Numerical Methods

Krzysztof Tesch Gdańsk University of Technology

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle Hydrodynamics Turbulence modelling** References

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Description of fluid/solid at different scales

Descriptions

Fluid motion may be described by three types of mathematical models according to the observed scales:

- Microscopic description (MD)
- Mesoscopic description
 - ♦ kinetic theory
 - ♦ LD
 - ♦ BD
 - DPD
 - SPH
 - ♦ LBM
- Macroscopic description continuum (FDM, FEM, FVM, LBM)

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Molecular mechanics takes advantage of classical mechanics equations to model molecular systems whereas molecular dynamics simulates movements of atoms in the context of N-body simulation. The motion of molecules is determined by solving the Newtons's equation of motion

$$m\frac{\mathrm{d}^{2}\mathbf{r}_{i}}{\mathrm{d}t^{2}} = \mathbf{G}_{i} + \sum_{j=1\neq i}^{N} \mathbf{f}_{ij}$$
(1)

The force exerted on a molecule consists of the external force such as gravity G_i and the intermolecular force $f_{ij} = -\nabla V$ usually described by mans of the Lennard–Jones potential

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Microscopic description – MD

$$V = 4\epsilon \left(\left(\frac{\sigma}{\|\mathbf{r}\|} \right)^{12} - \left(\frac{\sigma}{\|\mathbf{r}\|} \right)^6 \right)$$

In the above equations $||\mathbf{r}||$ is the distance between particles, ϵ – the depth of the potential well that characterises the interaction strength and σ – the finite distance describing the interaction range. Further, the ensemble average makes it possible to obtain a macroscopic quantity from the corresponding microscopic variable. The disadvantage of molecular dynamics method is that the total number of molecules even in small volume is too large – proportional to 10^{23} .

Contents

(2)

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

Microscopic description – MD

Molecular dynamics pseudocode

$$\begin{split} t &:= 0; \\ \text{Calculate initial molecule position } \mathbf{r}; \\ \text{while not the end of calculations do} \\ \mid & \mathbf{f}_{ij} := -\nabla V; \\ \mathbf{a} &:= m^{-1} \mathbf{f}_{ij}; \\ \mathbf{r} &:= \mathbf{r} + \mathbf{v} \, \Delta t + \frac{1}{2} \mathbf{a} \, \Delta t^2; \end{split}$$

 $t := t + \Delta t;$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Molecular dynamics - example

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

The key concept is the probability distribution function $f^{(N)}$ in the phase space. The phase space is constituted of 3N spatial coordinates $\mathbf{q}_1, \ldots, \mathbf{q}_N$ and 3N momenta $\mathbf{p}_1, \ldots, \mathbf{p}_N$. The probability distribution function $f^{(N)}$ allows to express the probability to find a particle within the infinitesimal phase space

$$(\mathbf{q}_1, \mathbf{q}_1 + \mathrm{d}\mathbf{q}) \times \ldots \times (\mathbf{q}_N, \mathbf{q}_N + \mathrm{d}\mathbf{q}) \times (\mathbf{p}_1, \mathbf{p}_1 + \mathrm{d}\mathbf{p}) \times \ldots \times (\mathbf{p}_N, \mathbf{p}_N + \mathrm{d}\mathbf{p})$$
(4)

The total number of molecules within the infinitesimal phase space is then

$$f^{(N)}\left(\mathbf{q}_{1},\ldots,\mathbf{q}_{N},\mathbf{p}_{1},\ldots,\mathbf{p}_{N}\right)\,\mathrm{d}q^{N}\,\mathrm{d}p^{N}$$
(5)

Description of fluid/solid at different
Finite Difference
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mesoscopic description – LBM

The time evolution of the probability distribution function $f^{\left(N\right)}$ follows the Liouville equation

$$\frac{\mathrm{d}f^{(N)}}{\mathrm{d}t} = \frac{\partial f^{(N)}}{\partial t} + \sum_{i=1}^{N} \left(\frac{\partial f^{(N)}}{\partial \mathbf{p}_{i}} \cdot \frac{\mathrm{d}\mathbf{p}_{i}}{\mathrm{d}t} + \frac{\partial f^{(N)}}{\partial \mathbf{q}_{i}} \cdot \frac{\mathrm{d}\mathbf{q}_{i}}{\mathrm{d}t} \right) = 0$$

This means that the distribution function is constant along any trajectory in phase space.

The reduced probability distribution function is defined as

$$F_s\left(\mathbf{q}_1,\ldots,\mathbf{q}_s,\mathbf{p}_1,\ldots,\mathbf{p}_s\right) = \int_{\mathbb{R}^{3(N-s)}} \int f^{(N)}\left(\mathbf{q}_1,\ldots,\mathbf{q}_N,\mathbf{p}_1,\ldots,\mathbf{p}_N\right) \,\mathrm{d}q^{N-s} \,\mathrm{d}p^{N-s}$$

Description of
fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle Hydrodynamics
Turbulence modelling
Defense
References

Mesoscopic description – LBM

The above function is called the s-particle probability distribution function. A chain of evolution equations for F_s for $1 \le s \le N$ is derived and called BBGKY hierarchy. This means that the s^{th} equation for the s-particle distributions contains s + 1 distribution. That hierarchy may be truncated. Truncating it at the first order results in Boltzmann equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \Omega(f) \tag{6}$$

for the probability distribution function

$$f(\mathbf{r}, \mathbf{v}, t) = mNF_1(\mathbf{q}_1, \mathbf{p}_1, t)$$
(7)

for binary collisions with uncorrelated velocities before that collision.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothad Particla
Tryurouynamics
Turbulence modelling
References

Mesoscopic description – DPD

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

The DPD (Dissipative Particle Dynamics) method simulate only a reduced number of degrees of freedom (coarse-grained models). The motion of particles is determined by solving the Newtons's equation of motion

$$m\frac{\mathrm{d}^{2}\mathbf{r}_{i}}{\mathrm{d}t^{2}} = \mathbf{G}_{i} + \sum_{j=1\neq i}^{N} \left(\mathbf{f}_{ij}^{C} + \mathbf{f}_{ij}^{D} + \mathbf{f}_{ij}^{R}\right)$$

where the interaction forces are the sum of

- **f**^C_{ij} conservative or repulsion forces
 f^D_{ij} dissipative forces
 f^R_{ij} random force

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mesoscopic description – DPD

Dissipative forces

$$\mathbf{f}_{ij}^{D} = -\gamma \omega_{D} \left(\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij} \right) \hat{\mathbf{r}}_{ij}$$

Random force

$$\mathbf{f}_{ij}^R = \sigma \omega_R \hat{\mathbf{r}}_{ij} \frac{\theta_{ij}}{\sqrt{\Delta t}}$$

$$\mathbf{f}_{ij}^C = \alpha \omega_R \hat{\mathbf{r}}_{ij} \tag{10}$$

Contents

(8)

(9)

Description of	
fluid/solid at differe	ent
scales	
Finite Difference	
Method	
Einite Maluma	
Mothod	
Iviethou	
Finite Element	
Method	
Monte Carlo Metho	d
Lattice Boltzmann	
Method	
Smaathad Dautiala	
Smoothed Particle	
Hydrodynamics	
Turbulence modellin	۱g
References	

$$\omega_D = \omega_R^2$$
 and $\sigma^2 = 2\gamma k_B T$

K. Tesch; Numerical Methods

Mesoscopic description – LD

The Langevin dynamics equation of motion

$$m\frac{\mathrm{d}^2\mathbf{x}_i}{\mathrm{d}t^2} = \mathbf{f}_i^C - \gamma \mathbf{v}_i + \mathbf{f}_i^R$$

where

- $\blacksquare \quad \text{Dissipative forces } -\gamma \mathbf{v}_i$
- **\blacksquare** Random force \mathbf{f}_i^R
- Conservative forces

$$\mathbf{f}_i^C = -\nabla V \tag{12}$$

Contents

(11)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mesoscopic description – BD

The Brownian dynamics equation of motion

 $\mathbf{0} = \mathbf{f}_i^C - \gamma \mathbf{v}_i + \mathbf{f}_i^R$

or

 $\gamma \frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t} = \mathbf{f}_i^C + \mathbf{f}_i^R$

where

- **Random force** \mathbf{f}_i^R
- Conservative forces

$$\mathbf{f}_i^C = -\nabla V$$

Contents

(13)

(14)

(15)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mesoscopic description – SPH

The Smoothed Particle Hydrodynamics equation of motion

$$\frac{\mathrm{d}\mathbf{u}_i}{\mathrm{d}t} = \mathbf{g}_i - \mathbf{f}_{pi} + \mathbf{f}_{\mu i} \tag{16}$$

where

- $\blacksquare \quad \mathsf{Body force } \mathbf{g}_i$
- Pressure gradient forces \mathbf{f}_{pi}
- Viscous forces $\mathbf{f}_{\mu i}$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Macroscopic description – conservation equations

Conservation of mass

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho\nabla\cdot\mathbf{u} = 0$$

Conservation of linear momentum

$$\rho \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \rho \mathbf{f} + \nabla \cdot \boldsymbol{\sigma} \tag{18}$$

Decomposition of stress tensor

$$\boldsymbol{\sigma} = -p\boldsymbol{\delta} + \boldsymbol{\tau} \tag{19}$$

Another form of conservation of linear momentum

$$\rho \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \rho \mathbf{f} - \nabla p + \nabla \cdot \boldsymbol{\tau}$$
(20)

(17)

Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method

Contents

scales

Method

Description of

Finite Difference

fluid/solid at different

Smoothed Particle Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods

Macroscopic description – energy equations

Energy	Equation	Contents
Kinetic	$\rho \frac{\mathrm{d} e_k}{\mathrm{d} \mathbf{h}} = \rho \mathbf{f} \cdot \mathbf{u} + \nabla \cdot (\mathbf{\sigma} \cdot \mathbf{u}) - \nabla \cdot \mathbf{\sigma}$	Description of fluid/solid at different scales
Total	$\rho_{dt} = \rho_{t} + \nabla_{t} (\mathbf{\tau} \cdot \mathbf{u}) - \nabla_{t} \mathbf{q}$	Finite Difference Method
TOLAT	$p \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} + \mathbf{v} \cdot (\mathbf{t} \cdot \mathbf{u}) = \mathbf{v} \cdot \mathbf{q}$	Finite Volume Method
Mechanical	$\rho \frac{\mathrm{d} e_m}{\mathrm{d} t} = \nabla \cdot (\boldsymbol{\sigma} \cdot \mathbf{u}) - \boldsymbol{\sigma} : \mathbf{D}$	Finite Element Method
Internal	$ ho rac{\mathrm{d}e}{\mathrm{d}t} = \mathbf{\sigma}: \mathbf{D} - abla \cdot \mathbf{q}$	Monte Carlo Method
Enthalov	$a \frac{\mathrm{d}h}{\mathrm{d}h} = \boldsymbol{\tau} \cdot \mathbf{D} = \nabla \cdot \mathbf{a} + \frac{\mathrm{d}p}{\mathrm{d}h}$	Lattice Boltzmann Method
спару	$P_{dt} = \mathbf{v} \cdot \mathbf{D} \mathbf{v} \cdot \mathbf{Q} + dt$	Smoothed Particle Hydrodynamics

Turbulence modelling

References

Macroscopic description – general transport equations

$$\frac{\partial(\rho f)}{\partial t} + \nabla \cdot (\rho \mathbf{u} f) = S_f - \nabla \cdot \mathbf{k}$$
 (21)

Left hand side represents transient and convection effects. It expresses the rate of change $\rho \frac{df}{dt} = \frac{\partial(\rho f)}{\partial t} + \nabla \cdot (\rho \mathbf{u} f)$. Right hand side represents sources (positive and negative) and fluxes (transport due to other mechanism than convection).

mass conservation equation

f := 1, S_f := 0, k := 0

linear momentum conservation equation

f ← u, S_f ← ρf, k ← −σ

energy conservation equation

f := e_k, S_f := ρf ⋅ u, k := q − σ ⋅ u

Contents

fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

Macroscopic description – laws of thermodynamics

Second law of thermodynamics

$$\rho \frac{\mathrm{d}s}{\mathrm{d}t} \ge -\nabla \cdot \frac{\mathbf{q}}{T}$$

Entropy balance

$$\rho \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\phi}{T} - \nabla \cdot \frac{\mathbf{q}}{T}$$

First law of thermodynamics

$$\rho \frac{\mathrm{d}e}{\mathrm{d}t} = \mathbf{\tau} : \mathbf{D} - p\nabla \cdot \mathbf{u} - \nabla \cdot \mathbf{q}$$
(24)

Contents

(22)

(23)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Macroscopic description – constitutive equations

- Mechanical (rheological) constitutive equations
- Equations of state
- Fluxes

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Macroscopic description – mechanical constitutive equations

- Newtonian fluids $oldsymbol{ au}=2\mu \mathbf{D}$
- Non-Newtonian fluids

• Generalised Newtonian fluids $\mathbf{\tau} = 2\mu(\gamma)\mathbf{D}$

• Differential type fluid $\boldsymbol{\tau} = f(\mathbf{A}_1, \mathbf{A}_2, \ldots)$

$$\mathbf{A}_{i+1} = \frac{\mathrm{d}\mathbf{A}_i}{\mathrm{d}t} + \mathbf{A}_i \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{r}} + \nabla \mathbf{u} \cdot \mathbf{A}_i, \quad i = 1, 2, \dots$$

Integral type fluids

$$\mathbf{\tau} = \int_{-\infty}^{t} f(t-\tau) \left(\mathbf{\delta} - \mathbf{C}_{t}(\tau) \right) \, \mathrm{d}\tau$$

• Rate type fluids $\dot{\boldsymbol{\tau}} = f\left(\boldsymbol{\tau}, \mathbf{D}, \dot{\mathbf{D}}\right)$ $\boldsymbol{\tau} + \lambda_1 \dot{\boldsymbol{\tau}} = 2\mu \left(\mathbf{D} + \lambda_2 \dot{\mathbf{D}}\right)$

Description of
fluid/solid at different
scales
Finite Difference
Method
method
Finite Volume
Method
method
Finite Element
Method
Monte Carlo Method
Lattice Beltemann
Lattice Boitzmann
Method
Smoothed Particle
Hydrodynamics
Trydrodynamics
Turbulence modelling
References

Generalised Newtonian fluids

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

K. Tesch; Numerical Methods

Macroscopic description – equations of state

• Fundamental equation of state $e = f(s, \rho^{-1})$

 $\frac{\mathrm{d}e}{\mathrm{d}t} = T\frac{\mathrm{d}s}{\mathrm{d}t} + \frac{p}{\rho^2}\frac{\mathrm{d}\rho}{\mathrm{d}t}$

• Thermal equation of state $p = f(T, \rho^{-1})$

$$p = \rho RT \tag{26}$$

• Caloric equation of state $e = f(T, \rho^{-1})$

$$de = c_v dT + \left(T\frac{\partial p}{\partial T} - p\right) d\rho^{-1} \qquad (27)$$

Contents

(25)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Macroscopic description – fluxes

General form $\mathbf{w} = -\mathbf{T} \cdot \nabla \varphi$ due to assumption $\mathbf{w} = f(\nabla \varphi)$. More precisely \mathbf{w} depends only on φ and $\nabla \varphi$.

Fourier's law

 $\mathbf{q} = -\boldsymbol{\lambda} \cdot \nabla T \tag{28}$

Fick's law

 $\mathbf{j}^i = -\rho \mathbf{D}^{ij} \cdot \nabla g^i$

Darcy's law

 $\mathbf{u} = -\mu^{-1}\mathbf{K}\cdot\nabla p \tag{30}$

In the case of isotropy $\mathbf{T}=\alpha\,\boldsymbol{\delta}$ and

$$\mathbf{w} = -\alpha \, \boldsymbol{\delta} \cdot \nabla \varphi = -\alpha \nabla \varphi \tag{31}$$

Contents Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

(29)

K. Tesch; Numerical Methods

Macroscopic description – general transport equations

General transport equations

$$\frac{\partial(\rho f)}{\partial t} + \nabla \cdot (\rho \mathbf{u} f) = S_f - \nabla \cdot \mathbf{k}$$
(32)

Fluxes

$$\mathbf{k} = -\Gamma \, \boldsymbol{\delta} \cdot \nabla f = -\Gamma \nabla f \tag{33}$$

In the case of isotropy the general transport equations becomes

$$\frac{\partial(\rho f)}{\partial t} + \nabla \cdot (\rho \mathbf{u} f) = S_f + \nabla \cdot (\Gamma \nabla f)$$
(34)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

General form of the Navier–Stokes equation for Newtonian fluids

$$\rho \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \rho \mathbf{f} - \nabla p + \nabla \cdot \left(2\mu \mathbf{D}^{\mathrm{D}}\right)$$

- incompressible flow
- creeping flow
- inviscid flow
- Boussinesq approximation
- Oseen approximation
- filtration
- one-dimensional flows
- heat transfer
- surface tension

Description of

(35)

fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

$$- \text{ incompressible fluid } (\rho = \text{const})$$

$$\rho \frac{d\mathbf{u}}{dt} = \rho \mathbf{f} - \nabla p + \nabla \cdot (2\mu \mathbf{D})$$

$$\mu = \text{const}$$

$$\rho \frac{d\mathbf{u}}{dt} = \rho \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\mu = \rho \nu$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{u} + \mathbf{u} + \mathbf{u} \nabla^2 \mathbf{u}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{u} + \mathbf$$

- creeping flow

$$\rho \frac{\partial \mathbf{u}}{\partial t} = \rho \mathbf{f} - \nabla p + \nabla \cdot (2\mu \mathbf{D})$$

steady state

 $\nabla p = \nabla \cdot (2\mu \mathbf{D})$

2D creeping flow

$$\nabla^4 \psi = 0$$

Contents

(40)

(41)

(42)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

– inviscid flow ($\mu = 0$)

$$\rho \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \rho \mathbf{f} - \nabla p \tag{43}$$

- potential flows $(\nabla \times \mathbf{u} = \mathbf{0} \iff \mathbf{u} = \nabla \varphi)$

$$\nabla^2 \varphi = \nabla^2 \psi = 0 \tag{44}$$

Contents

Description of fluid/solid at different
Scales Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

- Boussinesq approximation

$$\rho \mathbf{f} = \rho \mathbf{g} = \rho_0 \mathbf{g} + (\rho - \rho_0) \mathbf{g}$$
(45)

$$\rho - \rho_0 = -\rho_0 \beta (T - T_0)$$
 (46)

$$\rho_0 \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \rho_0 \mathbf{g} \left(1 - \beta (T - T_0)\right) - \nabla p + \nabla \cdot (2\mu \mathbf{D}) \qquad (47)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

- Oseen approximation (linearisation)

$$\mathbf{u} \cdot \nabla \mathbf{u} \approx \mathbf{u}_{\infty} \cdot \nabla \mathbf{u} \tag{48}$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u}_{\infty} \cdot \nabla \mathbf{u} = \rho \mathbf{f} - \nabla p + \nabla \cdot \left(2\mu \mathbf{D}^{\mathrm{D}}\right)$$
(49)

Contents

Description of

fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

- filtration

$$\rho \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \rho \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{u} - R_1 \mathbf{u}$$

- one-dimensional flows

$$\nabla^2 u = a$$

Contents

(50)

(51)

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Trydrodynamics
Turbulence modelling
References

- heat transfer The 'fluid' Fourier equation describes the temperature field in the fluid.

$$c_v \left(\frac{\partial(\rho T)}{\partial t} + \nabla \cdot (\rho T \mathbf{u}) \right) = \phi_\mu + \nabla \cdot (\lambda \nabla T) \quad (52)$$

For solids where $\mathbf{u} = \mathbf{0}$ the above equation simplifies to the 'solid' Fourier–Kirchhoff equation

$$c\frac{\partial(\rho T)}{\partial t} = \nabla \cdot (\lambda \nabla T) + S_E$$
(53)

where internal energy sources are given by S_E .

Description of
fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References
Comments

Generally, the 'fluid' equation should be solved together with 'solid' equation. This is called conjugate heat transfer. Not having to know the heat transfer coefficient is an advantage of this approach. The disadvantage is the necessity of increasing the total number of mesh elements due to the additional solid volume.

