 fluid /solid at different
Insert midpoints Tj 1= =g IRy
. . Finite Difference
=2n—1; Method
Create global matrix K and vectors F, y; Finite Volume
Method
for € .= 1 to N do Finite Element
dN dN Method
€ dx dx Monte Carlo Method
€ = fe NQO‘/’E d.flj, Lattice Boltzmann
Add K, to K; Method
Smoothed Particle
Add Fe tO F, Hydrodynamics
- Turbulence modelling
Apply BCS' References

Solve linear system K-y = F’;
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ODE - linear vs quadratic interpolation

1.5 1.5 Contents

Description of
fluid/solid at different

1 1 scales
> > Finite Difference
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Mesh refinement

The generalised p-norm is given by

Contents

1 Description of

1o = ([, 1F@)P dz)” (372) ol wtaes

Finite Difference
Method

where for p = 2 we have a special case Finite Volume
Method

Finite Element

Method
HfH2 — \/J\L f2 ('r) dx (373) Monte Carlo Method

Lattice Boltzmann
Method

The error E = y — 1y of a finite element solution §§ may Smoothed Particle
. Hydrodynamics

now be defined by means of 2-norm. It may take the =

following form

Turbulence modelling

References

N
|E'3<C> (374)
e=1
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Mesh refinement

The element residue r. is defined as
e — ’Le’ Hf T A”HZ (375) e

Description of
fluid/solid at different

but due to the linear form of trial functions N, =0 it is =
~1 . . . Finite Difference
true that ¢, = 0. This means that the element residue is Method
¢ = |Le| || f]|2 and solution error Finite Volume
N Finite Element
/112 9 2 Method
HE H2 S C: : ’L€’ HfH2 (376) Monte Carlo Method
— Lattice Boltzmann
Method
Element's length is |L.| = ;41 — x; and utilising the Smoothed Particle

Hydrodynamics

trapezoidal rule we can express the element residue as

— |L. \\/f 2)2dz ~ (2,41 — ;)

The above approximation is used for mesh refinement.

Turbulence modelling

f2 References
5 41 (377)

[\ [GV)
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Mesh refinement - results
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Mesh refinement - results
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Mesh refinement - results
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Mesh refinement - results
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Mesh refinement - results
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Mesh refinement - results
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FEM for Poisson equation

0 Let the two dimensional form Contents

Description of

of the Poisson equation on {2 fluid /solid at different

Q. scales

Finite Difference

82[] 82U Method
e o "o 0 BT e

Finite Element
Method

be subjected to the Dirichlet
boundary condition U(x,y) = 0 for every (x,y) € 0. It
Is true that

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

JIQ f(x,y)dordy = Z foe f(x,y)dzdy (379) Tl medklins

References
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‘Element’ formulation

The approximate solution is expressed as

A

U, =N-U, (380)

where the known local trial functions N and the unknown
nodal values U, are

N = (Nl,NQ,Ng) (3813)
U, = (U, Uy, Us) (381b)

For each element we have the Galerkin residual condition

HQ N Rdz =0 (382)
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‘Element’ formulation

Taking under consideration Poisson equation and the
approximate solution U, it is now possible to express the
residual as

[, ~ (28 ﬁ;;ua

The second derivative has to be replaced (due to linear
nature of the trial functions). This can be done by means
of Green'’s first identity

H( o5+ a?ﬁ) da dy = wade

0 Oy aw O
- . (8:1: 5+ 3y ay) drdy (384)

drdy =0 (383)
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‘Element’ formulation

Integration by means of Green's identity makes it possible Contents
. . Description of
to replace the second derivative flid/sold t diferent
Sscales
Finite Difference
~ ~ Method
aN aUe aN aUe d d Finite Volume
0 8 a _|_ a 8 X y Method
c L L y y Finite Element
. Method
aUe Monte Carlo Method
o a0 N a dL o fjﬂ Na daj dy — 0 (385) Lattice Boltzmann
€ n € Method
. ) . Lo Smoothed Particle
The matrix form of the Galerkin residual condition for Hydrodynamics
each element can now be expressed Turbulence modelling
References

foe (%la\j %1::1 i (?91; 8(91;) drdy-Ue = ff@e Nadx dy
(386)
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Element equation

Introducing the ‘stiffness’ matrix for each element e

ONON ONON
K, = dz d 387
ffﬂe<8x (9:C+8y @y) v (387)
and the ‘displacement’ vector
F, — HQ Na dz dy (388)

one may obtain the Galerkin residual condition for each
element in the form

K. -U,=F, (389)
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Element equation

The expanded version of the ‘stiffness’ matrix is Contents

Description of
fluid/solid at different

ON1 ON; 8N1 ON1 ON71 ONo 8N1 ONo ON1 ONj3 8N1 ON3 scales
K, oK oy 60 oK ok | o0s o 6 800 . oy e
inite Difference
Ke:ff e 52T o et o et ot | dedy Method
ON 8N3+ 1\17/ aJ\Zfl ONo 8N3_|_ 1\17/ az\y N3 8N3+ 1\17/ ONg —
O oy Oy Oz oy Oy O 8y 8y Finite Volume
(390) Method
_ T , Finite Element
Similarly, the same for the ‘displacement’ vector Method
Monte Carlo Method
Lattice Boltzmann
Ny Method
Fe = Qa Jf N2 dCIZ dy (391) Smoothed Particle
Qe Hydrodynamics

Turbulence modelling

References

The actual form of matrices depends on the trial
functions. Linear form of these are discussed further.

K. Tesch: Numerical Methods




Linear trial function

Considering plane equation

AN

Contents

Description of

Ue = a + bx -+ ClY (392) itlailde/ssolid at different
Finite Difference
one can formulate the following system of equations Z:it::f/olume
Method
Ul — a + bxz _|_ Cyz' (3933) IIi/ilZJictheOdEIement
U2 = —|— bxj + Cyj (393b) [/Ion.te CBarIIo Method
Us = a + bxy, + cyx (393c) S
Hydrodynamics
fOI’ three dlffel’ent pOIntS (x“ y’l,)v (.CUJ, y]), (:Ck, yk) Turbulence modelling
Solving these for a, b and c results in References
0. = g as+ b ey)+ (+b+)U(+b+)
e a; +b;x+c; a x+c a r+c
(394)
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Linear trial function

The linear trial functions then are Contents
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Method
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Method
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where

Smoothed Particle
Hydrodynamics

CLZ' — ijy]{; - .I']{;yj, a/j — xkyz — Qj@yk, a/k; — CL‘ZyJ — ij“ Turbulence modelling
. _ . _ . References
bi = Yj — Yk b = Yk — Yis b = ¥i — Y53
C; — Tk —.CEj;Cj — X; — Tk, Ck :ZUj — X,

1
Se — i‘Ckbj — Cjbk’
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Linear interpolation
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Integrals and derivatives

Now it is possible to calculate necessary derivatives
appearing in the ‘stiffness’ matrix

ON, b, 9Ny, b, ON; b

I _ =« _— _J A 7
Ox 2S5, Oz 2S5, Ox 25, (3972)
ON ; ON - ON
oh _ G 9 G 0 T % (3g7p)
oy 28, oy 28, dy 25
The same concerns integrals appearing in the
‘displacement’ vector
al [l
NONG N, da dy = 28, 397
ffse 1Yz g CEY (a+ B+~ +2)! (397¢)
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Element equation

Now it is possible to simplify the matrices even further.
For the linear trial functions one gets the ‘stiffness’ matrix

1 b% + C? bzbj + CiCj bzbk -+ C;Cp
K. = 1< bibj + cic;  bi4ci  bibp + cjcp (398)
© \biby + cic, b0 + cick bz — ci
and the ‘displacement vector’
a
F, = 36 a (399)
a
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Four element example
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Global matrix

The global assembly process (coupling) for the considered
four element case:

Contents

Description of

K1 + K11 K12 0 K12 K13 + K13 fluid /solid at different
1 K12 4 22 _&Kll K12 61 K123 _{_K%S scales
1 1 2 2 1 2 Finite Difference
K= 0 K12 K22 4 KU K12 K23 4 K13 Mothod
K;* 0 K3* K3 + K3? K3% + K§° Finite Volume
KIS { KIS K21 K13 K2 LK1 K34 K23 K34 K 4 K| K3 Method
. . ; (400) Finite Element
The element matrices are identical Method
Monte Carlo Method
1 1 O —1 Lattice Boltzmann
Method
K1 — K2 — K3 — K4 — 5 O 1 _1 (40]—) Smoothed Particle
Hydrodynamics
-1 -1 2
Turbulence modelling
Finally, the global ‘stiffness’ matrix is References
1 0 0 0 —1
0 1 0 0 —1
K=|[0 0o 1 0 -1 (402)
0 0 0 1 —1
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Global vector