It is not always possible because of storage limitations. Then either the temperature or heat flux must be specified at the wall. Alternatives, through boundary conditions, are discussed further such as specified temperature, specified heat flux, specified temperature and heat flux, adiabatic or specified heat transfer coefficient.

Contents

Macroscopic description

- surface tension

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{f} - \nabla \frac{p}{\rho} + \nu \nabla^2 \mathbf{u}$$

$$\mathbf{f} = \mathbf{g} + \rho^{-1} \mathbf{f}_{\sigma}$$

$$\mathbf{f}_{\sigma} = \sigma \kappa \nabla \alpha$$

$$\kappa = -\nabla \cdot \hat{\boldsymbol{n}} = -\nabla \cdot \frac{\nabla \alpha}{\|\nabla \alpha\|}$$

 α transport equation

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{u}) = 0$$
 (58)

Contents

(54)

(55)

(56)

(57)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Macroscopic description – dimensionless form of equations

Mass conservation equation

$$\nabla^+ \cdot \mathbf{u}^+ = 0$$

Linear momentum conservation equation

$$\rho^{+} \left(\operatorname{Sh} \frac{\partial \mathbf{u}^{+}}{\partial t^{+}} + \mathbf{u}^{+} \cdot \nabla^{+} \mathbf{u}^{+} \right) =$$
$$= \frac{\rho^{+} \mathbf{f}^{+}}{\operatorname{Fr}} - \operatorname{Eu} \nabla^{+} p^{+} + \frac{\mu^{+}}{\operatorname{Re}} \nabla^{2+} \mathbf{u}^{+} \quad (60)$$

Fourier-Kirchhoff (internal energy)

$$\rho^{+}c_{v}^{+}\left(\operatorname{Sh}\frac{\partial T^{+}}{\partial t^{+}} + \mathbf{u}^{+} \cdot \nabla^{+}T^{+}\right) = \frac{\operatorname{Ec}}{\operatorname{Re}}\phi_{\mu}^{+} + \frac{\lambda^{+}}{\operatorname{Pr}\operatorname{Re}}\nabla^{2+}T^{+} \quad (61)$$

Contents

(59)

Description of
fluid/solid at different
scales
Finite Difference
Method
Einita Valuma
Method
Method
Finite Element
Method
Manta Carla Mathad
Wonte Carlo Wethod
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
<u> </u>
Turbulence modelling
Keterences

Macroscopic description – dimensionless numbers

$$Sh = \frac{\mathcal{L}}{\mathcal{U}t_0} = \frac{t_{ch}}{t_0} = \frac{\mathcal{L}f}{\mathcal{U}} = \frac{\frac{\mathcal{U}}{t_0}}{\frac{\mathcal{U}^2}{\mathcal{L}}}$$

$$Fr = \frac{\mathcal{U}^2}{f_0\mathcal{L}} = \frac{\frac{\rho_0\mathcal{U}^2}{\mathcal{L}}}{\rho_0f_0}$$

$$Re = \frac{\mathcal{L}\mathcal{U}\rho_0}{\mu_0} = \frac{\mathcal{L}\mathcal{U}}{\nu_0} = \frac{\frac{\rho_0\mathcal{U}^2}{\mathcal{L}}}{\frac{\mu_0\mathcal{U}}{\mathcal{L}^2}}$$

$$Eu = \frac{p_0}{\rho_0\mathcal{U}^2} = \frac{\frac{p_0}{\mathcal{L}}}{\frac{\rho_0\mathcal{U}^2}{\mathcal{L}}}$$

$$Ec = \frac{\mathcal{U}^2}{\frac{c_{v_0}T_0}{\lambda_0}} = \frac{\nu_0}{\frac{\lambda_0}{c_{v_0}\rho_0}}$$

$$Sc = \frac{\mu_0}{\rho_0D_0} = \frac{\nu_0}{D_0}$$

$$Da = \frac{K_0}{\mathcal{L}^2}$$

$$De = \frac{\lambda_0}{t_0}$$

$$Wi = \lambda_0\gamma_0$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Macroscopic description – compatibility conditions

General transport equation

$$\frac{\partial(\rho f)}{\partial t} + \nabla \cdot (\rho \mathbf{u} f) = S_f - \nabla \cdot \mathbf{k}$$
 (62)

From Reynolds' transport theorem arises general compatibility condition $\hat{n} \cdot [\rho \mathbf{u} f + \mathbf{k}] = 0$

- Mass conservation: f := 1, $S_f := 0$, $\mathbf{k} := \mathbf{0}$. C.C. takes form $\hat{\boldsymbol{n}} \cdot [\rho \mathbf{u}] = 0$ or $\hat{\boldsymbol{n}} \cdot [\mathbf{u}] \equiv [u_n] = 0$
- Linear momentum: $f \leftarrow \mathbf{u}, S_f \leftarrow \rho \mathbf{f}, \mathbf{k} \leftarrow -\boldsymbol{\sigma}$ and C.C. $\hat{\boldsymbol{n}} \cdot [\rho \mathbf{u} \mathbf{u} - \boldsymbol{\sigma}] = \mathbf{0}$ or $\hat{\boldsymbol{n}} \cdot [\boldsymbol{\sigma}] = [\boldsymbol{\sigma}_n] = \mathbf{0}$
- Energy conservation: $f := e_k$, $S_f := \rho \mathbf{f} \cdot \mathbf{u}$, $\mathbf{k} := \mathbf{q} - \boldsymbol{\sigma} \cdot \mathbf{u}$ and C.C. $\hat{\boldsymbol{n}} \cdot [\rho \mathbf{u} e_k - \boldsymbol{\sigma} \cdot \mathbf{u} + \mathbf{q}] = 0$ or $\hat{\boldsymbol{n}} \cdot [\mathbf{q}]$ or $[\lambda \frac{\partial T}{\partial n}] = 0$

Contents

Description of fluid /solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Macroscopic description – boundary conditions

Compatibility conditions are insufficient! Further conditions are needed:

- $\blacksquare \quad \text{adhesion } \hat{l} \cdot \mathbf{u} = u_l = 0$
- thermal equilibrium on surfaces [T] = 0

Boundary condition related to heat transfer (arise from C.C.)

Dirichlet:
$$T = f_1(x, y, z, t)$$

• Neumann:
$$q_n = \hat{\boldsymbol{n}} \cdot \mathbf{q}$$
 or $q_n = f_2(x, y, z, t)$

$$\blacksquare \quad \mathsf{mixed:} \ \alpha T - \lambda \frac{\partial T}{\partial n} = f_3(P, t)$$

~						
ౖ౦	n	t١	eı	n	t	s

```
Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References
```

Macroscopic description – boundary conditions

Other surfaces than walls

- inlet: n-1 conditions where n stands for the number of equations
- outlet: Generally, $\boldsymbol{\sigma}_n = \hat{\boldsymbol{n}} \cdot \boldsymbol{\sigma}$ plus T distribution. Usually p distribution due to $\boldsymbol{\sigma}_n \approx -p\hat{\boldsymbol{n}}$ plus $\frac{\partial T}{\partial n} = 0$
- symmetry: ∂φ/∂n = 0 for all scalar variables φ
 periodicity (translation and rotation): φ(P₁) = φ(P₂) where P₁ and P₂ are corresponding points on periodic surfaces

Contents

Mathematical classification

Contents General partial differential equation Description of fluid/solid at different scales $F\left(\frac{\partial^{\kappa} f}{\partial x_{*}^{n_{1}} \partial x_{*}^{n_{n}}}, \frac{\partial^{\kappa-1} f}{\partial x_{*}^{m_{1}} \partial x_{*}^{m_{n}}}, \dots, \frac{\partial f}{\partial x_{*}}, f, \mathbf{x}\right) = 0$ **Finite Difference** Method Finite Volume (63)Method Finite Element linear Method semi-linear Monte Carlo Method Lattice Boltzmann Method $\sum a_i(\mathbf{x}) \frac{\partial^{\kappa} f}{\partial x_1^{n_1} \dots \partial x_n^{n_n}} + a_0 \left(\frac{\partial^{\kappa-1} f}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}, \dots, \frac{\partial f}{\partial x_i}, f, \mathbf{x} \right) = 0$ Smoothed Particle **Hydrodynamics** Turbulence modelling (64)References

quasi-linearfully non-linear

Mathematical classification

The Navier–Stokes equations are second order nonlinear partial differential equations. In general, they cannot be easily classified. However they posses properties of semi-linear and linear second order partial differential equations. Sometimes they can be simplified to those and can be divided into:

hyperbolic

elliptic

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Semi-linear second order PDEs

For two independent variables x, y:

$$A(x,y)\frac{\partial^2 f}{\partial x^2} + B(x,y)\frac{\partial^2 f}{\partial x \partial y} + C(x,y)\frac{\partial^2 f}{\partial y^2} + F\left(x,y,f,\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right) = 0 \quad (65)$$

for all (x, y) over a domain Ω the above equation is:

- hyperbolic if $B^2 4AC > 0$
- **parabolic if** $B^2 4AC = 0$
- $\blacksquare \quad \text{elliptic if } B^2 4AC < 0$

Contents

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Iurbulence modelling
References

Important elliptic second order PDEs

Laplace equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

Poisson equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = f(x, y)$$

(67)

(68)

(66)

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Contents

scales

Method

Method

Method

Description of

Finite Difference

Finite Volume

Finite Element

fluid/solid at different

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + k^2 f = 0$$

Important parabolic second order PDEs

Heat equation

$$\frac{\partial f}{\partial t} - \alpha \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{\partial f}{\partial t} - \alpha \frac{\partial^2 f}{\partial x^2} = g(x, t)$$

(69)

(70)

Description of
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling

Convection-diffusion equation

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = \nu \frac{\partial^2 f}{\partial x^2} \tag{71}$$

$$\frac{\text{Turbulence}}{\text{References}}$$

Important hyperbolic second order PDEs

Wave equation

$$\frac{\partial^2 f}{\partial t^2} - a^2 \frac{\partial^2 f}{\partial x^2} = 0$$

Telegraph equations

$$\frac{\partial^2 f}{\partial x^2} - a \frac{\partial^2 f}{\partial t^2} - b \frac{\partial f}{\partial t} - c f = 0$$
 (73)

Convection equations

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = 0 \tag{74}$$

Contents

(72)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Important mixed type second order PDEs

Euler-Tricomi equation

$$\frac{\partial^2 f}{\partial x^2} - x \frac{\partial^2 f}{\partial y^2} = 0 \tag{75}$$

It is of hyperbolic type for x > 0, parabolic at x = 0and elliptic for x < 0.

Generalised Euler-Tricomi equation

$$\frac{\partial^2 f}{\partial x^2} - g(x)\frac{\partial^2 f}{\partial y^2} = 0$$
(76)

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Important mixed type second order PDEs

Potential gas flow

$$(1 - Ma_{\infty}^{2})\frac{\partial^{2}\varphi'}{\partial x^{2}} + \frac{\partial^{2}\varphi'}{\partial y^{2}} = 0$$
 (77)

It is of hyperbolic type for $Ma_{\infty}^2 > 1$, parabolic at $Ma_{\infty}^2 = 1$ and elliptic for $Ma_{\infty}^2 < 1$ The velocity potential for the x axis dominated flow is

$$\varphi(x,y) = u_{\infty}x + \varphi'(x,y) \tag{78}$$

Velocity components are then given as

$$u_x(x,y) = \frac{\partial \varphi'}{\partial x} = u_\infty + u_x(x,y)$$
(79)

$$u_y(x,y) = \frac{\partial \varphi'}{\partial y} = u_y(x,y) \tag{80}$$

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Contents

VoF method

(81a)

(81b)

(82)

VoF – Volume of Fluid

$$\rho = \alpha \rho_l + (1 - \alpha) \rho_g$$
$$\mu = \alpha \mu_l + (1 - \alpha) \mu_g$$

$\boldsymbol{\alpha}$ is a volume fraction

$$\alpha = \begin{cases} 1, & \text{liquid}; \\ 0, & \text{gas}; \\ 0 \le \alpha \le 1, & \text{interface} \end{cases}$$

Description of

Contents

fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

VoF method

(83)

(85)

Mass conservation

$$\nabla \cdot \mathbf{u} = 0$$

the Navier-Stokes equation

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} \right) = \sigma \kappa \nabla \alpha - \nabla p_{rgh} - \mathbf{g} \cdot \mathbf{h} \nabla \rho + \nabla \cdot \left(2\mu \mathbf{D} \right)$$
(84)

modified pressure $p_{rgh} = p - \rho \mathbf{g} \cdot \mathbf{h}$ α transport equation

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{u}) = 0$$

Contents

Description of
fluid/solid at different
scales
Finite Difference
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Weenod
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Complex phenomena

- Free surface flows
- Cavitation
- Melting

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Free surface flows

Mixture mass conservation equation

 $\nabla \cdot \mathbf{u} = 0$

Mixture Navier–Stokes equation

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} \right) = \underbrace{\sigma \kappa \nabla \alpha}_{=\mathbf{0}, \neq \mathbf{0}} - \nabla p_{rgh} - \mathbf{g} \cdot \mathbf{h} \nabla \rho + \nabla \cdot \left(2\mu \mathbf{D} \right)$$
(87)

Volume fraction transport equation

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{u}) = 0 \tag{88}$$

Contents

(86)

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Cavitation

(89)

Mixture mass conservation equation

 $\nabla \cdot \mathbf{u} = 0$

Mixture Navier-Stokes equation

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} \right) = \underbrace{\sigma \kappa \nabla \alpha}_{=\mathbf{0}, \neq \mathbf{0}} - \nabla p_{rgh} - \mathbf{g} \cdot \mathbf{h} \nabla \rho + \nabla \cdot \left(2\mu \mathbf{D} \right)$$
(90)

Volume fraction transport equation

$$\frac{\partial \alpha_l}{\partial t} + \nabla \cdot (\alpha_l \mathbf{u}) = \frac{S_m}{\rho_l}$$
(91)

$$\blacksquare \quad \mathsf{Merkle} \ S_m = \dots$$

Kunz

Description of
fluid/solid at different
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Melting

(92)

Mixture mass conservation equation

 $\nabla\cdot\mathbf{u}=0$

Mixture Navier–Stokes equation

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u}\right) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u}\right) = \rho_0 \mathbf{g} - \rho_0 \beta (T - T_0) \mathbf{g} - \nabla p + \nabla \cdot (2\mu \mathbf{D}) + \mathbf{S}_u \quad (93)$$

Volume fraction transport equation

$$\frac{\partial \alpha_l}{\partial t} + \nabla \cdot (\alpha_l \mathbf{u}) = \frac{S_m}{\rho_l}$$
(94)

Enthalpy equation

$$\frac{\partial}{\partial t} \left(\rho c_p T\right) + \nabla \cdot \left(\rho c_p T \mathbf{u}\right) = \nabla \cdot \left(\lambda \nabla T\right) + S_h \qquad (95)$$

Contents

Description of
fluid/solid at different
scales
Einite Difference
Finite Difference
Method
Finite Volume
Method
Einite Element
Finite Element
Iviethod
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Iurbulence modelling
References
1/6161611665

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Finite Difference Method

The method

The finite difference method (introduced by Euler in XVIII century) replaces the region by a finite mesh of points at which the dependent variable is approximated.

All partial derivatives at each mesh point are approximated from neighbouring values by means of Taylor's theorem. This means that derivatives at each point are approximated by difference quotients.

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Assuming that f has continuous derivatives over certain interval the Taylor expansion is used

$$f(x_0 + \Delta x) = \sum_{n=0}^{m-1} \frac{\mathrm{d}^n f(x_0)}{n!} + \frac{\mathrm{d}^m f(c)}{m!}$$
(96)

where $x = x_0 + \Delta x$, $c = x_0 + \theta \Delta x$ and $\theta \in]0; 1[$. The above equation may also be written as

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{1}{2}f''(x_0)\Delta x^2 + \frac{1}{6}f'''(x_0)\Delta x^3 + \ldots + \frac{1}{m!}f^{(m)}(c)\Delta x^m \quad (97)$$

Contents

Instead of $f^{(m)}$ at unknown point c it is rewritten in terms of another unknown quantity of order Δx^m

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + f''(x_0)\frac{\Delta x^2}{2} + \dots + f^{(m-1)}(x_0)\frac{\Delta x^{m-1}}{(m-1)!} + \mathcal{O}(\Delta x^m)$$
(98)

Discarding (truncating) $\mathcal{O}(\Delta x^m)$ one gets an approximation to f. The error in this approximation is $\mathcal{O}(\Delta x^m)$. Roughly speaking it says that knowing the value of f and the values of its derivatives at x_0 it is possible to write down the equation for its value at the point $x_0 + \Delta x$.

Contents

Description of
fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

First order finite difference

Taking under consideration the Taylor expansion up to the first derivative

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \mathcal{O}(\Delta x^2)$$
(99)

then neglecting $\mathcal{O}(\Delta x)$ and rearranging gives the first order finite difference approximation to $f'(x_0)$

$$f'(x_0) \approx \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \tag{100}$$

This approximation is called a forward approximation. Replacing Δx by $-\Delta x$ in Taylor expansion one gets backward approximation

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}$$
(101)

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Taking under consideration the Taylor expansion up to the second derivative

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + f''(x_0)\frac{\Delta x^2}{2} + \mathcal{O}(\Delta x^3)$$
(102)
then neglecting $\mathcal{O}(\Delta x^2)$. Doing the same for $-\Delta x$ and

combining the two above we have

$$f'(x_0) \approx \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$
(103)

after neglecting $\mathcal{O}(\Delta x^2)$. This is so called the second order central difference approximation to $f'(x_0)$.

Contents

Second order finite difference

Higher order approximation to derivatives is also possible. This can be done by taking more terms in the Taylor expansion. Doing so up to the third we get

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{1}{2}f''(x_0)\Delta x^2 + \frac{1}{6}f'''(x_0)\Delta x^3 + \mathcal{O}(\Delta x^4) \quad (104)$$

Replacing Δx for $-\Delta x$ and combing the results then dropping $\mathcal{O}(\Delta x^4)$ gives the second order symmetric difference approximation to f''

$$f''(x_0) \approx \frac{f(x_0 + \Delta x) - 2f(x_0) + f(x_0 - \Delta x)}{\Delta x^2}$$
 (105)

Contents

Differences

Selected finite differences approximation to first and second derivatives are given in the following table. These can be used to solve ordinary differential equations by replacing derivatives by their approximations.

	Approximation	Туре	Order
$f'(x_0)$	$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$	forward	1^{st}
$f'(x_0)$	$\frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}$	backward	1^{st}
$f'(x_0)$	$\frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$	central	2^{nd}
$f''(x_0)$	$\frac{f(x_0 + \Delta x) - 2f(x_0) + f(x_0 - \Delta x)}{\Delta x^2}$	symmetric	2^{nd}

Contents

Differences

Equations for f' approximate the slope of the tangent in x_0 by means of chords (backward, forward and central

finite difference).

Contents

fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Differences

The typical subscript notation is

$$f(x_0 + m h, y_0 + n h) \equiv f_{i+m j+n}$$
 (106)

Now it is possible to express selected finite differences approximations to derivatives in somewhat simpler manner

	Approximation	Туре	Order
f'_i	$\frac{f_{i+1}-f_i}{h}$	forward	1^{st}
f'_i	$rac{f_i - f_{i-1}}{h}$	backward	1^{st}
f'_i	$\frac{f_{i+1}-f_{i-1}}{2h}$	central	2^{nd}
f_i''	$\frac{f_{i+1}-2f_i+f_{i-1}}{h^2}$	symmetric	2^{nd}

Contents

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Witting
Smoothed Particle
Hydrodynamics
Turkulan oo moodollin a
Turbulence modelling
References

Convection-diffusion equation

$$\frac{\partial \left(\rho\phi\right)}{\partial t} + \nabla \cdot \left(\rho\phi\mathbf{u}\right) = \nabla \cdot \left(\Gamma\nabla\phi\right)$$
(107)

I parabolic. Additionally, if $\mathbf{u}=\mathbf{0}$

hyperbolic, if $\Gamma = 0$

$$\frac{\partial \left(\rho\phi\right)}{\partial t} = \nabla \cdot \left(\Gamma\nabla\phi\right)$$

(109)

Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics

References

Contents

scales

Method

Method

Description of

Finite Difference

Finite Volume

fluid/solid at different

elliptic, if
$$\frac{\partial}{\partial t} = 0$$
 or at the same time $\frac{\partial}{\partial t} = 0$ and
 $\mathbf{u} = \mathbf{0}$
 $\nabla \cdot (\Gamma \nabla \phi) = 0$ (110)

 $\frac{\partial \left(\rho\phi\right)}{\partial t} + \nabla \cdot \left(\rho\phi\mathbf{u}\right) = 0$

Convection equation

If $\Gamma = 0$ and $\rho = 1$ we have

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{u}) = 0$$

One dimensional version

$$\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = 0$$

The analytical solution of the above is

$$\phi(x,t) = f(x - u_x t) \tag{113}$$

Contents

(111)

(112)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Convection equation – FTCS scheme

where Co is the Courant number

$$Co = \frac{u_x \Delta t}{\Delta x}$$

Description of fluid/solid at different **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

(117)

Convection equation – FOU scheme

Convection equation – BTCS scheme

References
Convection equation – Crank–Nicolson

$$\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = 0$$

The Crank–Nicolson scheme is a combination of the FTCS and BTCS

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + \frac{1}{2} \left(u_x \frac{\phi_{i+1}^n - \phi_{i-1}^n}{2\Delta x} + u_x \frac{\phi_{i+1}^{n+1} - \phi_{i-1}^{n+1}}{2\Delta x} \right) = 0 \quad (125)$$

Contents

(124)

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Convection equation – backward

References

Smoothed Particle Hydrodynamics

Turbulence modelling

Convection equation – Lax–Wendroff

Convection equation – Lax–Friedrichs

For comparison, FTCS scheme is

$$\phi_i^{n+1} = \phi_i^n - \frac{1}{2} \text{Co} \left(\phi_{i+1}^n - \phi_{i-1}^n \right)$$
(133)

Turbulence modelling

Transient diffusion equation

If $\mathbf{u} = \mathbf{0}$ and $\rho = 1$ we have

$$\frac{\partial \phi}{\partial t} = \nabla \cdot (\Gamma \nabla \phi)$$

One dimensional version for $\Gamma={\rm const}$

$$\frac{\partial \phi}{\partial t} = \Gamma \frac{\partial^2 \phi}{\partial x^2}$$

Contents

(134)

(135)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Transient diffusion equation – FTCS

Transient diffusion equation – BTCS

Hydrodynamics

Turbulence modelling

Transient diffusion equation – Crank–Nicolson

Transient diffusion equation – backward

$$\frac{\varphi_i - \varphi_i + \varphi_i}{2\Delta t} = \Gamma \frac{\varphi_{i+1} - 2\varphi_i - \varphi_{i-1}}{\Delta x^2} \quad (144)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Steady diffusion equation

If
$$\mathbf{u} = \mathbf{0}$$
, $\rho = 1$ and $\frac{\partial}{\partial t} = 0$ we have
 $\nabla \cdot (\Gamma \nabla \phi) = S_{\phi}$ (145)
Two types of equations can be distinguished for
 $\Gamma = \text{const}$
Poisson equation, $S = \Gamma^{-1}S_{\phi}$
 $\nabla^2 \phi = S$ (146)
Laplace equation, $S = 0$
 $\nabla^2 \phi = 0$ (147)

Contents

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Mathad
Method
Smoothed Particle
Hvdrodvnamics
Turbulence modelling
References

Γ

Poisson equation

(148)

Poisson equation is $\nabla^2 \phi_z = a$. Two dimensional versions of this equation is written as

$$\frac{\partial^2 \phi_z}{\partial x^2} + \frac{\partial^2 \phi_z}{\partial y^2} = a$$

The next step would be to replace second order derivatives by symmetric finite difference approximation

$$\frac{\phi_{i+1j} - 2\phi_{ij} + \phi_{i-1j}}{h^2} + \frac{\phi_{ij+1} - 2\phi_{ij} + \phi_{ij-1}}{h^2} = a \quad (149)$$

It can be rewritten to give ϕ_{ij} as a function of surrounding variables

$$\phi_{ij} = \frac{\phi_{i+1j} + \phi_{i-1j} + \phi_{ij+1} + \phi_{ij-1} - ah^2}{4}$$
(150)

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Mathad
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Tiyaroaynannes
Turbulence modelling
References

Poisson equation - mesh and boundary conditions

The domain is discretised in the x and y directions by means of constant mesh size h (figure on the left). ϕ_z is unknown at black mesh points and known at white points from the boundary condition.

For instance the Dirichlet boundary condition specifies the values of ϕ_z directly. In this case $\phi_z = 0$ meaning no slip wall. If the boundary values are known then discrete Poisson equation gives a system of linear equations for ϕ_{ij} .

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

Poisson equation - solution methods

The accuracy of results depends on the size of the mesh represented here by h. Mesh size should be decreased until there is no significant influence on numerical results. The set of linear equations can be solved either directly by means of an appropriate method (Gauss elimination for instance) or indirectly by means of iterative solution methods or the relaxation method (point-Jacobi iteration)

$$\phi_{ij}^{n+1} = \frac{\phi_{i+1j}^{n} + \phi_{i-1j}^{n} + \phi_{ij+1}^{n} + \phi_{ij-1}^{n} - ah^{2}}{4}$$
(151)
or point-Gauss–Seidel (faster than point-Jacobi)
$$\phi_{ij}^{n+1} = \frac{\phi_{i+1j}^{n} + \phi_{i-1j}^{n+1} + \phi_{ij+1}^{n} + \phi_{ij-1}^{n+1} - ah^{2}}{4}$$
(152)

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

 ϕ_{ij}^{n+1}

Another indirect method is so called Successive Over-Relaxation method

$$\phi_{ij}^{n+1} = (1-w)\phi_{ij}^{n} + w \frac{\phi_{i+1j}^{n} + \phi_{i-1j}^{n+1} + \phi_{ij+1}^{n} + \phi_{ij-1}^{n+1} - ah^{2}}{4}$$
(153)

where w is a relaxation parameter. For $w \in]1, 2[$ we have over-relaxation and for w = 1 this method corresponds to the point-Gauss-Seidel method. One can also consider under-relaxation method for $w \in]0, 1[$. The best choice of w value needs numerical experiments. It also depends on specific problems.

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling

Poisson FDM pseudocode

Data: Read input variables and BCs w := 1; n := 1;repeat R := 0;for i := 1 to i_{max} do for j := 1 to j_{max} do $\begin{vmatrix} \mathbf{if not } boundary(\phi_{ij}^{n}) \mathbf{then} \\ \phi_{ij}^{n+1} := \frac{\phi_{i+1j}^{n} + \phi_{i-1j}^{n+1} + \phi_{ij+1}^{n} + \phi_{ij-1}^{n-1} - ah^{2}}{4}; \\ R := \max\left(|\phi_{ij}^{n+1} - \phi_{ij}^{n}|, R\right); \\ \phi_{ij}^{n+1} := (1 - w)\phi_{ij}^{n} + w \phi_{ij}^{n+1}; \end{vmatrix}$ n := n + 1;until $n \leq n_{max}$ and $R > R_{min}$;

Description of fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Results - Poisson equation

Laplace equation

Laplace equation is $\nabla^2 \varphi = 0$. Two dimensional versions of this equation is written as

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0 \tag{154}$$

Replacing second order derivatives by symmetric finite difference approximation

$$\frac{\varphi_{i+1j} - 2\varphi_{ij} + \varphi_{i-1j}}{h^2} + \frac{\varphi_{ij+1} - 2\varphi_{ij} + \varphi_{ij-1}}{h^2} = 0$$
(155)

It can be rewritten to give φ_{ij} as a function of surrounding variables

$$\varphi_{ij} = \frac{\varphi_{i+1j} + \varphi_{i-1j} + \varphi_{ij+1} + \varphi_{ij-1}}{4}$$
(156)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Laplace eq. – Neumann boundary condition

Neumann boundary condition specifies values of the derivative $\frac{\partial}{\partial n}$ of a solution φ on boundary $\partial \Omega$ to fulfil

$$\frac{\partial\varphi}{\partial n} = N(x,y) \tag{157}$$

where the normal derivatives is defined as

$$\frac{\partial \varphi}{\partial n} = \hat{\boldsymbol{n}} \cdot \nabla \varphi = n_x \frac{\partial \varphi}{\partial x} + n_y \frac{\partial \varphi}{\partial y}$$
(158)

and $(x,y) \in \partial \Omega$. If $\mathbf{u} = \nabla \varphi$ we get

$$\frac{\partial \varphi}{\partial n} = \hat{\boldsymbol{n}} \cdot \mathbf{u} = n_x u_x + n_y u_y \tag{159}$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Laplace eq. – Neumann boundary condition

We have two equation for a point located on boundary '2'

$$\frac{\partial^2 f}{\partial x^2} = \frac{f_{i+1j} - 2f_{ij} + f_{i-1j}}{h^2}$$
$$\frac{\partial f}{\partial x} = \frac{f_{i+1j} - f_{i-1j}}{2h} = N_{ij}$$

Point f_{i-1j} is located outside the Ω area. Eliminating it we get

$$\frac{\partial^2 f}{\partial x^2} = \frac{2f_{i+1j} - 2N_{ij}h - 2f_{ij}}{h^2}$$

and

$$f_{ij} = \frac{2f_{i+1j} + f_{ij+1} + f_{ij-1} - 2N_{ij}h}{4}$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Laplace FDM pseudocode

Data: Read input variables and BCs w := 1; n := 1;repeat R := 0;for i := 1 to i_{max} do for j := 1 to j_{max} do if boundary $(\varphi_{ij}^n) \neq 0$ then switch φ_{ij}^n do $\begin{array}{l} \text{case } 1: \text{ do } \varphi_{ij}^{n+1} := \frac{\varphi_{i+1j}^n + \varphi_{i-1j}^{n+1} + \varphi_{ij+1}^n + \varphi_{ij-1}^{n+1}}{4};\\ ;\\ \text{case } 2: \text{ do } \varphi_{ij}^{n+1} := \frac{2\varphi_{i+1j}^n + \varphi_{ij+1}^n + \varphi_{ij-1}^{n+1} - 2h\mathrm{N}_{ij}}{4}; \end{array}$ $R := \max\left(|\varphi_{ij}^{n+1} - \varphi_{ij}^{n}|, R\right);$ $\varphi_{ij}^{n+1} := (1 - w)\varphi_{ij}^{n} + w\varphi_{ij}^{n+1};$ n := n + 1;until $n < n_{max}$ and $R > R_{min}$;

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Results - Laplace equation

~							
L	о	n	t	е	n	t	S

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Biharmonic equation

The biharmonic equation is $\nabla^4 \psi \equiv \nabla^2 \cdot \nabla^2 \psi = 0$. Two dimensional versions of this equation is written as

$$\frac{\partial^4 \psi}{\partial x^4} + 2 \frac{\partial^4 \psi}{\partial x^2 \partial y^2} + \frac{\partial^4 \psi}{\partial y^4} = 0$$
 (161)

It is a fourth-order elliptic partial differential equation that describes creeping flows in terms of a stream function ψ where the velocity components are $u_x = \frac{\partial \psi}{\partial y}$ and $u_y = -\frac{\partial \psi}{\partial x}$. The Dirichlet boundary condition specifies both: a stream function ψ and its normal derivative $\frac{\partial \psi}{\partial n}$. Two conditions are needed due to the fourth order of the biharmonic equation.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Biharmonic equation - approximation to derivatives

The finite difference approximations to $\frac{\partial^4 \psi}{\partial x^4}$, $\frac{\partial^4 \psi}{\partial y^4}$ are

$$\frac{\partial^4 \psi}{\partial x^4} = \frac{\psi_{i+2j} + \psi_{i-2j} - 4\psi_{i+1j} - 4\psi_{i-1j} + 6\psi_{ij}}{h^4} \quad (162a)$$

$$\frac{\partial^4 \psi}{\partial y^4} = \frac{\psi_{ij+2} + \psi_{ij-2} - 4\psi_{ij+1} - 4\psi_{ij-1} + 6\psi_{ij}}{h^4} \quad (162b)$$

The fourth order mixed derivative is approximated as

$$\frac{\partial^{4}\psi}{\partial x^{2}\partial y^{2}} = \frac{\psi_{i+1j+1} + \psi_{i-1j-1} + \psi_{i-1j+1} + \psi_{i+1j-1}}{h^{4}} + \frac{4\psi_{ij} - 2\psi_{i+1j} - 2\psi_{i-1j} - 2\psi_{ij+1} - 2\psi_{ij-1}}{h^{4}} \quad (163)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Biharmonic equation - discrete equation

From the discrete biharmonic equations ψ_{ij} can be expressed as a function of surrounding variables

$$\psi_{ij} = \frac{-\psi_{i+2j} - \psi_{i-2j} - \psi_{ij+2} - \psi_{ij-2} + 4\psi_{ij}}{20} + 8\frac{\psi_{i-1j} + \psi_{ij+1} + \psi_{ij-1} + \psi_{i+1j}}{20} - 2\frac{\psi_{i+1j+1} + \psi_{i-1j-1} + \psi_{i-1j+1} + \psi_{i+1j-1}}{20}$$
(164)

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Biharmonic equation - boundary conditions

From the below figure two purely geometric relationships arise $\frac{\partial \psi}{\partial n} = \hat{\boldsymbol{n}} \cdot \nabla \psi = -u_l$, $\frac{\partial \psi}{\partial l} = \hat{\boldsymbol{l}} \cdot \nabla \psi = u_n$. For an impermeable boundary one gets $u_n = 0 \Rightarrow \frac{\partial \psi}{\partial l} = 0$. The general relationship between volumetric flow rate and the stream functions is

$$\dot{V} = \int_{L} \mathbf{u} \cdot \hat{\boldsymbol{n}} \, \mathrm{d}L = \int_{L} \frac{\partial \psi}{\partial l} \, \mathrm{d}L = \int_{L} \, \mathrm{d}\psi = \psi_A - \psi_B \quad (165)$$

Contents Description of

fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Biharmonic FDM pseudocode

Data: Read input variables and BCs w := 1; n := 1;repeat R := 0;for i := 1 to i_{max} do for j := 1 to j_{max} do if not boundary (ψ_{ij}^n) then $\psi_{ij}^{n+1} := \frac{-\psi_{i+2j}^n - \psi_{i-2j}^n - \psi_{ij+2}^n - \psi_{ij-2}^n + 4\psi_{ij}^n}{20} + \frac{-\psi_{ij+2j}^n - \psi_{ij+2j}^n - \psi_{ij+2$ $\begin{cases}
\frac{\psi_{i-1j}^{n} + \psi_{ij+1}^{n} + \psi_{ij-1}^{n} + \psi_{i+1j}^{n}}{20} \\
\frac{\psi_{i+1j+1}^{n} + \psi_{i-1j-1}^{n} + \psi_{i-1j+1}^{n} + \psi_{i+1j-1}^{n}}{20}; \\
R := \max\left(|\psi_{ij}^{n+1} - \psi_{ij}^{n}|, R\right); \\
\psi_{ij}^{n+1} := (1 - w)\psi_{ij}^{n} + w\psi_{ij}^{n+1};
\end{cases}$ n := n + 1;until $n \leq n_{max}$ and $R > R_{min}$;

Contents

Description of
fluid/solid at different
scales
Seales
Finite Difference
Method
Witchiod
Finite Volume
Method
Method
Finite Element
Method
Internou
Manta Carla Mathad
Monte Carlo Method
Lattice Boltzmann
Mathe al
Method
Smoothed Particle
Hydrodynamics
.
Turbulence modelling
5.4
References

K. Tesch; Numerical Methods

Results - biharmonic equation

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Convection-diffusion equation

If
$$\Gamma = \nu = ext{const}$$
 and $ho = 1$ we have

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{u}) = \nu \nabla^2 \phi$$

One dimensional version

$$\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2}$$

(166)

(167)

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Convection-diffusion equation – FTCS

K. Tesch; Numerical Methods

Convection-diffusion equation – BTCS

Complex geometry

Point 1 is located inside the Ω area

$$f_1 = \frac{h f_0 + d f_2}{h + d} \quad (175)$$

Point 1 is located outside the Ω area

$$f_1 = \frac{h f_0 - d f_2}{h - d} \quad (176)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Stability analysis

(177)

The decomposition of ϕ_j^n into a Fourier series is

$$\phi_j^n = \sum_{m=-N}^N A_m^n e^{ik_m j\Delta x}$$

where the wave number k_m is

$$k_m = \frac{m\pi}{N\,\Delta x} = \frac{\theta}{\Delta x} \tag{178}$$

A single mode determines the time evolution of ϕ_i^n

$$\phi_j^n = A_m^n e^{ij\theta} \tag{179}$$

A numerical scheme is stable if and only if

$$\left|\frac{A_m^{n+1}}{A_m^n}\right| = |G| \le 1$$
 (180)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Stability analysis – FTCS

convection equation

$$|G| = \sqrt{1 + \operatorname{Co}^2 \sin^2 \theta} \ge 1$$

diffusion equation

$$2 \,\mathrm{Re}^{-1} \le 1$$

convection-diffusion equation

$$\mathrm{Co}^2 \le 2 \,\mathrm{Re}^{-1} \le 1$$

Contents

(181)

(182)

(183)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling

References

K. Tesch; Numerical Methods

Stability analysis – BTCS

convection equation

$$|G|^2 = \frac{1}{1 + \operatorname{Co}^2 \sin^2 \theta} \le 1$$

(184)

Finite Volume Method

Finite Difference

Contents

scales

Method

Description of

fluid/solid at different

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

$$|G|^{2} = \frac{1}{|G|^{2} + 4 \operatorname{Re}^{-1} \sin^{2} \frac{\theta}{2})^{2} + \operatorname{Co}^{2} \sin^{2} \theta} \leq 1 \quad (185)$$

Stability analysis – Crank–Nicolson

Modified equation

- Using a specific discretisation scheme one obtains a discrete counterpart of the original PDE;
- Taylor's expansion is applied around ϕ_i^{n+1} and substituted into the specific scheme;
- Resulting equation is rearranged in order to recover the original PDE;
- The remaining terms are the truncation errors associated with the specific discretisation scheme;
- The modified equation is actually solved rather than the original PDE;
- Numerical diffusion and dispersion can be analysed now;

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling
Model equations

(190)

(191)

Convection-diffusion equation

$$\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = \underbrace{\nu \frac{\partial^2 \phi}{\partial x^2}}_{}$$

diffusion

Korteweg-de Vries equation

$$\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = \underbrace{-\varepsilon \frac{\partial^3 \phi}{\partial x^3}}_{}$$

dispresion

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Convection equation – FTCS scheme

 $-\frac{1}{6}u_x\Delta x^2 \left(2\operatorname{Co}^2+1\right)\frac{\partial^3 \phi_i^{n+1}}{\partial x^3} + \dots$

References

(194)

Convection equation – FTCS scheme

Contents $\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial r} = 0$ (195)Description of fluid/solid at different scales FICS discretisation scheme (Forward Time Centred **Finite Difference** Method Space) Finite Volume Method $\frac{\phi_{i}^{n+1} - \phi_{i}^{n}}{\Lambda +} + u_{x} \frac{\phi_{i+1}^{n} - \phi_{i-1}^{n}}{2\Lambda x} = 0$ Finite Element (196)Method Monte Carlo Method The modified equation Lattice Boltzmann Method Smoothed Particle $\frac{\partial \phi_i^{n+1}}{\partial t} + u_x \frac{\partial \phi_i^{n+1}}{\partial x} = \nu_N \frac{\partial^2 \phi_i^{n+1}}{\partial x^2} - \varepsilon_N \frac{\partial^3 \phi_i^{n+1}}{\partial x^3} + \dots$ (197) Hydrodynamics Turbulence modelling

References

or

$$\frac{\partial \phi_i^{n+1}}{\partial t} + u_x \frac{\partial \phi_i^{n+1}}{\partial x} = \nu_N \frac{\partial^2 \phi_i^{n+1}}{\partial x^2}$$
(198)

Convection equation – FOU scheme

Contents Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

(199)

FOU discretisation scheme (First Order Upwind)

 $\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = 0$

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + u_x \frac{\phi_i^n - \phi_{i-1}^n}{\Delta x} = 0$$
 (200)

The modified equation

$$\frac{\partial \phi_i^{n+1}}{\partial t} + u_x \frac{\partial \phi_i^{n+1}}{\partial x} = \frac{1}{2} u_x \Delta x \left(1 - \operatorname{Co}\right) \frac{\partial^2 \phi_i^{n+1}}{\partial x^2} + \frac{1}{6} u_x \Delta x^2 \left(3 \operatorname{Co} - 2 \operatorname{Co}^2 - 1\right) \frac{\partial^3 \phi_i^{n+1}}{\partial x^3} + \dots \quad (201)$$

K. Tesch; Numerical Methods

Convection equation – FOU scheme

Contents $\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial x} = 0$ (202)Description of fluid/solid at different scales **100** discretisation scheme (First Order Upwind) **Finite Difference** Method Finite Volume Method $\frac{\phi_{i}^{n+1} - \phi_{i}^{n}}{\Lambda_{\perp}} + u_{x} \frac{\phi_{i}^{n} - \phi_{i-1}^{n}}{\Lambda_{m}} = 0$ (203)Finite Element Method Monte Carlo Method The modified equation Lattice Boltzmann Method Smoothed Particle $\frac{\partial \phi_i^{n+1}}{\partial t} + u_x \frac{\partial \phi_i^{n+1}}{\partial x} = \nu_N \frac{\partial^2 \phi_i^{n+1}}{\partial x^2} - \varepsilon_N \frac{\partial^3 \phi_i^{n+1}}{\partial x^3} + \dots$ **Hydrodynamics** Turbulence modelling References (204)

What if Co = 1?