The ‘displacement’ element vector for the considered four Contents
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e|ementS fluid /solid at different

scales

1 Finite Difference
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Fl — F2 — F3 — F4 — 1 (403) Finite Volume

3 Method

1 Finite Element
Method

Monte Carlo Method

After the global assembly process one finally gets

Lattice Boltzmann

Method
1 1 Smoothed Particle
/ ?12 + ?41 \ (1\ Hydrodynamics .
12 —|_ 21 50 Turbulence modelling
F — F2 —+ F3 = — 1 (404) References
F2 + F? 3|1
\F+ B+ B+ R \2)
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Poisson FEM pseudocode

Data: Read N elements, nodes and BCs

Create global matrix K and vectors F, y;
fore:=1to N do

K, o= [f,, (B2 1 M) dray
F. .= fo Na dz dy;

Add K. to K;

Add F, to F;

Apply BCs;

Solve linear system K -y = F;
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Results - PDE

810

4 elements, 5 nodes
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Results - PDE

A S
) 6 - 10
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16 s 2

8 elements, 9 nodes
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Results - PDE
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Results - PDE

200 elements, 121 nodes
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Results - PDE

800 elements, 441 nodes
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FEM for Laplace equation

Let the two dimensional form of Laplace equation

0%p 0%

or VZp = 0 on ) be subjected to both boundary
conditions on 0f):

B Neumann

0
a_zj:ﬁ.w:ﬁm,%)znwanyUy:—fN

B Dirichlet (as previously)

¢ = const = fp (406)
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‘Element’ formulation

As previously, FEM formulation for Poisson equation
subjected to Dirichlet and Neumann BCs is

H ON OU, 8N8(7€ a
Oxr Oz 8y 0y Y

oU,

on
m Poisson VQgp — —a with Dmchlet BC

0 (407)

ONON ONON
Jf(@az Ox i dy Oy

) dedy - U, = JTQG Nadzdy (408)

e

B Laplace V?¢ = 0 with Dirichlet + Neumann BC

ONON ONON
ff(@x ox i oy Oy

NfydL (409)

)dxdy-cpe— -

e
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Element equation

Introducing the ‘stiffness’ matrix as previously for each
element e

ONON ONON
K, = dz d 410
foe<8x 8x+8y @y) v (410)
and the ‘displacement’ vector
F,=— . N fnydL (411)

one may obtain the Galerkin residual condition for each
element in the form

K. . =F.. (412)
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Element equation

The expanded version of the ‘stiffness’ matrix look the SealEE

Description of

same as previously but the ‘displacement’ vector is now fluid /solid at different
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Fo=fv | NdL=—C|L|fy1 (413)
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The vector 1 may take of the three following forms Method
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Lattice Boltzmann
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|L| stands for element side length.
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Laplace FEM pseudocode

Data: Read N elements, nodes and BCs

Create global matrix K and vectors F, y;
fore:=1to N do

K, = ff,, (D8 + N2 aray
F, .= — faQe N fy dL;

Add K. to K;

Add F. to F;

Apply BCs;

Solve linear system K -y = F;
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Geometry and mesh - Laplace equation

Q

9 _ o
Yy
>
> H +
n
L > D g
L > 9¢ _ g o
on
> 9|8 I
QID 9.
>
8_90:0
— oy

456
nodes and 818 elements
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Results - Laplace equation
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Geometry and mesh - Laplace equation
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Results - Laplace equation
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Creeping flow — Stokes equations

Re <1

0=pg—Vp+uViu

V-u=20
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FEM formulation

The approximate solution is expressed as
te = N - U, (418)

where the quadratic trial functions N and the unknown
nodal values u,. are

N = (N17N27N37N47N57N6) (4193)
U, — (Ula U27 U37 U47 U57 UG) (419b)

For each element we have the Galerkin residual condition

HQ N Rdz =0 (420)
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Quadratic interpolation

Uss,Uyz,p3

 —0
le,Uyl,pl
Ux4,Uy4

K. Tesch: Numerical Methods

Uss,Uys

sz,Uyz,pz

The quadratic
trial  functions
can be ex-
pressed in terms
of linear trial
functions

Ny = Ly (2L, — 1)
Ny = Ly (2L, — 1)
N3 = Ly (2L — 1)

Ny =411Ls
N5 = 41915
Ng = 41115

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References




Momentum conservation equation

The Galerkin residual condition Contents
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Momentum conservation equation
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Momentum conservation equation
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Mass conservation equation

The Galerkin residual condition Contents
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Koize - Uge + Kuye " Uye — 0 (433)
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Mass conservation equation
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Element equations
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0 Ka:ye pre | Wye — gyFe ) (437) Hydrodynamics
Ki;? K’?LZS 03X3 pgx 1 ()3>< Turbulence modelling

References
15x1 15x1 15x1
K€5>< 5 U_e5>< _ fe5>< (438)
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Monte Carlo Method
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Monte Carlo integration

1 l——7——"—"—7— — T Contents
" . e Description of

fluid/solid at different
scales

0.8 0.8 S

U Finite Difference
0.6 06 5. L R i L Method

> > B o _ Finite Volume

0.4 04 f e T

Finite Element
Method

0.2 0.2 < S Monte Carlo Method

AN R Lattice Boltzmann
0 oL— o et e Method

Smoothed Particle
Hydrodynamics

- xr
f(l“) =T Turbulence modelling

References
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Monte Carlo integration

The simplest Monte Carlo integration is based on Cerizans
. . . . . Description of
sampling uniformly distributed points (U,U) lid/sld at diferen
SCales
Finite Difference
1 1 — Method
f f(,fL') d,flj' ~ — E F (Z/{)Z/{) (439) Finite Volume
0 n 4 Method
1=1 Finite Element
Method
Where Monte Carlo Method
Lif f(z) >y

F(x,y) = - 440
() 0; otherwise (440)

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Estimation of 7

. Tesch; Numerical Methods
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Estimation of 7

The area |D| = 7 of an unit circle Contents

Description of
fluid/solid at different

D = {(:13, y) s x® +yt < 1} (441) N

Finite Difference
Method

Finite Volume

Is estimated as Method

Finite Element
Method

4 n
m = ffD F(aj) d:lj ~ E z_; F (Z/{,Z/{) (442) Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle

Where Hydrodynamics

1. f 2 2 < 1 Turbulence modelling
F(ZE, y) — 7 T _|_ y o (443) References

0; otherwise
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Wiener process and random walk 1D

1 Contents
Description of
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Finite Difference
0.6 Method
Finite Volume
04 Method
Finite Element
O 2 Method
Monte Carlo Method
O Lattice Boltzmann
0 20 40 60 80 100 Method
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References

K. Tesch; Numerical Methods




Poisson equation

Poisson equation subjected to the Dirichlet boundary
condition

V2(x) = —f(x); Vx€Q
o(x) =g(x); Vx €090

It can be solved as an expected value of random paths of
a stochastic process

(444a)
(444b)

o(x) =E [g(W,) + 1 [ f(Wy)de|  (445)
where t is a terminal time of a random walk
T =inf {t: W, € 0} (446)
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Poisson equation

If the Dirichlet boundary condition is g(x) = 0 then Contents

Description of
fluid/solid at different
scales

p(x) = 1E [ [ rm) dt] (447) ot Dt

Method

Finite Volume
Method

We can also estimate

Finite Element

Method
T m i h Monte Carlo Method
fo f( t) — f ( ) — f ( )V(h) ( ) k/zla;c;c;]coedBoltzmann

Smoothed Particle
Hydrodynamics

Let us consider an ordinary differential equation Trbalence modeling
" (x) = —20x subjected to boundary conditions Reforences

y(0) =y(1) =0 (i.e. o =y, f(z) =20z, g(x) = 0).

K. Tesch: Numerical Methods




Monte Carlo ODE pseudocode

Contents

Data: Read input variables

Description of

for Z — 1 to imaw do Zl:ailde/ssolid at different
if I’lOt boundary(xi) then Ili/ilnile ([j)ifference
etho
S F= O’ Finite Volume
Method
for k:=1ton do <
Finite Element
I :=0; Method
o = Z Monte Carlo Method
. . ’ Lattice Boltzmann
while not boundary(z,) do Method
1 . Smoothed Particle
o .= —|_ QLZ/{(O, 1) —I_ §J - 1, Hydrodynamics
] p— ] —|— QOf(:Ija), Turbulence modelling
N S = S + ], References
.__ h%S.
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Results — ODE
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Results — ODE

n — 100 Contents
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Results — ODE
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Monte Carlo Poisson pseudocode

Data: Read input variables and BCs
for::=1to,,,, do

for j :=1 to j,,.. do

if not boundary(x;;) then

Tn = 0;
for k :=1ton do
S = 0;
a =1 fi= 7,
while not boundary(x,s) do
a = o+ 2[U(0, 1)+§J—
B =B +2(U0,1)+3] -
S =5+1;
T =T+ 5
bij = — 4T
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Results — Poisson equation
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Results — Poisson equation
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Results — Poisson equation
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6 4 Method
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Results — Poisson equation

Contents

Description of
fluid/solid at different
- - scales

2 N> Finite Difference
/&Y‘v \\\‘\\ Method
// "'\%\\&\‘\ Fin:te Volume
/ » " NN Method
3 y . § '...’\ /,\w 7 Finite Element
0 l’ '. ‘\ 10 Method

Monte Carlo Method

2 4 Lattice Boltzmann
6 4 Method

8 2 Smoothed Particle
10 Hydrodynamics

N = 500 Turbulence modelling
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Results — Poisson equation
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TS a\‘\\‘\ Finite Difference

//"&*\Y ‘\ \\ etho
RN G
/,///<. .‘ \§$\\ Finite Volume
//' .~.‘, “\\ Method
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Finite Element
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4 Method
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10 Hydrodynamics
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Definitions and ideas

The kinetic theory of gases treats gas as a large number
of small molecules. They are in constant (and random)
motion and constantly collide with one another.
Knowing the position and velocity of each particle at
some instant in time it would be possible to know the
exact dynamical state of the whole system. The motion
of particles could then be described by means of classical
mechanics. This would allow for prediction of all future
states of the system.