Convection equation – BTCS scheme

 $\frac{\partial \phi}{\partial t} + u_x \frac{\partial \phi}{\partial r} = 0$ (205)BTCS discretisation scheme (Backward Time Centred Space) $\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + u_x \frac{\phi_{i+1}^{n+1} - \phi_{i-1}^{n+1}}{2\Delta x} = 0$ (206)

The modified equation

$$\frac{\partial \phi_i^{n+1}}{\partial t} + u_x \frac{\partial \phi_i^{n+1}}{\partial x} = \frac{1}{2} u_x \Delta x \operatorname{Co} \frac{\partial^2 \phi_i^{n+1}}{\partial x^2} + \frac{1}{6} u_x \Delta x^2 \left(\operatorname{Co}^2 - 1 \right) \frac{\partial^3 \phi_i^{n+1}}{\partial x^3} + \dots \quad (207)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Convection equation – BTCS scheme

What if Co = 1?

Convection equation – Crank–Nicolson

K. Tesch; Numerical Methods

Convection equation – Crank–Nicolson

Navier-Stokes equations

Typical numerical approaches for the incompressible Navier–Stokes equations:

- $\Omega_z \psi$ (vorticity-stream function) formulation method
- Artificial compressibility method
- Pressure/velocity correction (operator splitting methods)
 - Projection methods
 - Explicit and implicit operator splitting methods
 - Fractional step method
 - ◆ PISO, SIMPLE, PIMPLE (PIso + siMPLE)

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Bad idea

(217)

The incompressible Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$

Explicit forward difference in time

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{u}^n \cdot \nabla \mathbf{u}^n = -\frac{1}{\rho} \nabla p^n + \nu \nabla^2 \mathbf{u}^n \qquad (218)$$

Problems:

$$\nabla \cdot \mathbf{u}^{n+1} \neq 0,$$

$$p^{n+1} = ?$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

Better idea

The incompressible Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$
(219a)
$$\nabla \cdot \mathbf{u} = 0$$
(219b)

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{u}^n \cdot \nabla \mathbf{u}^n = -\frac{1}{\rho} \nabla p^{n+1} + \nu \nabla^2 \mathbf{u}^n \qquad (220a)$$
$$\nabla \cdot \mathbf{u}^{n+1} = 0 \qquad (220b)$$

Problems:

$$\nabla^2 p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \left(\mathbf{u}^n - \Delta t \, \mathbf{u}^n \cdot \nabla \mathbf{u}^n + \Delta t \, \nu \nabla^2 \mathbf{u}^n \right)$$

BCs?

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Semi implicit – non-linear

The incompressible Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$
(221a)
$$\nabla \cdot \mathbf{u} = 0$$
(221b)

Semi implicit approach

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \underbrace{\mathbf{u}^n \cdot \nabla \mathbf{u}^n}_{\text{non-linear}} = -\frac{1}{\rho} \nabla p^{n+1} + \nu \nabla^2 \mathbf{u}^{n+1} \qquad (222a) \qquad \frac{\text{Method}}{\text{Smoothed Particle}}_{\text{Hydrodynamics}} \\ \nabla \cdot \mathbf{u}^{n+1} = 0 \qquad (222b) \qquad \frac{\text{Method}}{\text{References}}$$

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

fluid/solid at different

Semi implicit – linearised

The incompressible Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$
(223a)
$$\nabla \cdot \mathbf{u} = 0$$
(223b)

Semi implicit approach

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \underbrace{\mathbf{u}^n \cdot \nabla \mathbf{u}^{n+1}}_{\text{linearised}} = -\frac{1}{\rho} \nabla p^{n+1} + \nu \nabla^2 \mathbf{u}^{n+1} \qquad (224a) \qquad \frac{\frac{\text{Method}}{\text{Smoothed Particle}}}{\frac{\text{Hydrodynamics}}{\text{Hydrodynamics}}}$$

$$\nabla \cdot \mathbf{u}^{n+1} = 0 \qquad (224b) \qquad \frac{\text{References}}{\text{References}}$$

Contents

scales

Method

Method

Method

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

fluid/solid at different

Fully implicit – non-linear

The incompressible Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$
(225a)
$$\nabla \cdot \mathbf{u} = 0$$
(225b)

Fully implicit approach

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{u}^{n+1} \cdot \nabla \mathbf{u}^{n+1} = -\frac{1}{\rho} \nabla p^{n+1} + \nu \nabla^2 \mathbf{u}^{n+1} \qquad (226a)$$
$$\nabla \cdot \mathbf{u}^{n+1} = 0 \qquad (226b)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Artificial compressibility method

The incompressible Navier–Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$
(227a)
$$\nabla \cdot \mathbf{u} = 0$$
(227b)

Explicit forward difference in time

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{u}^n \cdot \nabla \mathbf{u}^n = -\frac{1}{\rho_0} \nabla p^n + \nu \nabla^2 \mathbf{u}^n \qquad (228a)$$

$$\beta \frac{p^{n+1} - p^n}{\Delta t} + \nabla \cdot \mathbf{u}^n = 0 \qquad (228b)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Projection method

$11^* - 11^n$		Contents
$\frac{\mathrm{d}\mathbf{r} - \mathrm{d}\mathbf{r}}{\Delta t} = -\mathbf{u}^n \cdot \nabla \mathbf{u}^n + \nu \nabla^2 \mathbf{u}^n$	(229)	Description of fluid/solid at different scales
$ abla \cdot \mathbf{u}^* eq 0$, BC		Finite Difference Method
$\mathbf{u}^{n+1} - \mathbf{u}^* $ 1 1		Finite Volume Method
$\frac{\Delta t}{\Delta t} = -\frac{1}{\rho} \nabla p^{n+1}$	(230)	Finite Element Method
,		Monte Carlo Method
$ abla \cdot \mathbf{u}^{n+1} = 0$, $\neg BC$		Lattice Boltzmann Method
$\nabla^2 n n+1$ ρ ∇ $n*$	(021)	Smoothed Particle Hydrodynamics
$\mathbf{v} \ p \ \cdot \ = \frac{1}{\Delta t} \mathbf{v} \cdot \mathbf{u}$	(231)	Turbulence modelling
		References

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Decomposition method

$$\mathbf{u}^{n+1} = \mathbf{u}^* + \mathbf{u}^c$$

Vorticity-stream function formulation

The incompressible 2D Navier–Stokes equations

 $\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$ (236a) $\frac{\partial u}{\partial \nu} = \frac{\partial u}{\partial \nu}$

 $\Omega_z = \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y}$ (236b)

2D Helmholtz equation $(u_x = \frac{\partial \psi}{\partial y}, u_y = -\frac{\partial \psi}{\partial x})$

$$\frac{\partial \Omega_z}{\partial t} + \mathbf{u} \cdot \nabla \Omega_z = \nu \nabla^2 \Omega_z \qquad (237a)$$
$$\nabla^2 \psi = -\Omega_z \qquad (237b)$$

$$\frac{\Omega_{z}^{n+1} - \Omega_{z}^{n}}{\Delta t} + \mathbf{u}^{n} \cdot \nabla \Omega_{z}^{n} = \nu \nabla^{2} \Omega_{z}^{n}$$
(238a)
$$\nabla^{2} \psi^{n+1} = -\Omega_{z}^{n+1}$$
(238b)

Contents

Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method
Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method
Finite Element Method Monte Carlo Method Lattice Boltzmann Method
Monte Carlo Method Lattice Boltzmann Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Finite Volume Method

Transport eqution

Since all the transport equation have common terms, the general transport equation for a quantity ϕ has the form of

$$\frac{\partial \left(\rho\phi\right)}{\partial t} + \nabla \cdot \left(\rho\phi\mathbf{u}\right) = \nabla \cdot \left(\Gamma\nabla\phi\right) + S_{\phi}$$
(239)

Four transport effects can be summarised at least, namely

- unsteadiness $\frac{\partial}{\partial t}(\rho\phi)$,
- **convection** $\nabla \cdot (\rho \phi \mathbf{u})$,
- diffusion $\nabla \cdot (\Gamma \nabla \phi)$.
- overall source term S_{ϕ} . In the above Γ is the diffusivity for ϕ .

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Monte Carlo Method
Monte Carlo Method Lattice Boltzmann Method
Monte Carlo Method Lattice Boltzmann Method
Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling
Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling
Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Integral form

The integral form of the transport equation over a control volume V_P is now expressed as

$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{V_P} \rho \phi \,\mathrm{d}V + \iiint_{V_P} \nabla \cdot (\rho \phi \mathbf{u}) \,\mathrm{d}V = \\ \iiint_{V_P} \nabla \cdot (\Gamma \nabla \phi) \,\mathrm{d}V + \iiint_{V_P} S_{\phi} \,\mathrm{d}V \quad (240)$$

where a finite volume V_P and its measure is $|V_P|$.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Integral form

- the finite volume centroid P located at \mathbf{x}_P ,
- the vector \mathbf{d} connects the centroid P with its neighbour centroid N,
- the surface S_f is oriented by means of a surface normal vector S_f pointing outward and the face S_f centroid is located at x_f.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Spatial terms

The order of discretisation is usually equal or higher in comparison with the order of the discretised equation. Exceptions to this rule are sometimes permitted. In order to keep the second order accuracy of spatial dicretisation the following variation of ϕ around P is assumed

$$\phi(\mathbf{x}) = \phi_P + (\mathbf{x} - \mathbf{x}_P) \cdot (\nabla \phi)_P$$
 (241)

This can be proved by means of Taylor series expansion. Also, the unknown variable ϕ_P , located at the centroid \mathbf{x}_P of a control volume V_P , is calculated as $\phi_P = \phi(\mathbf{x}_P)$.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
Deferences

In order to transform volume integrals into surface integrals the Gauss's (divergence) theorem is applied

$$\iiint_{V_P} \nabla \cdot \mathbf{w} \, \mathrm{d}V = \oiint_{\partial V_P} \mathbf{w} \cdot \, \mathrm{d}\mathbf{S}$$
(242)

where $d\mathbf{S}$ stands for the differential of the surface area vector pointing outward. Now the general transport equation can be rewritten as

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

The following definition of an average value ϕ_P of the function ϕ located at the centroid of V_P is assumed

$$\phi_P = \frac{1}{|V_P|} \iiint_{V_P} \phi \,\mathrm{d}V \tag{245}$$

The volume integral is expressed by means of the averaged value $\overline{\phi}$ of unknown function ϕ and the control volume measure $|V_P|$. Next, the averaged value is replaced by the value at V_P centroid ϕ_P .

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

If the source term S_{ϕ} , i.e. the fourth integral in the general transport equation, depends on the unknown function ϕ it should be linearised first

$$S_{\phi}(\phi) = S_C + S_P \phi \tag{246}$$

Subsequently, it can be integrated similarly and the discretised source terms is now

$$\iiint_{V_P} S_\phi \,\mathrm{d}V = S_C |V_P| + S_P |V_P| \phi_P \tag{247}$$

If, however, the source term S_{ϕ} does not depend on ϕ the discretised form is simpler since $S_P = 0$.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

For the sake of simplicity let us assume further incompressibility $\rho = \text{const.}$ This assumptions is also valid for gases provided that Ma < 0.3. Furthermore, if the control volume V_P is constant in time, i.e. is not deforming, then it is now possible to express the general transport equation as

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Floment
Method
Monte Carlo Method
Lattice Boitzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling

Convection terms

Convection terms involving $\nabla \cdot (\rho \phi \mathbf{u})$ are already transformed by means of the Gauss's theorem and expressed as surface integrals. The surface integral over the individual surface S_f is now expressed by means of the vector \mathbf{w}_f value located the face S_f centroid and the surface area vector \mathbf{S}_f pointing outward, namely

$$\iint_{S_f} \mathbf{w} \cdot \mathrm{d}\mathbf{S} = \mathbf{w}_f \cdot \mathbf{S}_f \tag{249}$$

This also means that the vector \mathbf{w} distribution over the surface S_f is now expressed by means of a single value \mathbf{w}_f .

fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References
Convection terms

Since the boundary ∂V_P of a control volume V_P consists of f planar surfaces S_f , i.e. $\bigcup_f S_f = \partial V_P$, the convection terms is now given by the following approximation being second order accurate

$$\iint_{\partial V_P} \phi \mathbf{u} \cdot d\mathbf{S} = \sum_f \phi_f \mathbf{u}_f \cdot \mathbf{S}_f$$
(250)

The term $\phi_f \mathbf{u}_f \cdot \mathbf{S}_f$ is also referred to as a face flux. The general transport equations is now given by

$$\rho \frac{\mathrm{d}\phi_P}{\mathrm{d}t} |V_P| + \rho \sum_f \phi_f \mathbf{u}_f \cdot \mathbf{S}_f = \iint_{\partial V_P} \Gamma \nabla \phi \cdot \mathrm{d}\mathbf{S} + S_C |V_P| + S_P |V_P| \phi_P \quad (251)$$

Description of
fluid/solid at different
scales
Finite Difference
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
Deferment
References

Convection terms

What is important, is the fact that the discretised convection term needs to be interpolated further by means of cell centred values because the values ϕ_f are located at the face centroids. Several methods are in common use. These include, among others:

- linear interpolation or central differencing (CD),
- upwind differencing (UD),
- blending differencing,
- second order upwind differencing (SOU) or linear upwind differencing (LUD).

Contents

Description of fluid/solid at different scales Finite Difference

Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

A linear distribution of ϕ between two points P and N is assumed. This leads to the following face value ϕ_f

$$\phi_f = f_x \phi_P + (1 - f_x) \phi_N$$
 (252)

where the weighting factor f_x is a ratio of respective distances

$$f_x = \frac{\|\mathbf{x}_d - \mathbf{x}_N\|}{\|\mathbf{d}\|} \tag{253}$$

This method is known to be second order accurate. Nonetheless, it may lead to non-physical oscillations for some convection dominated flows or in the presence of strong gradients.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

This interpolation depends on the flow direction $\mathbf{u}_f \cdot \mathbf{S}_f$. The face value ϕ_f is interpolated by means of the upstream node P or N, depending of the flow direction, namely

$$\phi_f = \begin{cases} \phi_P; & \mathbf{u}_f \cdot \mathbf{S}_f \ge 0, \\ \phi_N; & \mathbf{u}_f \cdot \mathbf{S}_f < 0 \end{cases}$$
(254)

Boundedness of the solution is guaranteed, however, it comes at a price of having to sacrifice accuracy. This is because the numerical diffusion term is implicitly introduced. Additionally, upwind differencing is only first order accurate.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

This type of interpolation tries to maintain reasonable accuracy and boundedness of the solution at the same time. Typically, it combines upwind differencing and central differencing in the following manner

$$\phi_f = \gamma \phi_{fCD} + (1 - \gamma) \phi_{fUD}$$
(255)

Other methods also exist. In the above equation γ is the so called flux limiter also referred to as a blending coefficient. The idea of flux limiter makes it possible, among others, to limit towards first order upwind in regions of rapidly changing gradients.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

Second order upwind differencing (SOU) or linear upwind differencing (LUD). More information is required than the nearest neighbours of the control volume. This leads to higher order accuracy. The face value ϕ_f depends on the flow direction and is interpolated by means of two the upstream nodes P, PP or N, NN

$$\phi_f = \begin{cases} \phi_P + \frac{1}{2} \left(\phi_P - \phi_{PP} \right); & \mathbf{u}_f \cdot \mathbf{S}_f > 0, \\ \phi_N + \frac{1}{2} \left(\phi_N - \phi_{NN} \right); & \mathbf{u}_f \cdot \mathbf{S}_f < 0 \end{cases}$$
(256)

LUD interpolation is second order accurate and unbounded.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Tydrodynamics
Turbulence modelling
References

Convection terms – limiters

Flux limiter formulation $(\mathbf{u}_f \cdot \mathbf{S}_f > 0)$

$$\phi_f = \phi_P + \frac{1}{2}\psi(r)(\phi_P - \phi_{PP})$$
 (257)

where ψ is a limiter function. The limiter ψ is a function of gradients ratio r (1D version)

$$r = \frac{\phi_N - \phi_P}{\phi_P - \phi_{PP}}$$

General 3D version

$$r = 2 \frac{\mathbf{d} \cdot (\nabla \phi)_P}{\mathbf{d} \cdot (\nabla \phi)_f} - 1$$
 (259)

Contents

Description of
fluid/solid at different
scales
Finita Difference
Mathad
Method
Finite Volume
Method
Finite Element
Method
Manta Carla Mathad
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Talatana atau dall'a a
Turbulence modelling
References

(258)

Convection terms – TVD Total Variation Diminishing

A limiter is symmetric if

$$\psi\left(\frac{1}{r}\right) = \frac{\psi(r)}{r}$$
 (260)

TVD conditions:

$$\begin{array}{ll} \bullet & 0 \leq \psi(r) \leq 2r, \\ \bullet & 0 \leq \psi(r) \leq 2 \end{array}$$

Second order TVD conditions:

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Convection terms – NVF Normalised Variables Formulation

fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Convection terms – NVD Normalised Variables Diagram

NVD conditions:

- $\blacksquare \quad \widetilde{\phi}_f \text{ is continuous,}$

- Second (or above) order NVD conditions:
- all above, ■ $\widetilde{\phi}_f(0.5) = 0.75$

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Mothod
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Convection terms – example

Convection terms – UD

Upwind Differencing (First Order Upwind)

$$\psi(r) = 0$$

■ TVD, NVD, ■ 1st order

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smaathad Dautiala
Smoothed Particle
Hydrodynamics
Iurbulence modelling
References

Convection terms – UD

Convection terms – SOU

Second Order Upwind (Linear Upwind Differencing)

 $\psi(r) = 1$

Not TVD, not NVD,
 2nd order

$$\widetilde{\phi}_f(\widetilde{\phi}_C) = \frac{3}{2}\widetilde{\phi}_C$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Convection terms – SOU

Convection terms – QUICK

Quadratic Upwind Interpolation for Convective Kinematics (Quadratic Upwind Differencing) For a uniform mesh

$$\phi_f = \frac{3}{8}\phi_D + \frac{3}{4}\phi_C - \frac{1}{8}\phi_U$$

not NVD,
 3rd order

$$\widetilde{\phi}_f(\widetilde{\phi}_C) = \frac{3}{8} \left(1 + 2\widetilde{\phi}_C \right)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Convection terms – QUICK

Convection terms – LD

Linear Differencing (Central Differencing)

$$\psi(r) = r$$

Not TVD, not NVD,
 2nd order

$$\widetilde{\phi}_f(\widetilde{\phi}_C) = \frac{1}{2} \left(1 + \widetilde{\phi}_C \right)$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle Hydrodynamics** Turbulence modelling References

Convection terms – LD

Convection terms – minmod

Convection terms – minmod

Convection terms – superbee

$$\psi(r) = \max(0, \min(2r, 1), \min(r, 2))$$

TVD,
 2nd order,
 symmetric.