Due to the large number of molecules a statistical
treatment is possible and necessary.
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Assumptions

B The gas is compose of small molecules which means Sezails
I . . ‘ Description of
that the average distance separating particles is large fluid/solid at different

scales

In comparison with their size.
B Molecules are in constant and random motion

Finite Difference
Method

Finite Volume

B The large number of molecules make it possible to Method
. . Finite Element
apply statistical treatment Method
B Molecules have the same mass and spherical shape Monte Carlo Method
: . Lattice Bol
B Molecules constantly and elastically collide attice Boltzmann
B The only interaction is due to collision (no other Smoothed Particle

Hydrodynamics

forces on one another)

Turbulence modelling

References
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Phase space and the distribution function

For N molecules we can think of phase space in which
the coordinates consist of the position x;, velocity vectors
(v;) and the time t. For a three dimensional case we have
6N dimensional phase space (three coordinates + three
velocities times N molecules). The system can be
described by a probability distribution function f that
depends on 6NV variables plus time ¢.

For a single molecule this reduces to 6 dimensional phase
space (x1, T9, X3, V1, U2, v3). This can be treated as a
statistical approach in which a system is represented by
an ensemble of many copies.
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Interpretation of the distribution function

The elementary volume and dV and product dv of Contents
. . . Description of
elementary velocities are defined as lid/sold a diferent
SCales
D D Finite Difference
AV =1] dz;, dv=]] du (449) Moot
Finite Volume
’L:l ’],:1 Method
where D means the physical dimension size. The Method
distribution f that depends on r,v.t represents the Monte Carlo Method
probability of finding a particular molecule mass with a Lattice Boltzmann
given position and velocity per unit phase space. Smoothed Particle
Hydrodynamics
J‘ f fj(:[‘7 V, t) dV d/U (450) Turbulence modelling
RD RD References
The above integrate represents the total mass of
molecules.
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Continuous Boltzmann equation

If no collisions occur then the probability of finding a Coninis
. . . . Description of
particular molecule mass with a given position and il il ol
. ap s Scales
velocity at (r,v,t) equals the probability at P
Method
(r + dr,v + dv,t + dt) =
Finite Volume
Method

f(r+ dr,v+ dv,t+ dt)dV dv — f(r,v,t)dVdv =0 rnite Element
(45]—) Monte Carlo Method

If, however, collisions take place then Lotz (B zav e
ethod

Smoothed Particle
Hydrodynamics

f(r+ dr,v+ dv,t + dt)dV dv — f(r,v,t)dV dv = Turbulence modeling
Q(f) dv d’U dt (452) References

where () is so called collision operator. It takes under
consideration collisions during dt interval.
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Continuous Boltzmann equation

We can now expand the left hand side of the previous [C)°“te_“t5_ f
. y escription o
equation by means of Taylor's theorem ﬂui?/szud at different
Finite Difference
f(r —|_ dr) v _|_ dV, t _|_ dt) ~ z:::eoj/olume
af Method
f(r,v,t)+ dr-Vf 4+ dv-V,f + 5 dt (453) Fiio Eewari
Monte Carlo Method
The two above equations give the Boltzmann equation Lefites Belime
of F e
8-//— —i_ \ vf _I_ o vvf — Q(f) (454) Turbulence modelling
References
__ dr _
where v = 3 and mdt — F.
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Collision operator

The simplification of the complicated collision operator Contents
. . Description of
Is needed. It should, however, fulfil at least two il il ol
P SCales
conditions: Finite Difference
. o ] ] Method
B conservation of collision invariants ¢ Finite Volume
Method

Finite Element

| eQav=0 (455)  Method

Monte Carlo Method

D
R Lattice Boltzmann
Method
where collision invariants are: 1 (obvious), v and Smoothed Particle

Hydrodynamics

1 2
§ HVH ’ Turbulence modelling
B tendency to the Maxwell-Boltzmann distribution References

(relaxation to local equilibrium)
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BGK approximation

The BGK (Bhatnagar—Gross—Krook) approximation is the
most popular simplification of the collision operator
L e
Q:;(f — f) (456)
It expresses relaxation to local equilibrium f¢? with the

relaxation time 7. Both conditions are fulfilled.
The Boltzmann equations without external forces F is

now of ,
E*‘V'Vf:;(feq—f)

Now the equation is linear! More precisely, it is a linear
partial differential equation.

(457)
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Maxwell-Boltzmann distribution

It is the basic law of the kinetic theory of gases. The Contents
. . . . Description of
Maxwell-Boltzmann distribution is used for molecules il il ol
- . age . SCales
being not far from thermodynamic equilibrium. Other Finite Difference
' T Method
effects like quantum effects and relativistic speeds are —
INIce volume
neglected. The distribution is Method
Finite Element
Method
feq S (2 RT)_g —“VQ;;}”Q _ Monte Carlo Method
o p m € - Lattice Boltzmann
”2 Method

p(Vare) e s (as8) i
Turbulence modelling
This distribution is valid for freely moving molecules References
without interacting with one another. The exceptions are
only elastic collisions.

K. Tesch: Numerical Methods




From Boltzmann eq. to conservation eqs

It is possible to derive the conservation laws from the Contents
. . . ] Description of
Boltzmann equation. Firstly, from the interpretation of il il ol
. . . . . . . .. scales
distribution function f it arises the definition of Finite Difference

Method

macroscopic density

Finite Volume
Method

IO(I'7 t) — f f(r, V, t) dv (459) Finite Element
RD

Method

Monte Carlo Method

The average value of a quantity ¢ is defined as

Lattice Boltzmann

Method
S thed Particl
f SO f dU 1 Hr;c(i)r%d;nam?zslc )
<gp> — RD S f SO f dv (460) Turbulence modelling
f de /0 References
]RD
RD

The integration is carried out over velocity space.
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Averaged Boltzmann equation

Multiplying the Boltzmann equation by ¢ and then CeikeiiE
. . . . Description of
integrating over velocity space results in flud/sold at ifferent
scales
8 Finite Difference
f F Method
f¢_dv+f¢vvfdv+fgp—vvfdvz Finite Volume
at m Method
RP RD RP Finite Element
Method
f gp Q(f) dU (461) Monte Carlo Method
RD Lattice Boltzmann
Method
Taking advantage of the average definition the averaged Smoothed Particle

Hydrodynamics

Boltzmann equation may now be rewritten as

Turbulence modelling

8 References

o () + V- (plev)) —pf - (Vi) =0 (462)
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Mass conservation equation

Substituting ¢ = 1 into the averaged Boltzmann equation
we have

dp

V- =0 463

LV (o)) (463)

Comparing the above equation with the mass

conservation equation
dp

V- =0 464

LV (pu) (464)

it becomes obvious that the macroscopic velocity u must

be
1

u:<v>:—fvfdv

P b

(465)
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Momentum conservation equation

Substituting ¢ < v into the averaged Boltzmann
equation we have

() £V (plvv)) —pf =0 (460)
Introducing the microscopic velocity c in the mean
velocity frame
c(r,v,t) =v —u(r,t) (467)
it is possible to define the stress tensor
o = —p{cc) = — f ccf dv (468)

RD
Now, the averaged Boltzmann equations becomes the

macroscopic momentum conservation equation

%,
— (pu) + V- (puu) =pf +V -0

- (469)
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Energy conservation equation

Substituting ¢ = ||v||> = 5V - v into the averaged

Boltzmann equation we have Contents

Description of
]_ fluid/solid at different

e = S{llell*) = jucufdv (470)

Finite Difference
Method

Finite Volume

Introducing the heat vector q definition Method

Finite Element
Method

1 1
a =5 plefel’) = 3 f clle||2f dv (471)  Monte Caro Methoc

Lattice Boltzmann
RP Method

we have the macroscopic energy conservation equation Smoothed Particle

Hydrodynamics

Turbulence modelling

8 1 2 1 2 L References
5 (o (e i) )+ v (o (c+ i) w) =

pf-u+V.-(o-u—q) (472)
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Equation of state

From the definition of the stress tensor 0 = —p(cc) and
the internal energy e = 27!{c - ¢) we have

tr(cc) = 2e (473)
Additionally, by means of the stress tensor we have
pressure definition p = —D ™! tr 0. Combining these
results in

2pe = pD (474)

The above equation together with the equipartition of
energy for mono-atomic gases gives the equation of state

p = pRT = pc; (475)
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Velocity space discretisation

The velocity space v is discretised into a finite set of ()
velocities {v,, } where Q) = |{v, }|. Discrete distributions
are defined by means of the discretised velocity space

falr,t) =W, f(r,v,,t) (476a)
fel(r,t) =W, f% r,v,, 1) (476b)

W,, are the weights of the Gaussian quadrature rule. The
density may now be approximated as

. f(r,v,t)dv = Z Wof(r, vy, t) = an(r,t)
’ C )
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Discrete Boltzmann equation

The discrete distribution function f,, satisfies the discrete [C)°“te_“t5_ f
. . . . escription o
Boltzmann equation (with BGK approximation) fluifl/szlid at different
Finite Difference
af 1 Method
. _|_ Vn ) vfn — (fTeLq - fn) (478) Finite Volume
(‘% T Method

Finite Element

The fluid density, velocity and internal energy are now Method
calculated from the discrete distribution function: Monte Carlo Method

Lattice Boltzmann

Method
Quantity Continuous discrete Smoothed Partcl
’0 IRD f d’U Zn fn Turbulence modelling
IOu fRD \4 f dv Zn ann References
1 1
pe o IV —ul?fdv 3> |lve —ul?fs
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Quadratures

To recover correct form of the Navier—Stokes equations
the discrete velocity set has to be chosen so the following
quadratures hold exactly

\/ ffeqHVdv—ZfOHVn (479)
0<m<3
The above may be reduced to
_||v||2 _lval?
= f e 272 Whe 22 b(v,)  (480)
RD
where
lvn ]2 D
W, =e 2 (\/27?08) Wy, (481)
and
D
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Space discretisation

The space discretisation follows the velocity space Contents
. . . . .. . . . . Description of
discretisation. This means it is discretised into a lattices it el o e

scales

(D1Q3, D2Q9, D3Q27 discussed further). From the
quadratures it arises speed of the model

Finite Difference
Method

Finite Volume
Method

c= Ve, (483)  fuse
Monte Carlo Method
The speed c is used for space discretisation in the Lattice Boltzmann

Method

Smoothed Particle
Hydrodynamics

following manner Az; = c At where At represents time
step (time space discretisation).
One may also introduce dimensionless lattice velocities

Turbulence modelling

References

e, = — (484)
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Lattice Boltzmann equation

Introducing the substantial derivative symbol

i_; — % + v,, - V makes it possible to rewrite the

discretised Boltzmann equation

dnfn L 1 eq

The substantial derivative is approximated by means of

dpfr(r,t)  folr + v ALt + AL) — fo(r, 1)
a At

(485)

+ O (At)

(486)
From the two above one gets the Lattice Boltzmann
equation

1
fn(r+VnAtvt+At) _fn(r7t) — ; (fo( ) _fn(r7t))
where dimensionless collision time is 7 é. (487)
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Equations

Continuous Boltzmann equation

af
o TV V=)

Continuous Boltzmann equation with BGK approximation

of

(488)

S v V= (- ) (489)
Discrete Boltzmann equation
T v Vi) (490)
ot S "

Lattice Boltzmann equation

Fo(r 4 Vo AL+ A) — fo(r.t) = %(fO( ) — fulr )
(491)
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Typical lattices
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D1Q3 lattice
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D2Q9 lattice
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D3Q27 lattice
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D3Q19 lattice
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D3Q15 lattice
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Expansion of the Maxwell-Boltzmann
distribution

The Maxwell-Boltzmann distribution can be rearranged

P (vEe)

Now f°? can be expanded into a Taylor series in terms of
the fluid velocity

-D _Iv)? vV-u (V‘u)2 |ull?
0 __ \/ c3 -
= p ( 2703) R c? i 2ct 2¢3

S (493)

(492)

This i1s valid for low Mach numbers

|ull®

8

fea f0+(9( )—fO+C’)(Ma3) (494)
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Discrete Maxwell-Boltzmann distribution

The discrete equilibrium distribution is defined by means
of the discretised velocity space Contents

Description of
fluid/solid at different

0 _ 0 scales
fn (r7 t) - an (r7 Vn, t) (495) Finite Difference
Method
' St Vel
where weights are Fnite Volume

Finite Element
lvall® || Method

Wn = € 2c3 (\/ CS) n (496) Monte Carlo Method

Lattice Boltzmann
Method

Together with the Taylor expansion for low Mach Smoothed Partcle
ydrodynamics
numbers we have

Turbulence modelling

; Vn u (Vn . u)2 HuH2 References
fn — Wnpp 1+ 2 T 94 o 92 (497)
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Streaming and collision

The Lattice Boltzmann equation Contents

Description of
fluid/solid at different
scales

falr + v, At t + At) = f(r, t) + % (fo( t) — fu(r, t)) Finite Difference

Method

(498) Finite Volume

Method

The collision step

Finite Element
Method

Monte Carlo Method

fo(r,t +At) = fo(r,t) + %(f“( t) — fa(r, 1)) (499) Latice Boteamans

Method

Smoothed Particle

The streaming step Hydrodynamics
Turbulence modelling
fn(I‘ + V’I%Aty t —|— At) — f:;(rj t _|_ At) (500) References
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Streaming

Contents
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\777‘T 777777 j‘ Tii-)‘r 777777 j‘(_ scales
\ \ \ \ \ Finite Difference
\ \ | \ \ Method
\ \ \ \ \
\ \ \ \ \ Finite Volume
\ \ \ \ \ Method
e b 4 YN

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

L - - _ _ _ L - _ I H
Smoothed Particle
Hydrodynamics
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LBM pseudocode

k:=0;
Contents
repeat Description of
fluid/solid at different
R = O, scales
. . Finite Difference
10 .— Zn f’nv Method
1 iy
u.= — V , Finite Volume
p Zn ntfn Method
Calculate residue; Finite Element
( )2 || ||2 Method
0. __ V- u V- u u _
n wnp (1 —|_ 2—2 _|_ ;LT — @), Monte Carlo Method

Lattice Boltzmann

fﬁb(nt_l_ At) = f;(I‘, t) —I_S% (fr?(rvt) — fn(ra t)); Method

Apply Bounceback; oot Paricle
fn(r —+ VnAt, T+ At) — f;i(r7 t -+ At); Tosulenee medlins
Apply other BCs; References
k:=k+1;

until K < k,,,, and R > R,,....
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Boundary conditions

—_—————— rT—————= 1 Contents

Description of
fluid/solid at different
scales

\

\

\

\

\

\ Finite Difference
| Method
\

\

\

\

\

\

Finite Volume
Method

Finite Element
Method

L - J Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

f5t — ; (5013) Turbulence modelling

¢ ¢ References

f2: 4 (501b)
fo =TIs (501c)
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Chapman—Enskog expansion

The Navier—Stokes equations can be recovered from the
Lattice Boltzmann equation Contents

Description of
fluid/solid at different

a scales
a (pu) _|_ v . (puu) p— —vp —|— Iuv2u (502) Ili/ilnile ([j)ifference

Finite Volume
Method

through the Chapman—Enskog expansion (multi-scale E——
analysis). The expansion of the discrete Method
Maxwell-Boltzmann distribution is used Monte Carlo Method

Lattice Boltzmann
Method

2 2 Smoothed Particle
0 Vo-u | (Vp-u)t u -
= W 1 _|_ _I_ _ 503 Hydrodynamics
fn np C? 20;1 202 ( ) Turbulence modelling

References

The first RHS term is responsible for Vp, the second for
V?2u, the last two terms are related to puu.
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Simplifications

Knowing the structure of the discrete Maxwell-Boltzmann
distribution we can now drop the nonlinear terms

v, - u
fo = wnp (1 + ) (504)
to recover Stokes equations
0 2
Py (pu) = —Vp+ uV-u (505)
For both cases the dynamic viscosity is defined as
A
p=p\T—3 ci At (506)
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Properties

B the flow domain is divided into a set of particles, [C):::f::on )

B the particles are assigned a mass and velocity, lid/sold a difernt

B Lagrangian description of motion is utilised, Finite Difference

B properties of a particle are calculated as summations :_I':it::f/olume
over all the neighbouring particles (smoothed as an Method
average),

B SPH can be classified as meshfree method, Monte Carlo Method

B takes advantage of the integral representation and et o reman
approximation of a function. Smoothed Particle