piecewise linear

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Convection terms – superbee

Convection terms – UMIST

Upstream Monotonic Interpolation Scalar Transport

$$\psi(r) = \max(0, \min(2r, \frac{1}{4} + \frac{3}{4}r, \frac{3}{4} + \frac{1}{4}r, 2))$$

TVD,
2nd order, $\lim_{r\to\infty}\psi(r)=2$,
piecewise linear

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle

Hydrodynamics

Turbulence modelling

References

Convection terms – UMIST

Convection terms – MUSCL

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References
Finite Element MethodMonte Carlo MethodLattice Boltzmann MethodSmoothed Particle HydrodynamicsTurbulence modelling References

Convection terms – MUSCL

Convection terms – van Leer

$$\psi(r) = \frac{r + |r|}{1 + |r|}$$

TVD, NVD,
 2nd order,
 symmetric,

 $\blacksquare \quad \lim_{r \to \infty} \psi(r) = 2$

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Edition Bontzinidini
Method
Method
Method Smoothed Particle
Method Smoothed Particle Hydrodynamics
Method Smoothed Particle Hydrodynamics
Method Smoothed Particle Hydrodynamics Turbulence modelling
Method Smoothed Particle Hydrodynamics Turbulence modelling References
Method Smoothed Particle Hydrodynamics Turbulence modelling References

$$\widetilde{\phi}_{f}(\widetilde{\phi}_{C}) = \begin{cases} \widetilde{\phi}_{C} \left(2 - \widetilde{\phi}_{C} \right); & 0 \leq \widetilde{\phi}_{C} \leq 1, \\ \widetilde{\phi}_{C}; & \text{otherwise} \end{cases}$$

Convection terms – van Leer

Diffusion terms involving $\nabla \cdot (\Gamma \nabla \phi)$ are treated in the same way as convection terms

$$\iint_{\partial V_P} \Gamma \nabla \phi \cdot d\mathbf{S} = \sum_f \Gamma_f \left(\nabla \phi \right)_f \cdot \mathbf{S}_f$$
(265)

Most importantly, the discretised diffusion term needs to be interpolated further by means of cell centred values. The spatially discretised general transport equations is now given by

$$\rho \frac{\mathrm{d}\phi_P}{\mathrm{d}t} |V_P| + \rho \sum_f \phi_f \mathbf{u}_f \cdot \mathbf{S}_f = \sum_f \Gamma_f \left(\nabla \phi\right)_f \cdot \mathbf{S}_f + S_C |V_P| + S_P |V_P| \phi_P \quad (266)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Diffusion terms

If the considered mesh is orthogonal the dot product of the face centred gradient $(\nabla \phi)_f$ and surface normal vector \mathbf{S}_f , being in fact the surface normal gradient, is calculated according to the following equation

$$(\nabla \phi)_f \cdot \mathbf{S}_f = \frac{\phi_N - \phi_P}{\|\mathbf{d}\|} \|\mathbf{S}_f\|$$
(267)

which takes under considerations two two centroids Pand N values around the surface S_f . This approach is the central difference approximation of the first order derivative and is know to be second order accurate.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Tydrodynamics
Turbulence modelling
References

Diffusion terms

For generic non-orthogonal meshes a correction is introduced. The two contributing parts are considered based upon the following decomposition $\mathbf{S}_f = \mathbf{S}_{\perp} + \mathbf{k}$. Here, \mathbf{S}_{\perp} is parallel with d. Finally, the corrected equation is $(\nabla \phi)_f \cdot \mathbf{S}_f = \frac{\phi_N - \phi_P}{\|\mathbf{d}\|} \|\mathbf{S}_{\perp}\| + (\nabla \phi)_f \cdot \mathbf{k}$ (268)

The right hand side of the above formula represents the orthogonal and non-orthogonal contributions. The latter requires the face centred gradient interpolation. This is usually achieved by the linear interpolation of cell centred gradients $(\nabla \phi)_P$ and $(\nabla \phi)_N$, i.e.

$$\left(\nabla\phi\right)_{f} = f_{x}\left(\nabla\phi\right)_{P} + \left(1 - f_{x}\right)\left(\nabla\phi\right)_{N}$$
(269)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Diffusion terms

$$(\nabla\phi)_f = f_x \, (\nabla\phi)_P + (1 - f_x) \, (\nabla\phi)_N \tag{270}$$

Two most commonly met methods of cell centred gradients evaluations are Gaussian integration and least squares method:

- Gaussian integration,
- least squares method.

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle

Hydrodynamics

Turbulence modelling

References

Diffusion terms – Gaussian integration

Gaussian integration. Cell centred gradients are evaluated by means of the Gauss's theorem for $\mathbf{w} = \phi \mathbf{c}$ where \mathbf{c} stands for a constant vector

$$\iiint_{V_P} \nabla \phi \, \mathrm{d}V = \bigoplus_{\partial V_P} \phi \, \mathrm{d}\mathbf{S}$$
 (271)

These terms are converted by means of Gaussian integration. Secondly, the average value of $\nabla \phi$ is replaced by the cell centred value $(\nabla \phi)_P$

$$(\nabla \phi)_{P} = \frac{1}{|V_{P}|} \iiint_{V_{P}} \nabla \phi \, \mathrm{d}V = \frac{1}{|V_{P}|} \oiint_{\partial V_{P}} \phi \, \mathrm{d}\mathbf{S} = \frac{1}{|V_{P}|} \sum_{f} \phi_{f} \mathbf{S}_{f} \quad (272)$$

fluid/solid at different		
scales		
scales		
Finite Difference		
Mathad		
Iviethod		
Finite Volume		
NA .L		
Method		
Finite Element		
Method		
Monte Carlo Method		
Monte Carlo Method		
Lattice Boltzmann		
Lattice Boltzmann Method		
Lattice Boltzmann Method		
Lattice Boltzmann Method Smoothed Particle		
Lattice Boltzmann Method Smoothed Particle Hydrodynamics		
Lattice Boltzmann Method Smoothed Particle Hydrodynamics		
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling		
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling		
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References		
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References		

Diffusion terms – least squares method

Equation

$$\phi_N = \phi_P + (\mathbf{x}_N - \mathbf{x}_P) \cdot (\nabla \phi)_P$$
 (273)

allows for extrapolation of the values ϕ_P by means of their gradients $(\nabla \phi)_P$ to the neighbouring points ϕ_N . Introducing the following vector connecting point P with its neighbours N, namely $\mathbf{d}_N = \mathbf{x}_N - \mathbf{x}_P$, it is now possible to provide N equations

$$\mathbf{d}_N \cdot (\nabla \phi)_P = \phi_N - \phi_P \tag{274}$$

where N stands for the total number of neighbours of P and is always larger or equal four. This is because the simplest polyhedral volume consists of four faces.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Since N is larger than the three components of the gradient $(\nabla \phi)_P$ to be computed, it is necessary to minimise the sum of the square of weighted errors for all N neighbours. In order to find the gradient $(\nabla \phi)_P$ a linear system of equations is formulated

$$\mathbf{A} \cdot (\nabla \phi)_P = \mathbf{y} \tag{275}$$

where known $N \times 3$ matrix is $\mathbf{A} = (\mathbf{d}_N, \ldots)^{\mathrm{T}}$, the unknown 3×1 gradient is $(\nabla \phi)_P$ and finally the known $N \times 1$ vector is $\mathbf{y} = (\phi_N - \phi_P, \ldots)^{\mathrm{T}}$.

Dese	cription of
fluid	/solid at different
scale	es
Fini [.]	te Difference
Met	hod
Fini	te Volume
Met	hod
Fini [.]	te Element
Met	hod
Mor	nte Carlo Method
Latt	ice Boltzmann
Met	hod
Smc	oothed Particle
Hyd	rodynamics
Turl	oulence modelling
Refe	erences
The sum of squared residuals or the the norm to be minimised is defined by

$$\|\mathbf{A} \cdot (\nabla \phi)_P - \mathbf{y}\|^2 = \sum_N \left(\mathbf{d}_N \cdot (\nabla \phi)_P - (\phi_N - \phi_P) \right)^2 \quad (276)$$

Finally, the unknown gradient $(\nabla \phi)_P$ is the solution of the following linear equations system

$$(\mathbf{A}^{\mathrm{T}} \cdot \mathbf{A}) \cdot (\nabla \phi)_{P} = \mathbf{A}^{\mathrm{T}} \cdot \mathbf{y}$$
 (277)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Time dependent (transient) problems require temporal discretisation of the general transport equation. Integration it with respect to time from t to $t + \Delta t$ results in

$$\rho|V_P| \int_{t}^{t+\Delta t} \frac{\mathrm{d}\phi_P}{\mathrm{d}t} \,\mathrm{d}t = \int_{t}^{t+\Delta t} \left(-\rho \sum_{f} \phi_f \mathbf{u}_f \cdot \mathbf{S}_f \right) \,\mathrm{d}t + \int_{t+\Delta t}^{t+\Delta t} \sum_{f} \Gamma_f \left(\nabla \phi \right)_f \cdot \mathbf{S}_f \,\mathrm{d}t + \int_{t}^{t+\Delta t} \left(S_C |V_P| + S_P |V_P| \phi_P \right) \,\mathrm{d}t$$
(278)

The right hand side of the above represents the time integral of all the spatial values.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

The following abbreviations are assumed:

- the new value $\phi_P^{n+1} = \phi_P(t + \Delta t)$, i.e. value the solver is calculating for,
- old value $\phi_P^n = \phi_P(t)$, i.e. known from the previous time step,
- old old value $\phi_P^{n-1} = \phi_P(t \Delta t)$ known from the time step prior to the previous.

Contents

Description of fluid/solid at different scales **Finite Difference** Method **Finite Volume** Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

The left hand side of the dicretised equation can be evaluated directly and the right hand side integrand is denoted as $f(\phi_f, \phi_P)$

$$\rho\left(\phi_P^{n+1} - \phi_P^n\right)|V_P| = \int_t^{t+\Delta t} f(\phi_f(t), \phi_P(t)) \,\mathrm{d}t \qquad (279)$$

This time, however, the right hand side cannot be integrated directly. This means that it has to be approximated by $F(\phi_f, \phi_P)\Delta t$. Above equation now reads

$$\rho \frac{\phi_P^{n+1} - \phi_P^n}{\Delta t} |V_P| = F(\phi_f, \phi_P)$$
(280)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Several treatments of the spatial derivatives in a transient problem are possible. The most popular are:

- explicit Euler,
- implicit Euler,
- Crank–Nicolson (linear interpolation),
- backward differencing.

Euler methods as well as Crank–Nicolson method require only values of the unknown function at two different times ϕ_P^{n+1} and ϕ_P^n and are referred to as two-level methods. Backward differencing is the so called three-level method because it require the values of the unknown function ϕ_P at three different times, namely ϕ_P^{n+1} , ϕ_P^n and ϕ_P^{n-1} .

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Temporal discretisation – explicit Euler

The right hand side of previous equation is approximated explicitly by means of old values ϕ^n which is denoted as $F(\phi_f^n, \phi_P^n)$. The discrete version of the general transport equation is

$$\rho \frac{\phi_P^{n+1} - \phi_P^n}{\Delta t} |V_P| + \rho \sum_f \phi_f^n \mathbf{u}_f \cdot \mathbf{S}_f = \sum_f \Gamma_f \left(\nabla \phi \right)_f^n \cdot \mathbf{S}_f + S_C |V_P| + S_P |V_P| \phi_P^n \quad (281)$$

The method is first order accurate in time. However, it is also unstable if Co > 1. Despite this, explicit Euler discretisation is very easy to implement and does not require substantial computer resources.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Flowent
Wethod
Monte Carlo Method
Lattice Boltzmann
Mothod
Smoothed Particle
Hvdrodvnamics
Turbulence modelling
References

Temporal discretisation – implicit Euler

This time the right hand side of previous equation is approximated implicitly by means of current values ϕ^{n+1} which is denoted as $F(\phi_f^{n+1}, \phi_P^{n+1})$. The discrete version of the general transport equation is

$$\rho \frac{\phi_P^{n+1} - \phi_P^n}{\Delta t} |V_P| + \rho \sum_f \phi_f^{n+1} \mathbf{u}_f \cdot \mathbf{S}_f = \sum_f \Gamma_f \left(\nabla \phi \right)_f^{n+1} \cdot \mathbf{S}_f + S_C |V_P| + S_P |V_P| \phi_P^{n+1} \quad (282)$$

The method is first order accurate in time and is unconditionally stable in contrast to explicit method. Implicit Euler discretisation is more complicated to implement in comparison with its explicit formulation and requires iterative approach.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Formally, the method utilises the trapezoid rule. This is equivalent to an arithmetical average of current and old values

$$\rho \frac{\phi_P^{n+1} - \phi_P^n}{\Delta t} |V_P| = \frac{F\left(\phi_f^n, \phi_P^n\right) + F\left(\phi_f^{n+1}, \phi_P^{n+1}\right)}{2}$$
(283)

The method is known to be second order accurate in time and unconditionally stable.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Temporal discretisation – backward differencing

The integrand $\frac{d\phi_P}{dt}$ of the left hand side of the previous equation is discretised first rather than being evaluated directly

$$\frac{d\phi_P}{dt} = \frac{3\phi_P^{n+1} - 4\phi_P^n + \phi_P^{n-1}}{2\Delta t}$$
(284)

Now the left hand side of the previous equation can be integrated. The implicit discrete version of the general transport equation is

$$\rho \frac{3\phi_P^{n+1} - 4\phi_P^n + \phi_P^{n-1}}{2\Delta t} |V_P| + \rho \sum_f \phi_f^{n+1} \mathbf{u}_f \cdot \mathbf{S}_f = \sum_f \Gamma_f \left(\nabla \phi\right)_f^{n+1} \cdot \mathbf{S}_f + S_C |V_P| + S_P |V_P| \phi_P^{n+1} \quad (285)$$

The method is known to be second order accurate in time

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Let us consider differential form of the general transport equation

$$\frac{\partial(\rho\phi)}{\partial t} + \nabla \cdot (\rho\phi\mathbf{u}) = \nabla \cdot (\Gamma\nabla\phi) + S_{\phi}$$
(286)

To obtain the integral form of this equation one needs Gauss's (divergence) theorem. Two dimensional version has the following form

$$\iint_{\Omega_i} \nabla \cdot \mathbf{w} \, \mathrm{d}\Omega = \oint_{\partial \Omega_i^+} \mathbf{w} \cdot \, \mathrm{d}\mathbf{L}$$
(287)

where $d\Omega \equiv dx dy$ and $d\mathbf{L} \equiv \hat{\boldsymbol{n}} dL \equiv \hat{\boldsymbol{i}} dy - \hat{\boldsymbol{j}} dx$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Integral form in 2D

Integrating over the two dimensional domain (finite 'volume') Ω_i and utilising Gauss's theorem results in

$$\frac{\mathrm{d}}{\mathrm{d}t} \iint_{\Omega_{i}} \rho \phi \,\mathrm{d}\Omega + \oint_{\partial \Omega_{i}^{+}} \rho \phi \mathbf{u} \cdot \,\mathrm{d}\mathbf{L} = \oint_{\partial \Omega_{i}^{+}} \Gamma \nabla \phi \cdot \,\mathrm{d}\mathbf{L} + \iint_{\Omega_{i}} S_{\phi} \,\mathrm{d}\Omega \quad (288)$$

First and last integral in the above equation suggest the following definition of an average $\bar{\phi}_i$ value of f over Ω_i

$$\bar{\phi}_i = \frac{1}{|\Omega_i|} \iint_{\Omega_i} \phi \,\mathrm{d}\Omega \tag{289}$$

The average value ϕ_i is typically located at the centre of the volume Ω_i .

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

The next step would be the spatial discretisation over the volume Ω_i boundary $\partial \Omega_i$. The line integral represents the total flux out of volume Ω_i and is replaced by a sum

$$\oint_{\partial \Omega_i^+} \mathbf{w} \cdot d\mathbf{L} \approx \sum_k \mathbf{w}_k \cdot \Delta \mathbf{L}_k$$
(290)

Boundary $\partial \Omega_i$ consists of lines indexed by subscript k. There are at least three lines (triangle). The vector w is either $\phi \mathbf{u}$ or $\Gamma \nabla \phi$. Because that vector w is typically not constant along each line it has to be approximated by a single value \mathbf{w}_k at the centre of each line.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Mathad
Iviethou
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Time discretisation

The last step would be time discretisation. Among many possibilities the simplest is the first order forward finite difference approximation

$$\frac{\mathrm{d}\bar{\phi}_i}{\mathrm{d}t} \approx \frac{\bar{\phi}_i^{n+1} - \bar{\phi}_i^n}{\Delta t}$$
(291)

Time step of this approximation is denoted here as Δt . Finally, one gets the following discretised version of transport equation (i.e. Finite Volume Scheme)

$$\rho \frac{\bar{\phi}_{i}^{n+1} - \bar{\phi}_{i}^{n}}{\Delta t} |\Omega_{i}| + \rho \sum_{k} (\phi \mathbf{u})_{k} \cdot \Delta \mathbf{L}_{k} = \sum_{k} (\Gamma \nabla \phi)_{k} \cdot \Delta \mathbf{L}_{k} + \bar{S}_{\phi i} |\Omega_{i}| \quad (292)$$

 $|\Omega_i|$ stands for the area of control volume Ω_i

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Two dimensional and steady state diffusion equation of a f quantity arises, as previously, from the general transport equation (convection-diffusion equation)

$$\nabla \cdot (\Gamma \nabla \phi) + S_{\phi} = 0 \tag{293}$$

If the diffusion coefficient is constant $\Gamma = 1$ and the source term $S_{\phi} = a$ then the above equation simplifies to

 $\nabla \cdot \nabla \phi + a = 0 \tag{294}$

or $\nabla^2 \phi = -a$ which is Poisson equation.