Hydrodynamics

Turbulence modelling

References
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Integral representation of a function

The basis of SPH method is the integral representation of [C)°“te“ts f
. . . escription o
a function f where 0 is the Dirac delta fluid/solid at different

scales

Finite Difference

f(X) = fff f(X,) 5(X — X/) dV’ (507) Method

Finite Volume
Method

Finite Element

5 Method
w(r) :=oce™ "
Monte Carlo Method
6 Lattice Boltzmann
h =0.3 Method
H h = 0.2
h=0.1 Smoothed Particle
—~ 4 Hydrodynamics
=
3 Turbulence modelling
in )
| References
B &
, \

-3 -2 -1 0 1 2 3
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Smoothing kernel

If the Dirac delta is replaced in the integral (exact) [C)°“te_“t5_ f
. . escription o
representation of a function fluie/oolid at different

scales

Finite Difference

)= [[J F6) b =xhav'  (s08)

Finite Volume
Method

Finite Element

. . . Method
by a s_moothmg func’Flon (smoothlr)g k.ernel) W the o ot Method
following approximation of a function is obtained Lattice Boltzmann
Method

Smoothed Particle

f(x) ~ Jff fXHYW(x—x',h)dV’ (509) Hydrodynamies

Turbulence modelling

References

where h is the smoothing length.
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Smoothing kernel — properties

B normalisation condition Contents

Description of
fluid/solid at different

[[[we-xmav =1 (510) ==
Q)

Method

Finite Volume
Method

B approaching to Dirac delta property Finite Element

Method

Monte Carlo Method
lim W(x —x',h) = d(x — x') (511) Lattice Boltzmann
h—0 Method

Smoothed Particle
Hydrodynamics

H Symmetry Cond|t|on — Symmetnc property Turbulence modelling

References

W(x-—x',h)=W(kE —x,h) (512)
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Smoothing kernel — properties

B compact support condition Contents

Description of
fluid/solid at different

/ L scales
\V/||X—X/||>khW<X — X, h) =0 (513) Finite Difference
Method

Finite Volume
Method

| pOS|t|V|ty IIi/ilZJicthemljlement
Wi(x—x',h) >0 (514)

Monte Carlo Method

Lattice Boltzmann
Method

B monotonically decreasing W as h increase — decay Smoothed Particle

Hydrodynamics
property, Turbulence modelling

B smoothness (continues and differentiable W) up to References
the second order at least.
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Smoothing kernel

K. Tesch: Numerical Methods
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Smoothing kernel

There are many forms of V. To simplify the notation, Contents
. . . Description of
the following substitutions are adopted il il ol
SCales
H /H ( ) Finite Difference
X — X w\r Method
/
W(X — X, h) — W — W(T) — —D (515) Finite Volume
h h Method
Finite Element
. . . . Method
where r is the relative distance (related to the smoothing
. Monte Carlo Method
length h). Therefore, the kernel W decomposes into the Lattice Boltzmann
. . Method
kernel w relative to h”. Thus, w has the same properties o
moothed Pe'nrtlcle
as W, but is dimensionless and simpler to analyse and Hydrodynamics
W”te Turbulence modelling

References
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Gaussian kernel

The Gaussian smoothing kernel is given by Contents

Description of

) fluid/solid at different

L —7 . scales
w(r) =oe , T¢& [0’ OO[ (516) Finite Difference
Method
The value of the normalization coefficient o, depending Mo yome
on the dimension of the space D, is Fnite Element
etho
—D/2 Monte Carlo Method
O =T / (517) Lattice Boltzmann
Method
. . . . Smoothed Particle
The Gaussian kernel fulfils the conditions of et
normalisation, symmetry, positivity and decay property. Turbulence modelling
What is more, the Gaussian kernel is also smooth References

(continuous with derivatives). The compactness condition
Is not met. Approaches to the Dirac delta as h — 0.
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Gaussian kernel
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Super Gaussian kernel

Contents

Description of
fluid/solid at different

D
w(r) = o5t 1—7°)oe™, rel0oo (518) s _
Method

Finite Volume

Where Method

_ ———D/2 S (Dt
o= (519) Method

Monte Carlo Method

Similar to original Gaussian kernel but lacks positivity!

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Quadratic kernel

Contents
2 — 2 O 2 escription o
( /r) ) r E [ ! [7 (520) llc?uid/s:?id atfdifferent
O7 r e [2’ OO[ scales

Finite Difference
Method

w(r) =o

Where O = % for -D — ]»1 0O = % for D — 21 g = % for Finite Volume
D _ 3 Method

Finite Element

However, w is continues but w’ is only piecewise linear Method
and w" is discontinues! Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Quadratic kernel
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Cubic kernel

Contents

/ Description of

(2 _ T)S _ (1 _ 70)37 r e O’ 1[7 fluid /solid at different

scales

(2 _ 74)37 r e :1; 2[7 (521) Finite Difference

Method

(9. Finite Volume
r 6 -27 OO[ Method

Finite Element
Method

WhereazgforDzl,a:;—oforD:Q,azlfor
s ™ Monte Carlo Method

D — 3 Lattice Boltzmann
_ . . : Method
However, w, w’ are continues but w” is only piecewise e

Smoothed Particle
“near Hydrodynamics

Turbulence modelling

References
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Quadratic kernel

Contents

Description of
fluid/solid at different
scales

~

~ o
~

Finite Difference
Method

) =53 -n)'+10(3 -1, rel
3 4
§—T), T c
4
), rc
r e

Finite Volume
Method

N[Ot N[O DO
|
= %3
N——"
S
|
/X

~ o
— — 1
~ o

DT N0 N

O/~ /N

Finite Element
Method

Nt Nw NI~ O

Vs
| —

A~~~
O1
N
No

~—

Monte Carlo Method

[

- L S - 96 — — Lattice Boltzmann
where 0 = 5; for D =1, 0 = 55— for D =2, 0 = i

for D — 3 Smoothed Particle
. . . Hydrodynamics
This time w, w’ and w” are continuous.

\W)
-

Turbulence modelling

References
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Approximation of a function

The approximation of a function comes directly from the Contents
- " . Description of
integral representation of the function T o] o et

scales

Finite Difference

f(X) ~ fff f(X/) W(X — X/, h) dv’ (523) Method

Finite Volume
Method

Finite Element
Method

when discretising the integral by means of a finite sum
Monte Carlo Method

Lattice Boltzmann

foe) Y fx) Wk = x5, h)A|V]| (524) s

Smoothed Particle
Hydrodynamics

Turbulence modelling

Elementary volume is A|V;| = % SO References
J

flx) =y %f(xj) W(x—x;h)  (525)
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Approximation of a function

The function f(x;) is related to the particles j inside the
smoothing kernel of the 1V approximation. Thus, the
approximation

USEDY %f(x»W(x—xj,h)

Is a discrete approximation of the continuous function f
at any point x that belongs to the area (). If the value of
the function f is to be calculated at the point x;, then

fo) =) %f(xj) Wi — x5, h) = = f(x;) Wy
(527)

(526)

my
j ij

where W;; means W (x; — x,, h).

K. Tesch: Numerical Methods

Contents

Description of
fluid/solid at different
scales

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References




Approximation of a gradient

The gradient of the function f relative to the x Contents
. . . . ) Description of
coordinates is obtained from the integral representation fluid /solid at different

scales

of the function

Finite Difference
Method

_[[J\ f VW X - X h) dvl (528) :i/"lzit‘;eozl/olume
Finite Element
Method

Monte Carlo Method

By discretising the integral, we have a gradient at x;

Lattice Boltzmann
Method

EOED D N ALE (529)  Insdasmes

j 10] Turbulence modelling

References

Spatial differentiation is performed on the known form of
the smoothing kernel V.
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Better approximation of a gradient

m] Contents

vf<XZ) ~ Z ,0] (f(X]) o f(XZ)) VZWZ] (530) llc?jisolc/riszfiijnaf];ifferent

j scales

Finite Difference

gives exact 0 for constant f. Method

Finite Volume
Method

Finite Element
Method

X; X
vf(X’L) ~ IOZ Z m] <f(pQ ) —|_ f(ij)) V’LWZJ (531) Monte Carlo Method
j i J

Lattice Boltzmann
Method

Smoothed Particle

Is symmetric for 7 and j. Hydrodynamics

Turbulence modelling

References
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Approximation of a divergence

The divergence approximation of the vector f is similar to
the gradient approximation. This is because the
divergence operator is computed relative to the x
coordinates

V- f(x) & Uf f(x') - VIW(x —x,h)dV’  (532)

The simplest approximation of divergence is obtained by
discretising the above integral

J

J
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Better approximation of a divergence

Contents

m] Description of

(f(X]) — f(XZ)) . vzW’LJ (534) fluid /solid at different
Pj

V- f(x;) %Z

J

scales

Finite Difference
Method

Finite Volume

gives exact 0 for constant f. Method

Finite Element
Method

f(x; f(x;
v . f(XZ> ~ p’l, Z m] ( (X ) + (X])> . VZWZ] (535) Monte Carlo Method
J

2 Lattice Boltzmann

2
Pi p J Method

Smoothed Particle
Hydrodynamics

Is symmetric for ¢ and .

Turbulence modelling

References
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Approximation of a Laplacian

The Laplacian approximation of a scalar can be Contents
. Description of
represented by the same method as in the case of the fluid/salid ot cifferent
. scales
grad|ent Finite Difference
Method

Finite Volume

V) ~ [[[ Fx)VW(x—x h)dV’ (536)

Finite Element
Method

. . . ] . . Monte Carlo Method
The simplest approximation of the Laplacian is obtained Latrice Boltzmann

by discretizing the above integral o

Smoothed Particle
Hydrodynamics

va(XZ) ~ Z &f(xj) V?Ww (537) Turbulence modelling

/0 ] References

J
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Better approximation of a Laplacian

9 m] 9 Contents
VV u; — _v * VU.Z ~ IU; E —ujv WZJ (538) De.script_ion of_
p pzpj Zl:a:lde/ssolld at different

Finite Difference
Method

m; Finite Volume
VV2117; ==V -Vu ~ — g _J (uz- — U—j) VQWZ] Method

pzpj Finite Element
J Method

(539) Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
1 Hydrodynamics

Turbulence modelling

References
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Mass conservation equation in SPH

The mass conservation equation

dp
E = —pV -u
Is approximated using the velocity divergence

approximation

dp; m;
— P Z —u; - VW
dt — Pj

(541)

(542)

In most cases, a function approximation is used, assuming

f = p. Therefore

Pi = Z m; Wi
J

K. Tesch: Numerical Methods
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Momentum conservation equation in SPH

The momentum conservation equation in its most general Contents
. . ) Description of
form, taking into account the mass forces from gravity g, il il ol
) ) scales
IS W”tten ) Finite Difference
du 1 Method
—, — g _|_ _v -0 (544) Finite Volume
dt 0 Method
. . . . . Finite Element
The approximation of this equation in the SPH method Method
can be obtained by means of the divergence Monte Carlo Method
. . Lattice Boltzmann
approximation Method
Smoothed Particle
du Hydrodynamics
d () _ gz _|_ § 0— v I/‘/;‘7 (545) Turbulence modelling

References
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Navier—Stokes equation in SPH

In the approximation of the Navier—Stokes equation in the Contents
SPH method, particular types of forces are distinguished: fidjolid ot iferent
forces from the pressure gradient f,; and forces related to SFcaI:: Difference
viscosity f,;. The equation of motion then has the E———
following form Method

dui Ili/ilzjctheOdElement

dt =g; — by + 1, (546) [/I:Zte CBarllto Method
Assuming the following notation for each type of force Z'mtht:d —
together with the gravity acceleration g in the form Hydrodynamics

Turbulence modelling

f; = g, — £, +1,;, the equation of motion can be
presented in a form that occurs in other Lagrangian
methods

References

duz-
dt

= {; (547)
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Equation of state in SPH

The determination of pressure in the SPH method Contents
. e - . . . Description of
involves the use of an artificial equation of state in which fluid /solid at different

scales

pressure is explicitly related to density. One possible form
for such an equation could be

Finite Difference
Method

Finite Volume
Method

v Finite Element
D = Do + B <(p> _ 1) (548) Method

p() Monte Carlo Method

Lattice Boltzmann

. . . . Method
In this case, it is referred to as a weakly compressible — .
moothed Particle

fluid. The y exponent is usually taken as v~ 7, and py is Hydrodynamics
the reference fluid density. Often, due to simplicity, Turbulence modeling
po = 0 Is assumed.

References
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SPH pseudocode

Contents
t:=0; e
. escription o
foreach i do fluid /solid at different
Generate XZ'(O), uz-(O), ,07;(0), hz'(O); scales
foreach / do Finite Difference
fO —f = o, — f.. i £ . Method
L=l 8 bt Hr Finite Volume
repeat Method
foreach i do Finite Element
. Meth
Find N;; ethod
Calculate p;, pi; Monte Carlo Method

; Lattice Boltzmann
foreach / do Method

| Calculate fy;, f,,;;

Smoothed Particle

foreach / do Hydrodynamics

Calculate new x;, u;; Turbulence modelling
Apply BCS; References
t:=1t+ At;

until ¢ < tmax:
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Turbulence features

Irregularity

Unsteadiness

3-D in terms of space and vortex structures
Diffusivity

Dissipation

Energy cascade

Need for constant energy supply

D37
| D3

L
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Kolmogorov scales

Kolmogorov scales are the smallest vorticity scales where Contents
P, . Description of
nearly the whole dissipation takes place. There are three flid/solid at diffrent
. . 1 4 SCales
scales, for velocity U = (ve)'/4, length Lx = (v3~1)" R ReD e e

1/2 Method

Finite Volume
Method

and time tx = (ve™!)
The Reynolds number for these scales

Finite Element
Method

{7174
Z/{ L ve 1/4 V3€ 1 Monte Carlo Method
ReK — ﬂ — ( ) ( ) — 1 (549) Lattice Boltzmann
1% 174 Method

Smoothed Particle
Hydrodynamics

It means that at this level the inertial forces are of the
same order as the viscous forces.

The dissipation intensity of the kinetic energy of
fluctuation can also be estimated in terms of a length
scale for large scale motion (vorticity) as

Turbulence modelling

References
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Kolmogorov scales

U* U? U?
ENV — —= — — ——
t LU L
It means that the energy U/? of the large scales is
dissipated proportionally to time £/U. Substituting the

dissipation in equation for Lx with that for £ we have

313 1/4
Ly = (Vug> (551)

Introducing a Reynolds number for large scales Re, = 4&

it is possible to find a relation for the ratio of length
scales by means of this Reynolds number in the form of

3\ 1/4 3/4
T e
K

(550)

vV
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Mesh size

The ratio of length scales, as a function of the Reynolds

number is

L 3/4
ENRGL"/

A three dimensional mesh (number of nodes) is then
proportional to

(553)

L 3
)~ Re)/* (554)
If, for instance, Re = 10* then
E 3
— ] ~10° (555)
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Calculation time

A minimal number of time steps At < Ly /U of a [C)°“te_“t5_ f
. . . . escription o
simulation time ¢ can be estimated by means of L lid/sold a diferent
SCales
Finite Difference
t t t Method
4
v = —Re” (556) o
F Vol
At Lg/U LU i
Finite Element

Method

The necessary number of operations equals a number of

. . Monte Carlo Method
nodes times a number of time steps

Lattice Boltzmann

Method
3 Smoothed Particle
L t o t R 3 (557) Hydrodynamics
£K At o £/Z/{ € Turbulence modelling

References
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Calculation time

The computation time equals a number of necessary Cemizniis
. . . ) Description of
operations times a number of evaluations per operation fluid/salid ot cifferent
. scales
(e.g. 10°) over a CPU performance expressed in e.g. Finite Differance
_ 12 —1 Method
TFLOPS - 10 > Finite Volume
3 Method
103 E t 103 t Finite Element
— R — Re> s (558) Method
10 ﬁK At 10 E/Z/[ Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle

For instance, if the time of a numerical simulation is

t = 10L/U then the following CPU time is estimated Hydrodynamics
Turbulence modelling
103 L 3 t 104 R 3 References
= s (559)
1012 \ Lx /] At 1012
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Calculation time

Estimated 1 teraFLOPS CPU time is [C)°“te_“ts_ f
escription o
3 quid/sind at different
10° / £\" t 10*Re’ o) e
—_— = Finite Difference
1012 £K At 1012 > ( ) Metthod
Finite Volume
Method
for Re = 10? it takes 10 second, Fince Elemen
. etho
for Re = 10% it takes 3 hours, e
fOF Re — 105 |t takeS 115 dayS, Lattice Boltzmann

Method

Smoothed Particle
Hydrodynamics

for Re = 10° it takes 327 years...