\sim							
	O	n	t	e	n	t	S
~	~		•	~	•••	-	-

_	Description of fluid/solid at different scales
_	Finite Difference Method
_	Finite Volume Method
	Finite Element Method
	Monte Carlo Method
	Lattice Boltzmann Method
	Smoothed Particle Hydrodynamics
-	Turbulence modelling
	Deferences

The discrete version of the diffusion equation (simplified version of general transport equation) is

$$\sum_{k} \left(\Gamma \nabla \phi \right)_{k} \cdot \Delta \mathbf{L}_{k} + \bar{S}_{\phi i j} |\Omega_{i j}| = 0$$
 (295)

For a structural and Cartesian mesh (next slide) the normal $\Delta \mathbf{L}_k$ vectors are

$$\Delta \mathbf{L}_{AB} = |\overline{AB}| \hat{\boldsymbol{\imath}} = \Delta y_i \, \hat{\boldsymbol{\imath}}$$
 (296a)

$$\Delta \mathbf{L}_{BC} = |\overline{BC}| \mathbf{\hat{\jmath}} = \Delta x_i \, \mathbf{\hat{\jmath}}$$

$$\Delta \mathbf{L}_{CD} = |\overline{CD}| (-\hat{\boldsymbol{\imath}}) = -\Delta y_i \,\hat{\boldsymbol{\imath}}$$
$$\Delta \mathbf{L}_{DA} = |\overline{DA}| (-\hat{\boldsymbol{\jmath}}) = -\Delta x_i \,\hat{\boldsymbol{\jmath}}$$

Contents

Description of
fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

(296b)

(296c)

(296d)

K. Tesch; Numerical Methods

The discrete version of two dimensional diffusion equation is now

$$\Gamma \frac{\partial \phi_{i+\frac{1}{2}j}}{\partial x} \Delta y_i + \Gamma \frac{\partial \phi_{ij+\frac{1}{2}}}{\partial y} \Delta x_i - \Gamma \frac{\partial \phi_{i-\frac{1}{2}j}}{\partial x} \Delta y_i - \Gamma \frac{\partial \phi_{ij-\frac{1}{2}}}{\partial y} \Delta x_i + \bar{S}_{\phi ij} |\Omega_{ij}| = 0 \quad (297)$$

where the area of volume Ω_{ij} is $|\Omega_{ij}| = \Delta x_i \Delta y_i$ and the diffusion coefficient is constant $\Gamma = 1$. If so, then

$$\frac{\partial \phi_{i+\frac{1}{2}j}}{\partial x} \Delta y_i + \frac{\partial \phi_{ij+\frac{1}{2}}}{\partial y} \Delta x_i - \frac{\partial \phi_{i-\frac{1}{2}j}}{\partial x} \Delta y_i - \frac{\partial \phi_{ij-\frac{1}{2}}}{\partial y} \Delta x_i + \bar{S}_{\phi ij} \Delta x_i \Delta y_i = 0 \quad (298)$$

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Method
Finite Element
Method
Monte Carlo Method
Monte Carlo Method
Lattice Boltzmann
Lattice Boltzmann
Lattice Boltzmann Method
Lattice Boltzmann Method Smoothed Particle
Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References
Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

The average value of S_{ϕ} at the centre of finite volume is approximated by means of known values of S_{ϕ} at the boundary of finite volume

$$\bar{S}_{\phi i j} = \frac{1}{4} \left(S_{\phi i - \frac{1}{2}j - \frac{1}{2}} + S_{\phi i + \frac{1}{2}j - \frac{1}{2}} S_{\phi i - \frac{1}{2}j + \frac{1}{2}} + S_{\phi i + \frac{1}{2}j + \frac{1}{2}} \right)$$
(299)

Derivatives at the boundary of finite volume are approximated by means of the second order scheme as

$$\frac{\partial \phi_{i+\frac{1}{2}j}}{\partial x} \approx \frac{\phi_{i+1j} - \phi_{ij}}{x_{i+1j} - x_{ij}} = \frac{\phi_{i+1j} - \phi_{ij}}{\Delta x_{i+1}}$$
(300a
$$\frac{\partial \phi_{ij+\frac{1}{2}}}{\partial y} \approx \frac{\phi_{ij+1} - \phi_{ij}}{y_{ij+1} - y_{ij}} = \frac{\phi_{ij+1} - \phi_{ij}}{\Delta y_{j+1}}$$
(300b)

Contents

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Iviethod
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

$$\frac{\partial \phi_{i-\frac{1}{2}j}}{\partial x} \approx \frac{\phi_{ij} - \phi_{i-1j}}{x_{ij} - x_{i-1j}} = \frac{\phi_{ij} - \phi_{i-1j}}{\Delta x_{i-1}}$$
(301a)
$$\frac{\partial \phi_{ij-\frac{1}{2}}}{\partial y} \approx \frac{\phi_{ij} - \phi_{ij-1}}{y_{ij} - y_{ij-1}} = \frac{\phi_{ij} - \phi_{ij-1}}{\Delta y_{j-1}}$$
(301b)

The specific form of a finite volume scheme is now

$$\bar{S}_{\phi i j} \Delta x_i \Delta y_i + \frac{\phi_{i-1j} \Delta y_i}{\Delta x_{i-1}} + \frac{\phi_{i+1j} \Delta y_i}{\Delta x_{i+1}} + \frac{\phi_{ij-1} \Delta x_i}{\Delta y_{j-1}} + \frac{\phi_{ij+1} \Delta x_i}{\Delta y_{j+1}} - \phi_{ij} \left(\frac{\Delta y_i}{\Delta x_{i-1}} + \frac{\Delta y_i}{\Delta x_{i+1}} + \frac{\Delta x_i}{\Delta y_{j-1}} + \frac{\Delta x_i}{\Delta y_{j+1}} \right) = 0 \quad (302)$$

Description of	
fluid/solid at diffe	rent
scales	
Finite Difference	
Method	
Finite Volume Method	
Finite Element	
Method	
Monte Carlo Meth	nod
Lattice Boltzmann	h
Method	•
Smoothed Particle	2
Hydrodynamics	
Turbulence model	ling
References	

It can also be rewritten to give ϕ_{ij} as a function of surrounding variables

$$\phi_{ij} = \frac{\frac{\phi_{i-1j}\Delta y_i}{\Delta x_{i-1}} + \frac{\phi_{i+1j}\Delta y_i}{\Delta x_{i+1}} + \frac{\phi_{ij-1}\Delta x_i}{\Delta y_{j-1}} + \frac{\phi_{ij+1}\Delta x_i}{\Delta y_{j+1}} + \bar{S}_{\phi ij}\Delta x_i\Delta y_i}{\frac{\Delta y_i}{\Delta x_{i-1}} + \frac{\Delta y_i}{\Delta x_{i+1}} + \frac{\Delta x_i}{\Delta y_{j-1}} + \frac{\Delta x_i}{\Delta y_{j+1}}}$$
(303)

For
$$\Delta x_i = \Delta y_i = \Delta x_{i-1} = \Delta x_{i+1} = \Delta y_{i-1} = \Delta y_{i+1} = h$$

(i.e. uniform mesh) the finite volume scheme reduced to
a finite difference scheme for Poisson equation

$$\phi_{ij} = \frac{\phi_{i-1j} + \phi_{i+1j} + \phi_{ij-1} + \phi_{ij+1} + \bar{S}_{\phi ij}h^2}{4} \quad (304)$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

K. Tesch; Numerical Methods

2D FVM pseudocode

Data: Read volumes data and BCs Create nodes and ghost nodes;

n := 1;

repeat

$$R := 0;$$

for $i := 2$ to $i_{max} - 1$ do
for $j := 2$ to $j_{max} - 1$ do

$$\begin{cases}
\varphi_{ij}^{n+1} := \\
\frac{\varphi_{i-1j}^{n} \Delta y_i}{\Delta x_{i-1}} + \frac{\varphi_{ij-1}^{n} \Delta x_i}{\Delta x_{j+1}} + \frac{\varphi_{ij+1}^{n} \Delta x_i}{\Delta y_{j-1}} + \frac{\varphi_{ij+1}}{\Delta y_{j+1}} + \frac{S_{\phi ij} \Delta x_i \Delta y_i}{\Delta y_{i+1}}; \\
\frac{\varphi_{i-1j}^{n} \Delta y_i}{\Delta x_{i-1}} + \frac{\varphi_{ij-1}^{n} \Delta x_i}{\Delta y_{j-1}} + \frac{\varphi_{ij+1}^{n} \Delta x_i}{\Delta y_{j+1}} + \frac{S_{\phi ij} \Delta x_i \Delta y_i}{\Delta y_{i+1}}; \\
R := \max\left(|\varphi_{ij}^{n+1} - \varphi_{ij}^{n}|, R\right); \\
Update ghost nodes; \\
n := n + 1; \\
until n \le n_{max} \text{ and } R > R_{min};
\end{cases}$$

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Nonuniform and uniform volumes and nodes

•	•	•	٠	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling

Results for nonuniform and uniform mesh

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Results for nonuniform and uniform mesh

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

One dimensional and steady state diffusion equation of a f quantity arises from the general transport equation (convection-diffusion equation)

$$\frac{\partial(\rho\phi)}{\partial t} + \nabla \cdot (\rho \mathbf{u}\phi) = \nabla \cdot (\Gamma \nabla \phi) + S_{\phi}$$
(305)

If the diffusion coefficient Γ is constant then the above equation simplifies to

$$\nabla \cdot (\Gamma \nabla \phi) + S_{\phi} = 0 \tag{306}$$

or more precisely

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) + S_{\phi} = 0 \tag{307}$$

K. Tesch; Numerical Methods

206

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

The integral form of one dimensional diffusion equation takes the following form

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x}\right) \,\mathrm{d}x + \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} S_{\phi} \,\mathrm{d}x = 0 \qquad (308)$$

There is no need to take advantage of Gauss's theorem. This is because the first term can be integrated directly

$$\left(\Gamma\frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{i+\frac{1}{2}} - \left(\Gamma\frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{i-\frac{1}{2}} + \bar{S}_{\phi i}\,\Delta x_i = 0 \qquad (309)$$

where $\Delta x_{i} = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

The average value of S_f at the centre of finite volume can be approximated by means of trapezoidal rule by means of known values of S_f at the boundary of finite volume

$$\bar{S}_{fi} = \frac{S_{fi-\frac{1}{2}} + S_{fi+\frac{1}{2}}}{2} \tag{310}$$

Let us consider ODE

$$y''(x) + 20x = 0 \tag{311}$$

subjected to the Dirichlet boundary conditions y(0) = y(1) = 0. The specific solution is

$$y(x) = -\frac{10}{3}(x^3 - x)$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

(312)

In other word, the diffusion coefficient $\Gamma = 1$ and source term $S_f = 20x$. If so, then discrete version of one dimensional diffusion equation is now

$$\frac{\mathrm{d}\phi_{i+\frac{1}{2}}}{\mathrm{d}x} - \frac{\mathrm{d}\phi_{i-\frac{1}{2}}}{\mathrm{d}x} + \bar{S}_{\phi i}\,\Delta x_i = 0 \tag{313}$$

Derivatives or diffusive fluxes at the boundary of finite volume are approximated by means of the second order scheme as

$$\frac{\mathrm{d}\phi_{i+\frac{1}{2}}}{\mathrm{d}x} \approx \frac{\phi_{i+1} - \phi_i}{x_{i+1} - x_i}$$
(314a)
$$\frac{\mathrm{d}\phi_{i-\frac{1}{2}}}{\mathrm{d}x} \approx \frac{\phi_i - \phi_{i-1}}{x_i - x_{i-1}}$$
(314b)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

The specific form of a finite volume scheme is now

$$\frac{\phi_{i+1} - \phi_i}{x_{i+1} - x_i} - \frac{\phi_i - \phi_{i-1}}{x_i - x_{i-1}} + \bar{S}_{\phi i} \,\Delta x_i = 0 \tag{315}$$

It can also be rewritten to give ϕ_i as a function of surrounding variables

$$\phi_{i} = \frac{\Delta x_{i+1}\phi_{i-1} + \Delta x_{i-1}\phi_{i+1} + \bar{S}_{\phi i}\Delta x_{i-1}\Delta x_{i+1}\Delta x_{i}}{\Delta x_{i-1} + \Delta x_{i+1}}$$
(316)

where $\Delta x_{i-1} = x_i - x_{i-1}$ and $\Delta x_{i+1} = x_{i+1} - x_i$. For $\Delta x_{i-1} = \Delta x_{i+1} = \Delta x_i = h$ (i.e. uniform mesh) the finite volume scheme is reduced to a finite difference scheme

$$\phi_i = \frac{\phi_{i-1} + \phi_{i+1} + S_{\phi i}h^2}{2} \tag{317}$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

1D FVM pseudocode

Data: Read volumes data and BCs Create nodes and ghost nodes; n := 1;repeat R := 0;for i := 2 to $i_{max} - 1$ do $\begin{bmatrix}
\phi_i^{n+1} := \frac{\Delta x_{i+1}\phi_{i-1}^n + \Delta x_{i-1}\phi_{i+1}^n + \bar{S}_{\phi i}\Delta x_{i-1}\Delta x_{i+1}\Delta x_i}{\Delta x_{i-1} + \Delta x_{i+1}}; \\
R := \max\left(|\phi_i^{n+1} - \phi_i^n|, R\right);
\end{bmatrix}$ Update ghost nodes; n := n + 1; until $n \leq n_{max}$ and $R > R_{min}$;

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Results for nonuniform and uniform grids

K. Tesch; Numerical Methods

1D FVM diffusion problem - Neumann BC

Let us consider the same ordinary differential equation

$$y''(x) + 20x = 0 \tag{318}$$

subjected to both the Dirichlet y(0) = 0 and Neumann y'(1) = 0 boundary conditions. The specific solution is now

$$y(x) = -10x\left(\frac{x^2}{3} - 1\right)$$
 (319)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Results for nonuniform and uniform grids

K. Tesch; Numerical Methods

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Finite Element Method

Method of weighted residuals

The mathematical foundation of the finite element method is in the method of weighted residuals. Imagine ordinary differential equation

$$y''(x) + 20x = 0 \tag{320}$$

subjected to boundary conditions y(0) = y(1) = 0. The exact general solution of this equation is

$$y(x) = -\frac{10}{3}x^3 + C_1x + C_2 \tag{321}$$

and a specific solution subjected to boundary conditions

$$y(x) = -\frac{10}{3}(x^3 - x) \tag{322}$$

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References
The method seeks an approximate solution \hat{y} in the general form N

$$\hat{y}(x) = \sum_{i=1}^{N} C_i N_i(x)$$
 (323)

where N_i are known trial functions which should be continuous and fulfilled boundary conditions. The constants C_i are unknown and they will be determined. A residual R appears when substituting approximate solution \hat{y} into the differential equations

$$R(x) = \hat{y}''(x) + 20x \neq 0$$
 (324)

The unknown C_i constant are determined for i = 1, ... N from

$$\int_{0}^{1} W_{i}(x) R(x) \, \mathrm{d}x = 0 \tag{325}$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Method of weighted residuals

$$\int_0^1 W_i(x) R(x) \, \mathrm{d}x = 0 \qquad i = 1, \dots, N \tag{326}$$

Choices for the weighting functions W_i

- Collocation method $W_i(x) = \delta(x x_i)$
- Subdomain method $W_i(x) = H(x - x_{i-1}) - H(x - x_i)$
- Galerkin's method $W_i(x) = N_i(x)$

$$\int_0^1 N_i(x) R(x) \, \mathrm{d}x = 0 \qquad i = 1, \dots, N \qquad (327)$$

Least Squares Method
$$W_i(x) = \frac{\partial R}{\partial C_i}$$

$$\int_0^1 \frac{\partial R}{\partial C_i} R(x) \, dx = 0 \qquad i = 1, \dots, N$$

Contents

Description of
fluid/solid at different
scales
Finite Difference
Method
method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulanca modalling
References

(328)

Method of weighted residuals - example

A polynomial trial functions can be assumed

$$N(x) = x^{r}(x-1)^{s}$$
 (329)

It is continuous and fulfils boundary conditions. Just one trial function for r = s = 1 is the simplest case

$$N_1(x) = x(x-1)$$
 (330)

The approximate solution $\hat{y}(x) = \sum_{i=1}^{N} C_i N_i(x)$ where N = 1 takes the following form

$$\hat{y}(x) = C_1 N_1(x) = C_1(x^2 - x)$$
 (331)

Residual may now be expressed as

$$R(x) = 2C_1 + 20x \neq 0 \tag{332}$$

Contents

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

The unknown constant C_1 may be determined upon integrating (Galerkin's method of weighted residuals)

$$\int_0^1 x(x-1)(2C_1+20x) \,\mathrm{d}x = 0 \tag{333}$$

This gives $-\frac{1}{3}(5+C_1)=0$ and allows to determine $C_1=-5$. The approximate solution is now

$$\hat{y}(x) = -5x(x-1)$$
 (334)

and can be compared with the exact solution

$$y(x) = -\frac{10}{3}(x^3 - x)$$
(335)

Description of
fluid/solid at different
scales
Finite Difference
Method
Einita Valuma
Mothod
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothad Darticla
Smoothed Particle
пушгодупатися
Turbulence modelling
References

The simplest case with just one trial function approximates the exact solution more or less acceptably. Better agreement is possible with more than one trial functions.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Method of weighted residuals - example

The two polynomial trial functions can be assumed

$$N_1(x) = x(x-1), \quad N_2(x) = x^2(x-1)$$
 (336)

Both are continuous and fulfil boundary conditions. The approximate solution $\hat{y}(x) = \sum_{i=1}^{N} C_i N_i(x)$ where N = 2 takes the following form

$$\hat{y}(x) = C_1 N_1(x) + C_2 N_2(x) = C_1 (x^2 - x) + C_2 (x^3 - x^2)$$
(337)

Residual may now be expressed as

$$R(x) = 2C_1 + 2C_2(3x - 1) + 20x \neq 0$$
 (338)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

The unknown constants ${\cal C}_1, {\cal C}_2$ may be determined upon integrating

$$\int_0^1 x(x-1)(2C_1 + 2C_2(3x-1) + 20x) \, \mathrm{d}x = 0$$
$$\int_0^1 x^2(x-1)(2C_1 + 2C_2(3x-1) + 20x) \, \mathrm{d}x = 0$$

This gives $10 + 2C_1 + C_2 = 0$ and $1 + \frac{1}{6}C_1 + \frac{2}{15}C_2 = 0$ and allows to determine $C_1 = C_2 = -\frac{10}{3}$. The approximate solution is now

$$\hat{y}(x) = -\frac{10}{3}x(x-1)(x+1)$$
 (339)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

The case with two trial function approximates the exact solution very well. It is far better that the previous case. There is no visible difference. In fact, it is even the exact solution

$$-\frac{10}{3}x(x-1)(x+1) = -\frac{10}{3}(x^3 - x)$$
(340)

	Description of
	fluid/solid at different
	scales
	Finite Difference
	Mothod
•	Inethod
	Finite Volume
	Method
	Einite Element
	Finite Element
	Method
	Monto Carlo Mothod
•	Nonte Cano Method
	Lattice Boltzmann
	Method
•	
	Smoothed Particle
	Hydrodynamics
	Iurbulence modelling
	Keterences

Method of weighted residuals - comments

- The method of weighted residuals constitutes foundation of the final element method
- The method exploits an integral formulation to minimise residual errors
- Trail functions of this method are global. It is usually difficult task to find a proper one that satisfies boundary conditions. The more dimensions the worse.

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

'Element' formulation

The approximate solution is expressed as

$$\hat{y}_e = y_j N_1(x) + y_{j+1} N_2(x) = \mathbf{N} \cdot \mathbf{y}_e$$
 (341)

where the known local trial functions N and the unknown nodal values y_e are collected as vectors

N =
$$(N_1, N_2)$$
 (342a)
y_e = (y_j, y_{j+1}) (342b)

The local trial functions are simply a linear interpolation

$$N_{1} = \frac{x_{j+1} - x_{j}}{x_{j+1} - x_{j}} \quad x_{j} \le x \le x_{j+1}$$
(343a)
$$N_{2} = \frac{x - x_{j}}{x_{j+1} - x_{j}} \quad x_{j} \le x \le x_{j+1}$$
(343b)

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

'Element' formulation

For each element we have the Galerkin residual condition

$$\int_{x_j}^{x_{j+1}} \mathbf{N} R \, \mathrm{d}x = \mathbf{0} \quad j = 1, \dots, N$$
 (344)

Taking under consideration our differential equation y'' + 20x = 0 and the approximate solution \hat{y}_e it is now possible to express the residual as

$$\int_{x_j}^{x_{j+1}} \mathbf{N}\left(\frac{\mathrm{d}^2 \hat{y}_e}{\mathrm{d}x^2} + 20x\right) \,\mathrm{d}x = \mathbf{0} \tag{345}$$

The second derivative has to be replaced. This is due to linear nature of the trial functions.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Integration by parts makes it possible to replace the second derivative

$$\mathbf{N}\frac{\mathrm{d}\hat{y}_{e}}{\mathrm{d}x}\Big|_{x_{j}}^{x_{j+1}} - \int_{x_{j}}^{x_{j+1}}\frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x}\frac{\mathrm{d}\hat{y}_{e}}{\mathrm{d}x}\,\mathrm{d}x + \int_{x_{j}}^{x_{j+1}}\mathbf{N}20x\,\mathrm{d}x = \mathbf{0}$$
(346)
Finally, matrix form of the Galerkin residual condition for
each element is now

$$\int_{x_j}^{x_{j+1}} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \,\mathrm{d}x \cdot \mathbf{y}_e = \int_{x_j}^{x_{j+1}} \mathbf{N} 20x \,\mathrm{d}x + \mathbf{N} \frac{\mathrm{d}\hat{y}_e}{\mathrm{d}x} \Big|_{x_j}^{x_{j+1}}$$
$$j = 1, \dots, N \quad (347)$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Element equations

The so called 'stiffness' matrix for each element e may be introduced

$$\mathbf{K}_{e} = \int_{x_{j}}^{x_{j+1}} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \,\mathrm{d}x \tag{348}$$

The above matrix is symmetric. The so called 'displacement' vector is also introduced

$$\mathbf{F}_{e} = \int_{x_{j}}^{x_{j+1}} \mathbf{N}20x \,\mathrm{d}x + \mathbf{N} \frac{\mathrm{d}\hat{y}_{e}}{\mathrm{d}x} \Big|_{x_{j}}^{x_{j+1}}$$
(349)