Turbulence modelling

only for a short period of simulated time

References

t=10L/U (561)
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Performance

CPU © TFLOPS!
i3 M380 2.53 GHz x 2(4) 0.017
17 930 2.80 GHz x 4(8) 0.034
i7 870 2.93 GHz x 4(8) 0.041
17 2670QM 2.20 GHz x 4(8) 0.064
15 1035G1 1.00 GHz x 4(8) 0.132
i7 10700T 2.00 GHz x 8(16) 0.257
I7 6850K 3.60 GHz x 6(12) 0.284
2 x Xeon Gold 5120 2.20 GHz x 28 0.673

fIntel® LINPACK Benchmark for Linux
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Some classical experiments

B Reynolds experiment (Reynolds number Re) CemErs

Description of
fluid/solid at different

UL scales

Re = — (562) Finite Difference

1Y Method

Finite Volume
Method

Finite Element

B Taylor instability or vortices (Taylor number Ta) Method
Monte Carlo Method

le Lattice Boltzmann
Ta = —— (R — Rl) (563) Method
vV Smoothed Particle
Hydrodynamics

Turbulence modelling

B Rayleigh-Bénard instability (Rayleigh number Ra) References
gBh?
a= 20 (1, - 1) (564)
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Turbulence glossary

B DNS — Direct Numerical Simulation Contents

m LES - Large Eddy Simulation If?jisflc/nszﬂjna?;lifferent
B RANS — Reynolds Averaged Navier—Stokes P

B RAS - Reynolds Averaged Simulation E———

B URANS - Unsteady Reynolds Averaged Navier—Stokes Method

B URAS - Unsteady Reynolds Averaged Simulation Method

M DES - Detached Eddy Simulation Monte Carlo Method
B SST - Shear Stress Transport pautice Boltzmann
B RNG - ReNormalisation Group Smoothed Partcl
B EARSM - Explicit Algebraic Reynolds Stress Models T
B RST - Reynolds Stress Transport References
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Turbulence modelling

. D N S Contents
Description of

| LES fluid /solid at different
scales

. D ES Finite Difference
Method

m URAS/RAS -
Finite Volume

Method

€ Models based on the Boussinesq hypothesis
(0-eq, 1-eq, 2-eq models)
¢ Models which do not take advantage of the

Finite Element
Method

Monte Carlo Method

Lattice Boltzmann

Boussinesq hypothesis Method
Smoothed Particle
[} RST models Hydrodynamics

Turbulence modelling

= EARSM

References
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Decompositions and averages

Decomposition Contents

Description of
fluid/solid at different

fr,t) = f(r) + f'(r, ) (565) e it

Method

Finite Volume
Method

. Rea||sat|ons f( ) — llm ~T Z fZ(I‘ t) Finite Element

Nooo NV Method

Monte Carlo Method

. T|me fT(I‘) — hm %J‘f I‘,t dt Lattice Boltzmann
T—00 0

Method
t+At Smoothed Particle

- T|me ﬁ( )_ 1 f f( )dt Hydrodynamics

At Turbulence modelling

N Spatla| fV |V| J]]‘V References
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Comments

In practice it is usually enough to know what the average Contents
velocity is (not the fluctuation). The velocity vector field i&?:iéztl;gnafzifferent
Is be decomposed into average and fluctuation o Difrererce
components u = 1 + u’. The time of averaging At E———
should be chosen to be greater than the fluctuation range Method

and smaller than the function that is going to be Vethod
averaged. The averaging process of the Navier—Stokes Monte Carlo Method
equation introduces a number of new unknown functions. e

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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RAS

B Averaged mass conservation equation

V-u=0 (566)

B Averaged Navier-Stokes equation

O ) -
a—‘; LV (@) = F— Vj + vV — V- ww (567)
Reynolds stress tensor R = —u’u’ and the total

stress tensor & = —p& + 21D + pR makes it possible
to obtain the averaged momentum equation

di _
pd—‘;:pﬂv-o (568)
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RAS

B Averaged Fourier—Kirchhoff equation Contents

Description of
fluid/solid at different
scales

a T T — inite Difference
e (MH vt ) - o
Finite Volume
2uD? + V- (AVT V- (pTW 569) oo
,LL + ’ ( ) — Cy ) (10 u ) —I_ 108 ( ) Finite Element
Method
The averaging process of the Navier—Stokes equation Monte Carlo Method
. . Lattice Boltzmann
introduces six unknown (because of the symmetry) Method
components of the Reynolds stress tensor. The averaged oo rartcle
Fourier—Kirchhoff equations gives a further three of the Turbulence modelling
VeCtOF T/U.’. References
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Comments

It is important to realise that the closure of system of the
mass conservation and Navier—Stokes equations has been
lost. Further modelling is required.

Formulating additional relationships for unknown
functions to achieve closure of equations is called
turbulence modelling. Any additional closure equation
must fulfil a few basic criteria such as coordinate
invariance. This is fulfilled by proper tensor formulation
of the exact and modelled equations. Another criterion is
called realisability meaning that a solution must be
physical.

Practically, however, it is difficult to achieve all these
requirements. This is because some parts of the exact
transport equations are modelled or even dropped.
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Closure

There are two main approaches to achieve closure. The Contents
. . . Description of
models may be divided between those which assume the il il ol
. . . ) scales
eddy viscosity hypothesis and those which do not o Differoce
Method
B Models not assuming the eddy viscosity hypothesis Finite Volume
Method
€ Reynolds stress transport equation P> B
etho

¢ Algebraic stress tensor models Monte Carlo Method

Lattice Boltzmann

B Boussinesq hypothesis assumed Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Reynolds stress transport equation

aR Contents
- _l’_ V . (ﬁR) — _v-l_l . (RT _|_ R)_l’_ Description of

at fluid/solid at different
scales

V- ((CkQ&“_l -+ V) VR) —II + %56 (570) Finite Difference

Method

Finite Volume

The left hand side represents unsteadiness and Method
. . . . Finite Element
convection. On the right hand side the two first terms Method
represent production. The two terms under divergence Monte Carlo Method
. . . Lattice Boltzmann
are responsible for diffusion. Method
The right hand side fourth term is the second unknown smoothed Particle
ydrodynamics
tensor I1 need to be modelled. The last right hand side Turbulence modelling
term %peé is the so called dissipation tensor for isotropic References
turbulence.
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Algebraic stress tensor models

Without using the eddy viscosity hypothesis two transport
equations for k and a second variable are formulated.
Instead of the linear Boussinesq hypothesis — algebraic,
non-linear relationships are formulated between the stress
anisotropy tensor a and the average flow properties. The
tensor a is related to the Reynolds stress tensor by:

R 2
a=——2§

© T3 (571)

Typically, relationships depend on average strain rate and
spin tensors

a= f(D,Q) (572)
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Boussinesq hypothesis

The turbulence stresses is related to the mean flow
Ry = 1 aa(éw. This linear relationship is

R = a¢d + 2v,D (573)
The trace of this relations allows to find a constant
—2k = 3ay which gives
R =—2k6 + 21D (574)
The Reynolds equation becomes
ou o _ _
— +V.(an)=f - Vp.+ V- (2v.D) (575)

ot

where v, = 14 + v, p. = P + %k
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Eddy diffusivity hypothesis

The eddy diffusivity hypothesis is introduced by direct [C)°“te_“ts_ f
analogy with the eddy viscosity hypothesis. It reduces the fluid/sold at different

scales

number of unknown functiqns in the Fourier—Kirchhoff
equation _C’UpT,u/ — )\th Finite Volume
The Fourier—Kirchhoff equation then becomes Method

Finite Element

Finite Difference
Method

Method

C’U (a(pﬂ _I_ v . (pTU)) — 2,LL:[_)2 _I_ v . ()\evf) _I_ pg Monte Carlo Method

at Lattice Boltzmann
Method

(576) Smoothed Particle
where \; can be estimated by means of the turbulent S
Prandtl number \; = ‘gf: Effective conductivity is
introduced by means of the definition

)\e:)\t+>\:%+>\.

Turbulence modelling

References
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Trace of RST equation

Calculating the trace of the Reynolds stress transport

Contents

eq Uatlon Description of
fluid/solid at different
scales
OR Finite Difference
——~+V-(aR) = —Vi- (RT + R)+ Miethod
at Finite Volume

Method

V- ((Ck’"+v)VR) —II + %56 (577) [

Method

Monte Carlo Method

results in kinetic energy k transport equation which is

Lattice Boltzmann

used in the preceding one- and two-equation turbulence Method
models tr R = —2k for v, = C, k?c~". Fvdrodynamcs
The traces of II by definition tr II = 0 and the transport Turbulence modelling
equation for k takes the following form References

ok

o TV (pkn) = Va: R+ V- ((no," +v) Vi) — ¢
(578)
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Zero-equation model

Zero k and e are assumed. It allows the Boussinesq

Contents

equation to be reduced to R = 2i,D. Description of
Eddy viscosity 1i; is modelled by means of the e
Prandtl-Kolmogorov hypothesis. This hypothesis comes e Difference
directly from dimensionless analysis v, = clU L. Pl s
The velocity scale U is often approximated by means of Finte Element

Method

the maximal velocity ||;mq; and length scale £ by the
volume of the flow domain |V| by U ~ |4|maz. | ttce Boftaman

L ~ 3/lv|- Method
Smoothed Particle

The Boussinesq hypothesis takes the following form Hydrodynamics

Monte Carlo Method

_ Turbulence modelling
3 —
R — C \V; ‘V’ ‘u‘ma:ﬁD (579) References
No new unknown functions! However, zero-equation
models are not as accurate but they are robust (first

approximation for more complex models).
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One-equation model

One transport equation for £ is introduced Contents

Description of
fluid/solid at different

dk scales
E — Vﬁ . R —+ v . ((Vto-k_l 4+ V) Vk) — (580) Ili/';re]jctheoc[l)ifference