The Galerkin residual condition for each element may now be written as

$$\mathbf{K}_e \cdot \mathbf{y}_e = \mathbf{F}_e \tag{350}$$

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Element equations

It is possible to simplify the matrices even further. For the linear trial functions one gets the 'stiffness' matrix

$$\mathbf{K}_{e} = \int_{x_{j}}^{x_{j+1}} \begin{pmatrix} \frac{\mathrm{d}N_{1}}{\mathrm{d}x} \frac{\mathrm{d}N_{1}}{\mathrm{d}x} & \frac{\mathrm{d}N_{1}}{\mathrm{d}x} \frac{\mathrm{d}N_{2}}{\mathrm{d}x} \\ \frac{\mathrm{d}N_{1}}{\mathrm{d}x} \frac{\mathrm{d}N_{2}}{\mathrm{d}x} & \frac{\mathrm{d}N_{2}}{\mathrm{d}x} \frac{\mathrm{d}N_{2}}{\mathrm{d}x} \end{pmatrix} \, \mathrm{d}x = \frac{1}{x_{j+1} - x_{j}} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
(351)

and the 'displacement vector'

$$\mathbf{F}_{e} = \int_{x_{j}}^{x_{j+1}} \begin{pmatrix} N_{1}20x \\ N_{2}20x \end{pmatrix} \, \mathrm{d}x + \begin{pmatrix} N_{1}\frac{\mathrm{d}\hat{y}_{e}}{\mathrm{d}x} \Big|_{x_{j}}^{x_{j+1}} \\ N_{2}\frac{\mathrm{d}\hat{y}_{e}}{\mathrm{d}x} \Big|_{x_{j}}^{x_{j+1}} \end{pmatrix}$$
(352)

If the gradients are dropped, as discussed further, we have $\mathbf{F}_{e} = -\frac{10}{3}(x_{j} - x_{j+1}) \begin{pmatrix} 2x_{j} + x_{j+1} \\ x_{j} + 2x_{j+1} \end{pmatrix}$ (353)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Element equations - example

For the interval [0;1] divided equally into 3 elements we have the element matrices

$$\mathbf{K}_1 = \mathbf{K}_2 = \mathbf{K}_3 = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}$$
(354)

The global assembly process (coupling):

$$\mathbf{K} = \begin{pmatrix} K_1^{11} & K_1^{12} & 0 & 0\\ K_1^{12} & K_1^{22} + K_2^{11} & K_2^{12} & 0\\ 0 & K_2^{12} & K_2^{22} + K_3^{11} & K_3^{12}\\ 0 & 0 & K_3^{12} & K_3^{22} \end{pmatrix}$$
(355)

results in

$$\mathbf{K} = \begin{pmatrix} 3 & -3 & 0 & 0 \\ -3 & 6 & -3 & 0 \\ 0 & -3 & 6 & -3 \\ 0 & 0 & -3 & 3 \end{pmatrix}$$
(356)

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Element equations - example

The 'displacement' vector for equally divided interval [0;1] take form

$$\mathbf{F}_{1} = \begin{pmatrix} \frac{10}{27} - \frac{\mathrm{d}y(0)}{\mathrm{d}x} \\ \frac{20}{27} + \frac{\mathrm{d}y(\frac{1}{3})}{\mathrm{d}x} \end{pmatrix}, \mathbf{F}_{2} = \begin{pmatrix} \frac{40}{27} - \frac{\mathrm{d}y(\frac{1}{3})}{\mathrm{d}x} \\ \frac{50}{27} + \frac{\mathrm{d}y(\frac{2}{3})}{\mathrm{d}x} \end{pmatrix}, \mathbf{F}_{3} = \begin{pmatrix} \frac{70}{27} - \frac{\mathrm{d}y(\frac{2}{3})}{\mathrm{d}x} \\ \frac{80}{27} + \frac{\mathrm{d}y(1)}{\mathrm{d}x} \end{pmatrix}$$
(357)

After the global assembly process one finally gets

$$\mathbf{F} = \begin{pmatrix} F_1^1 \\ F_1^2 + F_2^1 \\ F_2^2 + F_3^1 \\ F_3^2 \end{pmatrix} = \begin{pmatrix} \frac{10}{27} - \frac{\mathrm{d}y(0)}{\mathrm{d}x} \\ \frac{60}{27} \\ \frac{120}{27} \\ \frac{120}{27} \\ \frac{80}{27} + \frac{\mathrm{d}y(1)}{\mathrm{d}x} \end{pmatrix}$$

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

(358)

The global (assembled) system of linear equations is

$$\begin{pmatrix} 3 & -3 & 0 & 0 \\ -3 & 6 & -3 & 0 \\ 0 & -3 & 6 & -3 \\ 0 & 0 & -3 & 3 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} \frac{10}{27} - \frac{dy(0)}{dx} \\ \frac{60}{27} \\ \frac{120}{27} \\ \frac{30}{27} \\ \frac{80}{27} + \frac{dy(1)}{dx} \end{pmatrix}$$
(359)

It cannot, however, be solved yet. This is due to necessity of applying the global boundary conditions. These are $y_1 = y_4 = 0$. Two typical methods of applying them are discussed further.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Boundary conditions

Extracting only these equations that are related to unknown functions y_2 and y_3 for $y_1 = y_4 = 0$ results in

$$\begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & 6 & -3 & \cdot \\ \cdot & -3 & 6 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix} \cdot \begin{pmatrix} \cdot \\ y_2 \\ y_3 \\ \cdot \end{pmatrix} = \begin{pmatrix} \cdot \\ \frac{60}{27} \\ \frac{120}{27} \\ \cdot \end{pmatrix}$$
(360)

or simpler in

$$\begin{pmatrix} 6 & -3 \\ -3 & 6 \end{pmatrix} \cdot \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{60}{27} \\ \frac{120}{27} \end{pmatrix}$$
(361)

The above system may now be solved to obtain the unknown values y_2 , y_3 .

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Boundary conditions

The second method does not change the layout of the matrices. However, it involves modification of specific elements by multiplying them by a 'large' number. These elements are located on the diagonal of the 'stiffness' matrix and corresponding positions of the 'displacement' vector (if non-zero)

$$\begin{pmatrix} 3 \cdot 10^7 & -3 & 0 & 0 \\ -3 & 6 & -3 & 0 \\ 0 & -3 & 6 & -3 \\ 0 & 0 & -3 & 3 \cdot 10^7 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{60}{27} \\ \frac{120}{27} \\ 0 \end{pmatrix}$$
(362)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

ODE FEM pseudocode

Data: Read N elements, nodes and BCs Create global matrix K and vectors F, y; for e := 1 to N do $K_e := \int_e \frac{dN}{dx} \frac{dN}{dx} dx;$ $F_e := \int_e N20x dx;$ Add K_e to K; Add F_e to F;

Apply BCs; Solve linear system $\mathbf{K} \cdot \mathbf{y} = \mathbf{F}$; Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

3 elements, 4 nodes

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

6 elements, 7 nodes

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics

Turbulence modelling

References

9 elements, 10 nodes

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

15 elements, 16 nodes

Description of
fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Linear and quadratic interpolation

Considering line equation $\hat{y}_e = a + bx$ and utilising it for two different points (x_j, y_j) and (x_{j+1}, y_{j+1}) we can get the following system of equations

$$\begin{pmatrix} y_j \\ y_{j+1} \end{pmatrix} = \begin{pmatrix} 1 & x_j \\ 1 & x_{j+1} \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$
(363)

It can be easily solved for \boldsymbol{a} and \boldsymbol{b}

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & x_j \\ 1 & x_{j+1} \end{pmatrix}^{-1} \cdot \begin{pmatrix} y_j \\ y_{j+1} \end{pmatrix}$$
(364)

Keeping in mind that $\hat{y}_e = \mathbf{N} \cdot \mathbf{y}_e$ where $\mathbf{N} = (N_1, N_2)$ and $\mathbf{y}_e = (y_j, y_{j+1})$ we can utilise the solution for a and bto get

$$\hat{y}_e = a + bx = \frac{x_{j+1} - x}{x_{j+1} - x_j} y_j + \frac{x - x_j}{x_{j+1} - x_j} y_{j+1} = N_1 y_j + N_2 y_{j+1}$$
(365)

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle

Turbulence modelling

Hydrodynamics

References

fluid/solid at different

Linear and quadratic interpolation

Introducing L_1 and L_2 for a one-dimensional element

$$L_{1} = N_{1} = \frac{x_{j+1} - x_{j}}{x_{j+1} - x_{j}}$$

$$L_{2} = N_{2} = \frac{x - x_{j}}{x_{j+1} - x_{j}}$$
(366b)

one can formulate similar system of equation for quadratic interpolation $\hat{y}_e = a + bx + cx^2$ through the points (x_j, y_j) , $(x_{j+\frac{1}{2}}, y_{j+\frac{1}{2}})$ and (x_{j+1}, y_{j+1})

$$\begin{pmatrix} y_j \\ y_{j+\frac{1}{2}} \\ y_{j+1} \end{pmatrix} = \begin{pmatrix} 1 & x_j & x_j^2 \\ 1 & x_{j+\frac{1}{2}} & x_{j+\frac{1}{2}}^2 \\ 1 & x_{j+1} & x_{j+1}^2 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
(367)

Description of
fluid/solid at different
scales
Seales
Finite Difference
Method
Finite Volume
Method
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
meenou
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Linear and quadratic interpolation

The quadratic trial functions can be also expressed in terms of linear trial functions

$$N_{1} = L_{1} (2L_{1} - 1),$$

$$N_{2} = 4L_{1}L_{2},$$

$$N_{3} = L_{2} (2L_{2} - 1)$$

Contents

 Description of

 fluid/solid at different

 scales

 Finite Difference

 Method

 Finite Volume

 Method

 Finite Element

 Method

 Monte Carlo Method

 Lattice Boltzmann

 Method

 Smoothed Particle

 Hydrodynamics

 Turbulence modelling

References

Quadratic interpolation

The 'stiffness' matrix for each element e may now be calculated as

$$\mathbf{K}_{e} = \int_{x_{j}}^{x_{j+1}} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \,\mathrm{d}x = \frac{1}{3(x_{j+1} - x_{j})} \begin{pmatrix} 7 & -8 & 1\\ -8 & 16 & -8\\ 1 & -8 & 7 \end{pmatrix}$$
(369)

The 'displacement' vector is now

$$\mathbf{F}_{e} = \int_{x_{j}}^{x_{j+1}} \mathbf{N} 20x \, \mathrm{d}x = \frac{10}{3} (x_{j+1} - x_{j}) \begin{pmatrix} x_{j} \\ 2(x_{j} + x_{j+1}) \\ x_{j+1} \end{pmatrix}$$
(370)

The Galerkin residual condition for each element is the same as previously

$$\mathbf{K}_e \cdot \mathbf{y}_e = \mathbf{F}_e \tag{371}$$

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

ODE quadratic **FEM** pseudocode

Data: Read N linear elements, n nodes and BCs Insert midpoints $x_{j+\frac{1}{2}} := \frac{x_j + x_{j+1}}{2}$; n := 2n - 1 : Create global matrix \mathbf{K} and vectors \mathbf{F} , \mathbf{y} ; for e := 1 to N do $\mathbf{K}_e := \int_e \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}x} \,\mathrm{d}x;$ $\mathbf{F}_e := \int_{e} \mathbf{N} 20x \, \mathrm{d}x;$ Add \mathbf{K}_e to \mathbf{K} ; Add \mathbf{F}_e to \mathbf{F} ; Apply BCs; Solve linear system $\mathbf{K} \cdot \mathbf{y} = \mathbf{F}$;

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

ODE - linear vs quadratic interpolation

Mesh refinement

(372)

The generalised p-norm is given by

$$\|f\|_p = \left(\int_L |f(x)|^p \,\mathrm{d}x\right)^{\frac{1}{p}}$$

where for p = 2 we have a special case

$$\|f\|_{2} = \sqrt{\int_{L} f^{2}(x) \,\mathrm{d}x} \tag{373}$$

The error $E = y - \hat{y}$ of a finite element solution \hat{y} may now be defined by means of 2-norm. It may take the following form

$$\|E'\|_2^2 \le C \sum_{e=1}^N r_e^2 \tag{374}$$

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mesh refinement

The element residue r_e is defined as

$$r_e = |L_e| \, \|f + \hat{y}''_e\|_2 \tag{375}$$

but due to the linear form of trial functions $N''_i = 0$ it is true that $\hat{y}''_e = 0$. This means that the element residue is $r_e = |L_e| ||f||_2$ and solution error

$$\|E'\|_2^2 \le C \sum_{e=1}^N |L_e|^2 \|f\|_2^2 \tag{376}$$

Element's length is $|L_e| = x_{j+1} - x_j$ and utilising the trapezoidal rule we can express the element residue as

$$r_e = |L_e| \sqrt{\int_{L_e} f(x)^2 \, \mathrm{d}x} \approx (x_{j+1} - x_j)^{\frac{3}{2}} \sqrt{\frac{f_j^2 + f_{j+1}^2}{2}} \quad (377)$$

The above approximation is used for mesh refinement.

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Mesh refinement - results

Mesh refinement - results

FEM for Poisson equation

Let the two dimensional form of the Poisson equation on $\boldsymbol{\Omega}$

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = -a \quad (378)$$

be subjected to the Dirichlet boundary condition U(x,y) = 0 for every $(x,y) \in \partial \Omega$. It is true that

$$\iint_{\Omega} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{e} \iint_{\Omega_{e}} f(x, y) \, \mathrm{d}x \, \mathrm{d}y \qquad (379)$$

Contents Description of

'Element' formulation

The approximate solution is expressed as

 $\hat{U}_e = \mathbf{N} \cdot \mathbf{U}_e \tag{380}$

where the known local trial functions \mathbf{N} and the unknown nodal values U_e are

$$\mathbf{N} = (N_1, N_2, N_3)$$
(381a)
$$\mathbf{U}_e = (U_1, U_2, U_3)$$
(381b)

For each element we have the Galerkin residual condition

$$\iint_{\Omega_e} \mathbf{N} R \, \mathrm{d}x = \mathbf{0} \tag{382}$$

Contents

'Element' formulation

Taking under consideration Poisson equation and the approximate solution \hat{U}_e it is now possible to express the residual as

$$\iint_{\Omega_e} \mathbf{N} \left(\frac{\partial^2 \hat{U}_e}{\partial x^2} + \frac{\partial^2 \hat{U}_e}{\partial y^2} + a \right) \, \mathrm{d}x \, \mathrm{d}y = \mathbf{0} \tag{383}$$

The second derivative has to be replaced (due to linear nature of the trial functions). This can be done by means of Green's first identity

$$\iint_{S} \left(\psi \frac{\partial^{2} \varphi}{\partial x^{2}} + \psi \frac{\partial^{2} \varphi}{\partial y^{2}} \right) \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial S} \psi \frac{\partial \varphi}{\partial n} \, \mathrm{d}L \\ - \iint_{S} \left(\frac{\partial \psi}{\partial x} \frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{\partial \varphi}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \quad (384)$$

Contents

Integration by means of Green's identity makes it possible to replace the second derivative

$$\iint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \hat{U}_e}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \hat{U}_e}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y$$
$$- \int_{\partial \Omega_e} \mathbf{N} \frac{\partial \hat{U}_e}{\partial n} \, \mathrm{d}L - \iint_{\Omega_e} \mathbf{N}a \, \mathrm{d}x \, \mathrm{d}y = \mathbf{0} \quad (385)$$

The matrix form of the Galerkin residual condition for each element can now be expressed

$$\iint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \cdot \mathbf{U}_e = \iint_{\Omega_e} \mathbf{N}a \, \mathrm{d}x \, \mathrm{d}y$$
(386)

Contents

Element equation

Introducing the 'stiffness' matrix for each element e

$$\mathbf{K}_{e} = \iint_{\Omega_{e}} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \tag{387}$$

and the 'displacement' vector

$$\mathbf{F}_e = \iint_{\Omega_e} \mathbf{N}a \, \mathrm{d}x \, \mathrm{d}y \tag{388}$$

one may obtain the Galerkin residual condition for each element in the form

$$\mathbf{K}_e \cdot \mathbf{U}_e = \mathbf{F}_e \tag{389}$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Element equation

The expanded version of the 'stiffness' matrix is	Contents
$\left(\frac{\partial N_1}{\partial x}\frac{\partial N_1}{\partial x} + \frac{\partial N_1}{\partial y}\frac{\partial N_1}{\partial y} - \frac{\partial N_1}{\partial x}\frac{\partial N_2}{\partial x} + \frac{\partial N_1}{\partial y}\frac{\partial N_2}{\partial y} - \frac{\partial N_1}{\partial x}\frac{\partial N_3}{\partial x} + \frac{\partial N_1}{\partial y}\frac{\partial N_3}{\partial y}\right)$	Description of fluid/solid at different scales
$\mathbf{K}_{e} = \iint \left[\frac{\partial \tilde{N}_{1}}{\partial x} \frac{\partial \tilde{N}_{2}}{\partial x} + \frac{\partial \tilde{N}_{1}}{\partial y} \frac{\partial \tilde{N}_{2}}{\partial y} - \frac{\partial \tilde{N}_{2}}{\partial x} \frac{\partial \tilde{N}_{2}}{\partial x} + \frac{\partial \tilde{N}_{2}}{\partial y} \frac{\partial \tilde{N}_{2}}{\partial y} - \frac{\partial \tilde{N}_{2}}{\partial x} \frac{\partial \tilde{N}_{3}}{\partial x} + \frac{\partial \tilde{N}_{2}}{\partial y} \frac{\partial \tilde{N}_{3}}{\partial y} \right] dx dy$	Finite Difference Method
$\Omega_{e} \left(\frac{\partial N_{1}}{\partial x} \frac{\partial N_{3}}{\partial x} + \frac{\partial N_{1}}{\partial y} \frac{\partial N_{3}}{\partial y} - \frac{\partial N_{2}}{\partial x} \frac{\partial N_{3}}{\partial x} + \frac{\partial N_{2}}{\partial y} \frac{\partial N_{3}}{\partial y} - \frac{\partial N_{3}}{\partial x} \frac{\partial N_{3}}{\partial x} + \frac{\partial N_{3}}{\partial y} \frac{\partial N_{3}}{\partial y} \right) $ (390)	Finite Volume Method
Similarly, the same for the 'displacement' vector	Finite Element Method
	Monte Carlo Method
(N_1)	Lattice Boltzmann Method
$\mathbf{F}_e = a \iint_{\Omega_e} \left(\begin{array}{c} N_2 \\ N \end{array} \right) \mathrm{d}x \mathrm{d}y \tag{391}$	Smoothed Particle Hydrodynamics
$\sqrt{N_3}$	Turbulence modelling
	References
The actual form of matrices depends on the trial	
functions linear form of these are discussed further	

Linear trial function

Considering plane equation

$$\hat{U}_e = a + bx + cy \tag{392}$$

one can formulate the following system of equations

$$U_1 = a + bx_i + cy_i \tag{393a}$$

$$U_2 = a + bx_j + cy_j \tag{393b}$$

$$U_3 = a + bx_k + cy_k \tag{393c}$$

for three different points (x_i, y_i) , (x_j, y_j) , (x_k, y_k) . Solving these for a, b and c results in

$$\hat{U}_{e} = \frac{U_{1}}{2S_{e}}(a_{i}+b_{i}x+c_{i}y) + \frac{U_{2}}{2S_{e}}(a_{j}+b_{j}x+c_{j}y) + \frac{U_{3}}{2S_{e}}(a_{k}+b_{k}x+c_{k}y)$$
(394)

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Linear trial function

The linear trial functions then are

$$N_1 = \frac{1}{2S_e}(a_i + b_i x + c_i y)$$
(395a)

$$N_2 = \frac{1}{2S_e} (a_j + b_j x + c_j y)$$
(395b)

$$N_3 = \frac{1}{2S_e} (a_k + b_k x + c_k y)$$
(395c)

where

$$a_{i} = x_{j}y_{k} - x_{k}y_{j}; a_{j} = x_{k}y_{i} - x_{i}y_{k}; a_{k} = x_{i}y_{j} - x_{j}y_{i};$$

$$b_{i} = y_{j} - y_{k}; b_{j} = y_{k} - y_{i}; b_{k} = y_{i} - y_{j};$$

$$c_{i} = x_{k} - x_{j}; c_{j} = x_{i} - x_{k}; c_{k} = x_{j} - x_{i};$$

$$S_{e} = \frac{1}{2} |c_{k}b_{j} - c_{j}b_{k}|$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Linear interpolation