Finite Volume
Method

where ‘production’ Vii : R = 21,D?. According to ——
Prandtl-Kolmogorov hypothesis U = Vk and € ~ U <q Method

C
— . . . Monte Carlo Method
e = k3/2L71. Finally, the k transport equation arrives

Lattice Boltzmann
Method

dk‘ — 5 1 3/2 1 Smoothed Pe'nrticle
=D £V (o + ) VE) — KPLT (581) e
Turbulence modelling

References

where eddy viscosity is estimated as v, = VKL by means
of another Prandtl hypothesis.
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Two-equation k- model

Two additional equations have to be formulated. The
first, for the kinetic energy k, comes from the Reynolds
stress transport equation

%zZytf)z—l—V- ((Vt—l—u) Vk) — € (582)

Ok
and that for the dissipation ¢ is analogous to it

dg B E X Vi 82
E — 51%2%]3 +V- ((05 + V) Va‘) _052? (583)

Both of them are transport equations for a scalar
function. The eddy viscosity depends on both k£ and ¢ and
. . 2

Is postulated, as previously, to have the form v, = C’,,’%.
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Comments

The five constants in equations are empirical, that is, Contents
. P Description of
should be deduced from experiment for a specific fluid/solid at different

scales

geometry. This ‘standard’ set is given by

Finite Difference
Method

Finite Volume
_ - Method
o,=1, 0. = 1.3,
Finite Element

Cu — 009, Ogl — 144, 052 — 1.92 (584) Method

Monte Carlo Method

Lattice Boltzmann
Method

Smoothed Particle
Hydrodynamics

Turbulence modelling

References
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Two-equation k-w model

The turbulent frequency w is proportional to the ratio of Contents
.. . . . e . Description of
dissipation and kinetic energy w ~ £ and using the il il ol
ScCales

constant C,, they are then related by ¢ = C ,kw. The
eddy viscosity takes the form v; = f The two transport T
equations take the following form Method

Finite Element
Method

Finite Difference
Method

dk _
- = 2VtD2 -+ v . i + v Vk _ Cukw (585) Monte Carlo Method
dt Ok1 Lattice Boltzmann
Method
dw W . W, Smoothed Pe'nrticle
— = &1_2VtD2 _|_v . ((t + V) VCU) _ﬁ1w2 (586) Hydrodynamics
dt k Ol Turbulence modelling

References

This ‘standard’ set is constant is o1 = 2, 0,1 = 2,
_ _ 5 _ 3
C'u — 009, X1 — 9 61 =~ 10"
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Two equations SST model

The shear stress model combines the k-w model near the
wall with the k-¢ far from it. Firstly, the k- model has to
be transformed to the k-w formulation by means of
relation € = C,kw. This results in

dk _
D24V <(”t + u> w) — Cukw (587)

dt Ok2
W

d _
— = OZQEQVtDz +V- <(Vt + V) Vw) —
t k w2

Bow? + 22 Vk-Vw (588)
0 w2
Additional cross-diffusion terms now appear. The
‘standard’ set of constants is different from that for the
original k- o2 = 1, 0,2 = 0.856, C,, = 0.09, ay = 0.44,
By = 0.0828.
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Two equations SST model

Secondly, the equations for the k-w model are multiplied
by a blending function F} and the transformed k-¢
equations by (1 — F7). The equations then are added.
This results In

dk _
— =2,D*+ V- <<Vt 4+ y) Vk) — O kw (589)
dt Ok3

dw W = %
E — OdgEQVtDQ —I—V . <(0':3 -+ V) VW) —

2
Bs” + (1= F1) =003 Vk - Vi (590)

Constants marked with the subscript ‘3, namely 0.3, 0,3,
a3, B3 are linear combinations of constants from the
component models C3 = F1Cy + (1 — F)Ch.
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Additional passive transport equation

The additional variable transport equation may be added
to the closed system after averaging, as
of

=tV (fu) ==V (fu) -V -k+5  (591)

The first term of the right hand side can be modelled by
means of the eddy diffusivity hypothesis and the turbulent

diffusivity coefficient I, — f/u/ = 'V f and the additional
transport equation takes the form

oF iy ” N
_— . p— . - D S 592
5 TV (fu) =V ((Sct+ )Vf>+ ;o (592)
where the turbulent diffusivity coefficient I' may be

represented as a function of the eddy viscosity and the

turbulent Schmidt number I' = S’/—(ft where Sc = %.
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Turbulent boundary layer

B y" < 11 laminar sub- Contents
1 2 5 10 20 50 100 200 Description of
25 25 |ayer fluid /solid at different
scales
20 B 5 <y < 30 buffer re- Finite Difference
1 . Method
12 g|0n Finite Volume
B 11 < y© < 250 tur- bodod
Finite Element
. bulent sublayer (log-law Method
1 2 5 10 20 50 100 200 |ayer) Monte Carlo Method
y* Fric- . Lattice Boltzmann
= +
tion velocity U, — /70 By < 250 inner turbu- Method
hed Particl
Characteristic length [ = UL lent bou ndary Iayer f,r;g’r‘;td;nam?fs'ce
dimensionless distance y+ = % | y+ > 250 outer tu I’bu— Turbulence modelling
dimensionless velocity UT = g—f lent boundary |ayer References
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LES

Filtration of the N-S equations is associated with LES
method. Small scales are removed by means of filtering

= ”f Tof(r”, t")G(x —r" t —t")dt" dV”
R3 —o0

(593)
where GG is a filter. Typically it is a product
3
Gr—r" i —t") =Gyt —=t") [ | Guilz:i — ) (594)
i=1

For Gi(t — ") = 77 'H(¢") and G;(z; — 2f)) = 6(@- — ;)

7

we have time average f,(r)

T—00

= lim I [ f(r,t)d
0
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LES

Filtration of the N-S equations results in

ot _ _

S+ Ve (@n) = f—Vp + V- (D +7)  (595)
where Leonard’'s decomposition 7 = —L — C — R

L=uu-—uu, C=uu +uvua, R=uuw  (596)

represents the cross stress tensor C (interactions between
large and small scales), Reynolds subgrid tensor R.
(interactions among subgrid scales) and Leonard tensor L
(interactions among the large scales).

For L = 0 and C = 0 we have Reynolds equations.
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LES

Subgrid stress tensor need to be modelled
T =1u — uu (597)
Boussinesq like hypothesis assumed
T = —2kegsd + 204D (598)

Filtered Navier—Stokes equation

%—? +V-(@u) =-Vp.+ V- (2(v+ vs)D)  (599)
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LES

Most popular SGS LES models Contents

Description of
fluid/solid at different

B Zzero-equation scales
. Finite Difference
€ Smagorinsky Method
¢ WALE (Wall-Adapting Local Eddy-viscosity) e olume
. Finite Element
B one-equation k4 Method
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LES

Smagorinsky — the simplest model. The SGS eddy
viscosity is modelled as

Vsgs = CrA\/ Kags (600)

where A is the filter width.
The SGS kinetic energy is modelled by means of an
algebraic equation — zero-equation model

ksgs = C,CTTA2D? (601)

Finally, the SGS v; is

Vsgs — CSAQ V 2D2 (602)
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LES

WALE (Wall-Adapting Local Eddy-viscosity) [C)°”te_“ts_ f
. . . escription o
The SGS kinetic energy is modelled by means of an fluid/salid ot cifferent
scales
algebraic equation — zero-equation model Finite Difference
Method
—  — Finite Volume
C4 A2 (S;S)3 Method
ksgs — 82 5 5N 2 (603) Finite Element
—_ _ _ 9 — —_. 2 Method
k . 2 . 4
((DD) —|_ (SS) ) Monte Carlo Method
Lattice Boltzmann
h Method
whnere Smoothed Particle
Hydrodynamics
Q 1 T T Turbulence modellin
S=1(Vu-Vu+ (Vu)'-(Vu)') (604) :

References
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LES

One-equation ks,s — one transport (differential) equation Contents

Description of

Is introduced by direct analogy with the one-equation fluid/solid at different

scales

RAS £ transport equation il (Bfiiane:
Method

3 Finite Volume
dksgs 2

dt — 2ngsD2 + V- ((V + ngs) VkSQS) o Cé‘kSQSA_l Z:ittheocEllement
(605)

Method

Monte Carlo Method

The reduced version of the above

Lattice Boltzmann
Method

g Smoothed Particle

2ngs]:_)2 — _Cvgks_gsA_1 (606) Hydrodynamics

Turbulence modelling

leads to Smagorinsky model. References
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DES

DES is a combination of LES and RAS. RAS is used near
the wall and LES is used when the mesh if fine enough
(far from the wall). DES modification is introduce by
means of DES length scale

CZ — min (CDESA, [,) (607)

in the £ transport equation

U o7+ V- ((v-+ o) V) — CHAE (608)
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