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Now it is possible to calculate necessary derivatives appearing in the 'stiffness' matrix

$$\frac{\partial N_1}{\partial x} = \frac{b_i}{2S_e}, \quad \frac{\partial N_2}{\partial x} = \frac{b_j}{2S_e}, \quad \frac{\partial N_3}{\partial x} = \frac{b_k}{2S_e}, \quad (397a)$$
$$\frac{\partial N_1}{\partial y} = \frac{c_i}{2S_e}, \quad \frac{\partial N_2}{\partial y} = \frac{c_j}{2S_e}, \quad \frac{\partial N_3}{\partial y} = \frac{c_k}{2S_e} \quad (397b)$$

The same concerns integrals appearing in the 'displacement' vector

$$\iint_{S_e} N_1^{\alpha} N_2^{\beta} N_3^{\gamma} \, \mathrm{d}x \, \mathrm{d}y = 2S_e \frac{\alpha!\beta!\gamma!}{(\alpha+\beta+\gamma+2)!} \quad (397c)$$

Contents

Element equation

Now it is possible to simplify the matrices even further. For the linear trial functions one gets the 'stiffness' matrix

$$\mathbf{K}_{e} = \frac{1}{4S_{e}} \begin{pmatrix} b_{i}^{2} + c_{i}^{2} & b_{i}b_{j} + c_{i}c_{j} & b_{i}b_{k} + c_{i}c_{k} \\ b_{i}b_{j} + c_{i}c_{j} & b_{j}^{2} + c_{j}^{2} & b_{j}b_{k} + c_{j}c_{k} \\ b_{i}b_{k} + c_{i}c_{k} & b_{j}b_{k} + c_{j}c_{k} & b_{k}^{2} + c_{k}^{2} \end{pmatrix}$$
(398)

and the 'displacement vector'

$$\mathbf{F}_e = \frac{S_e}{3} \begin{pmatrix} a \\ a \\ a \end{pmatrix} \tag{399}$$

Contents

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
Keterences

Four element example

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Global matrix

(402)

The global assembly process (coupling) for the considered four element case:

$$\mathbf{K} = \begin{pmatrix} K_{1}^{11} + K_{4}^{11} & K_{1}^{12} & 0 & K_{4}^{12} & K_{1}^{13} + K_{4}^{13} \\ K_{1}^{12} & K_{1}^{22} + K_{2}^{11} & K_{2}^{12} & 0 & K_{1}^{23} + K_{2}^{13} \\ 0 & K_{2}^{12} & K_{2}^{22} + K_{3}^{11} & K_{3}^{12} & K_{2}^{23} + K_{3}^{13} \\ K_{4}^{12} & 0 & K_{3}^{12} & K_{3}^{22} + K_{4}^{22} & K_{3}^{23} + K_{4}^{23} \\ K_{1}^{13} + K_{4}^{13} & K_{1}^{23} + K_{2}^{13} & K_{2}^{23} + K_{3}^{13} & K_{3}^{23} + K_{4}^{23} & K_{1}^{33} + K_{2}^{33} + K_{4}^{33} \end{pmatrix}$$
The element matrices are identical (400)

$$\mathbf{K}_{1} = \mathbf{K}_{2} = \mathbf{K}_{3} = \mathbf{K}_{4} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
(401)

Finally, the global 'stiffness' matrix is

$$\mathbf{K} = \begin{pmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{pmatrix}$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Global vector

The 'displacement' element vector for the considered four elements

$$\mathbf{F}_1 = \mathbf{F}_2 = \mathbf{F}_3 = \mathbf{F}_4 = \frac{25}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
(403)

After the global assembly process one finally gets

$$\mathbf{F} = \begin{pmatrix} F_1^1 + F_4^1 \\ F_1^2 + F_2^1 \\ F_2^2 + F_3^1 \\ F_3^2 + F_4^2 \\ F_1^3 + F_2^3 + F_3^3 + F_4^3 \end{pmatrix} = \frac{50}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$
(404)

Contents

	Description of
	fluid/solid at different
	scales
1	
	Finite Difference
	Method
	Finite Volume
	Method
	Finita Floment
	Iviethod
	Manta Carla Mathad
	Wonte Carlo Wethod
	Lattice Boltzmann
	Method
	Method
	Method Smoothed Particle
	Method Smoothed Particle Hydrodynamics
	Method Smoothed Particle Hydrodynamics
	Method Smoothed Particle Hydrodynamics Turbulence modelling
	Method Smoothed Particle Hydrodynamics Turbulence modelling
	Method Smoothed Particle Hydrodynamics Turbulence modelling References

Poisson FEM pseudocode

Data: Read N elements, nodes and BCs Create global matrix **K** and vectors **F**, **y**; for e := 1 to N do $\mathbf{K}_e := \iint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) dx dy;$ $\mathbf{F}_e := \iint_{\Omega_e} \mathbf{N}a dx dy;$ Add \mathbf{K}_e to **K**; Add \mathbf{F}_e to **F**;

Apply BCs; Solve linear system $\mathbf{K} \cdot \mathbf{y} = \mathbf{F}$; Contents

4 elements, 5 nodes

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

8 elements, 9 nodes

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

50 elements, 36 nodes

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

200 elements, 121 nodes

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

800 elements, 441 nodes

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

FEM for Laplace equation

Let the two dimensional form of Laplace equation

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$$
 (405)

or $\nabla^2 \varphi = 0$ on Ω be subjected to both boundary conditions on $\partial \Omega$:

Neumann

$$\frac{\partial \varphi}{\partial n} = \hat{\boldsymbol{n}} \cdot \nabla \varphi = \hat{\boldsymbol{n}} \cdot (U_x, U_y) = n_x U_x + n_y U_y = -f_N$$

Dirichlet (as previously)

$$\varphi = \text{const} = f_D$$
 (406)

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

'Element' formulation

As previously, FEM formulation for Poisson equation subjected to Dirichlet and Neumann BCs is Contents Description of $\iint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \hat{U}_e}{\partial x} + \frac{\partial \mathbf{N}}{\partial u} \frac{\partial \hat{U}_e}{\partial u} \right) \, \mathrm{d}x \, \mathrm{d}y$ fluid/solid at different scales **Finite Difference** Method Finite Volume $-\int_{\partial\Omega} \mathbf{N} \frac{\partial U_e}{\partial n} \, \mathrm{d}L - \iint_{\Omega_e} \mathbf{N}a \, \mathrm{d}x \, \mathrm{d}y = \mathbf{0} \quad (407)$ Method Finite Element Method Poisson $\nabla^2 \varphi = -a$ with Dirichlet BC Monte Carlo Method Lattice Boltzmann Method $\iint \left(\frac{\partial \mathbf{N}}{\partial x}\frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y}\frac{\partial \mathbf{N}}{\partial y}\right) \, \mathrm{d}x \, \mathrm{d}y \cdot \mathbf{U}_e = \iint_{\Omega_e} \mathbf{N}a \, \mathrm{d}x \, \mathrm{d}y \quad (408)$ Smoothed Particle **Hydrodynamics** Turbulence modelling References Laplace $\nabla^2 \varphi = 0$ with Dirichlet + Neumann BC $\iint \left(\frac{\partial \mathbf{N}}{\partial x}\frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y}\frac{\partial \mathbf{N}}{\partial y}\right) \,\mathrm{d}x \,\mathrm{d}y \cdot \mathbf{\varphi}_e = -\int_{\partial\Omega_e} \mathbf{N}f_N \,\mathrm{d}L \quad (409)$

Introducing the 'stiffness' matrix as previously for each element \boldsymbol{e}

$$\mathbf{K}_{e} = \iint_{\Omega_{e}} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \tag{410}$$

and the 'displacement' vector

$$\mathbf{F}_e = -\int_{\partial\Omega_e} \mathbf{N} f_N \,\mathrm{d}L \tag{411}$$

one may obtain the Galerkin residual condition for each element in the form

$$\mathbf{K}_e \cdot \boldsymbol{\varphi}_e = \mathbf{F}_e. \tag{412}$$

Contents

(414)

The expanded version of the 'stiffness' matrix look the same as previously but the 'displacement' vector is now

$$\mathbf{F}_e = f_N \int_{\partial \Omega_e} \mathbf{N} \, \mathrm{d}L = -\frac{1}{2} |L| f_N \mathbf{1}$$
 (413)

The vector ${\bf 1}$ may take of the three following forms

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

. ..

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

|L| stands for element side length.

Laplace FEM pseudocode

Data: Read N elements, nodes and BCs Create global matrix **K** and vectors **F**, **y**; **for** e := 1 **to** N **do** $\mathbf{K}_e := \iint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) dx dy;$ $\mathbf{F}_e := - \int_{\partial \Omega_e} \mathbf{N} f_N dL;$ Add \mathbf{K}_e to **K**; Add \mathbf{F}_e to **F**;

Apply BCs; Solve linear system $\mathbf{K} \cdot \mathbf{y} = \mathbf{F}$; Contents

Geometry and mesh - Laplace equation

nodes and 818 elements

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Results - Laplace equation

Geometry and mesh - Laplace equation

nodes and 607 elements

Contents

Description of fluid/solid at different scales Finite Difference Method

Finite Volume Method

Finite Element Method

351

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Results - Laplace equation

Creeping flow – Stokes equations

Contents $\text{Re} \ll 1$ (415)Description of fluid/solid at different scales **Finite Difference** $\mathbf{0} = \rho \mathbf{g} - \nabla p + \mu \nabla^2 \mathbf{u}$ (416a) Method **Finite Volume** $\nabla \cdot \mathbf{u} = 0$ (416b) Method Finite Element Method Monte Carlo Method $0 = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial u^2} \right)$ Lattice Boltzmann (417a) Method Smoothed Particle $0 = \rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} \right)$ Hydrodynamics (417b) Turbulence modelling References $\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = 0$ (417c)

FEM formulation

The approximate solution is expressed as

$$\hat{u}_e = \mathbf{N} \cdot \mathbf{u}_e \tag{418}$$

where the quadratic trial functions \mathbf{N} and the unknown nodal values u_e are

$$\mathbf{N} = (N_1, N_2, N_3, N_4, N_5, N_6)$$
(419a)
$$\mathbf{u}_e = (U_1, U_2, U_3, U_4, U_5, U_6)$$
(419b)

For each element we have the Galerkin residual condition

$$\iint_{\Omega_e} \mathbf{N} R \, \mathrm{d}x = \mathbf{0} \tag{420}$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References
References

Quadratic interpolation

The quadratic trial functions can be expressed in terms of linear trial functions $N_1 = L_1 (2L_1 - 1)$ $N_2 = L_2 (2L_2 - 1)$

 $N_3 = L_3 (2L_3 - 1)$ $N_4 = 4L_1L_2$ $N_5 = 4L_2L_3$ $N_6 = 4L_1L_3$

Contents

Momentum conservation equation

Contents The Galerkin residual condition Description of fluid/solid at different $\iint_{\Omega_{e}} \mathbf{N} \left(\rho g_{x} - \frac{\partial \hat{p}_{e}}{\partial x} + \mu \left(\frac{\partial^{2} \hat{u}_{xe}}{\partial x^{2}} + \frac{\partial^{2} \hat{u}_{xe}}{\partial u^{2}} \right) \right) \, \mathrm{d}x \, \mathrm{d}y = \mathbf{0}$ scales **Finite Difference** Method (422) Finite Volume Method by means of Green's first identity Finite Element Method Monte Carlo Method $\iint_{S} \left(\psi \frac{\partial^{2} \varphi}{\partial x^{2}} + \psi \frac{\partial^{2} \varphi}{\partial u^{2}} \right) \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial S} \psi \frac{\partial \varphi}{\partial n} \, \mathrm{d}L$ Lattice Boltzmann Method Smoothed Particle Hydrodynamics $-\iint_{S} \left(\frac{\partial \psi}{\partial x} \frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{\partial \varphi}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \quad (423)$ Turbulence modelling References

Momentum conservation equation

is

$$\rho g_x \iint_{\Omega_e} \mathbf{N} \, \mathrm{d}x \, \mathrm{d}y - \iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial x} \, \mathrm{d}x \, \mathrm{d}y \cdot \mathbf{p}_e - \mu \iint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \cdot \mathbf{u}_{xe} = \mathbf{0} \quad (424)$$

or

$$\mathbf{K}_{pxe} \cdot \mathbf{p}_e + \mathbf{K}_{xye} \cdot \mathbf{u}_{xe} = g_x \mathbf{F}_e \tag{425}$$

Similarly

$$\mathbf{K}_{pye} \cdot \mathbf{p}_e + \mathbf{K}_{xye} \cdot \mathbf{u}_{ye} = g_y \mathbf{F}_e \tag{426}$$

Contents

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References
Momentum conservation equation

$$\mathbf{K}_{pxe} = \iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial x} \, \mathrm{d}x \, \mathrm{d}y$$

$$\mathbf{K}_{pye} = \iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial y} \, \mathrm{d}x \, \mathrm{d}y$$

(427)

(428)

$$\mathbf{K}_{xye} = \mu \iiint_{\Omega_e} \left(\frac{\partial \mathbf{N}}{\partial x} \frac{\partial \mathbf{N}}{\partial x} + \frac{\partial \mathbf{N}}{\partial y} \frac{\partial \mathbf{N}}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y \qquad (429)$$
$$\mathbf{F}_e = \rho \iiint_{\Omega_e} \mathbf{N} \, \mathrm{d}x \, \mathrm{d}y \qquad (430)$$

Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method

Contents

scales

Description of

fluid/solid at different

Smoothed Particle Hydrodynamics

Turbulence modelling

Mass conservation equation

The Galerkin residual condition

$$\iint_{\Omega_e} \mathbf{N} \left(\frac{\partial \hat{u}_{xe}}{\partial x} + \frac{\partial \hat{u}_{ye}}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y = \mathbf{0}$$
 (431)

The matrix form of the Galerkin residual condition for each element can now be expressed

$$\iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial x} \, \mathrm{d}x \, \mathrm{d}y \cdot \mathbf{u}_{xe} + \iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial y} \, \mathrm{d}x \, \mathrm{d}y \cdot \mathbf{u}_{ye} = \mathbf{0} \quad (432)$$

or

$$\mathbf{K}_{uxe} \cdot \mathbf{u}_{xe} + \mathbf{K}_{uye} \cdot \mathbf{u}_{ye} = \mathbf{0}$$
 (433)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mass conservation equation

$$\mathbf{K}_{uxe} = \iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial x} \, \mathrm{d}x \, \mathrm{d}y$$

$$\mathbf{K}_{uye} = \iint_{\Omega_e} \mathbf{N} \frac{\partial \mathbf{N}}{\partial y} \, \mathrm{d}x \, \mathrm{d}y$$

(434)

(435)

fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method

Contents

Description of

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Element equations

$$\mathbf{K}_{pxe} \cdot \mathbf{p}_{e} + \mathbf{K}_{xye} \cdot \mathbf{u}_{xe} = g_{x}\mathbf{F}_{e}$$
(436a)
$$\mathbf{K}_{pye} \cdot \mathbf{p}_{e} + \mathbf{K}_{xye} \cdot \mathbf{u}_{ye} = g_{y}\mathbf{F}_{e}$$
(436b)

$$\mathbf{K}_{yye} \cdot \mathbf{p}_{e} + \mathbf{K}_{xye} \cdot \mathbf{u}_{ye} = g_{y}\mathbf{\Gamma}_{e}$$
(4300)
$$\mathbf{K}_{uxe} \cdot \mathbf{u}_{xe} + \mathbf{K}_{uye} \cdot \mathbf{u}_{ye} = \mathbf{0}$$
(436c)

$$\begin{pmatrix} \mathbf{K}_{xye}^{6\times6} & \mathbf{0}^{6\times6} & \mathbf{K}_{pxe}^{6\times3} \\ \mathbf{0}^{6\times6} & \mathbf{K}_{xye}^{6\times6} & \mathbf{K}_{pye}^{6\times3} \\ \mathbf{K}_{uxe}^{3\times6} & \mathbf{K}_{uye}^{3\times6} & \mathbf{0}^{3\times3} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{u}_{xe}^{6\times1} \\ \mathbf{u}_{ye}^{6\times1} \\ \mathbf{p}_{e}^{3\times1} \end{pmatrix} = \begin{pmatrix} g_{x}\mathbf{F}_{e}^{6\times1} \\ g_{y}\mathbf{F}_{e}^{6\times1} \\ \mathbf{0}^{3\times1} \end{pmatrix}$$
(437)

$$\mathbf{K}_{e}^{15\times15}\cdot\mathbf{u}_{e}^{15\times1}=\mathbf{f}_{e}^{15\times1} \tag{438}$$

Description of fluid/solid at differen scales	t
Finite Difference Method	
Finite Volume Method	
Finite Element Method	
Monte Carlo Method	
Lattice Boltzmann Method	
Smoothed Particle Hydrodynamics	
Turbulence modelling	5
References	

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Monte Carlo Method

Monte Carlo integration

Monte Carlo integration

The simplest Monte Carlo integration is based on sampling uniformly distributed points (U, U)

$$\int_0^1 f(x) \, \mathrm{d}x \approx \frac{1}{n} \sum_{i=1}^n F\left(\mathcal{U}, \mathcal{U}\right) \tag{439}$$

where

$$F(x,y) = \begin{cases} 1; & \text{if } f(x) \ge y \\ 0; & \text{otherwise} \end{cases}$$
(440)

Contents

Estimation of π

Estimation of π

The area $|D| = \pi$ of an unit circle

$$D = \{(x, y) : x^2 + y^2 \le 1\}$$
(441)

is estimated as

$$\pi = \iint_{D} F(x) \, \mathrm{d}x \approx \frac{4}{n} \sum_{i=1}^{n} F(\mathcal{U}, \mathcal{U}) \qquad (442)$$

where

$$F(x,y) = \begin{cases} 1; & \text{if } x^2 + y^2 \le 1\\ 0; & \text{otherwise} \end{cases}$$
(443)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Wiener process and random walk 1D

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Poisson equation

Poisson equation subjected to the Dirichlet boundary condition

$$\nabla^2 \phi(\mathbf{x}) = -f(\mathbf{x}); \quad \forall \mathbf{x} \in \Omega$$
(444a)
$$\phi(\mathbf{x}) = g(\mathbf{x}); \quad \forall \mathbf{x} \in \partial \Omega$$
(444b)

It can be solved as an expected value of random paths of a stochastic process

$$\phi(\mathbf{x}) = \mathbf{E}\left[g(W_{\tau}) + \frac{1}{2}\int_0^{\tau} f(W_t) \,\mathrm{d}t\right]$$
(445)

where $t \mbox{ is a terminal time of a random walk}$

$$\tau = \inf \left\{ t : W_t \in \partial \Omega \right\}$$
(446)

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Poisson equation

If the Dirichlet boundary condition is $g(\mathbf{x}) = 0$ then

$$\phi(\mathbf{x}) = \frac{1}{2} \operatorname{E} \left[\int_0^\tau f(W_t) \, \mathrm{d}t \right]$$
(447)

We can also estimate

$$\int_{0}^{\tau} f(W_t) \, \mathrm{d}t \approx \sum_{i=1}^{m} f_i(W_{\tau}) \Delta t = \sum_{i=1}^{m} f_i(W_{\tau}) \frac{h}{V(h)} \quad (448)$$

Let us consider an ordinary differential equation y''(x) = -20x subjected to boundary conditions y(0) = y(1) = 0 (i.e. $\phi = y$, f(x) = 20x, g(x) = 0).

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Monte Carlo ODE pseudocode

Data: Read input variables for i := 1 to i_{max} do if not boundary (x_i) then S := 0;for k := 1 to n do I := 0; $\alpha := i;$ while not boundary (x_{α}) do $\begin{aligned} \alpha &:= \alpha + 2 \lfloor \mathcal{U}(0, 1) + \frac{1}{2} \rfloor - 1; \\ I &:= I + 20 f(x_{\alpha}); \\ S &:= S + I; \\ y_i &:= \frac{h^2}{2} \frac{S}{n}; \end{aligned}$

Description of
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Results – ODE

Results – ODE

Results – ODE

Contents

Monte Carlo Poisson pseudocode

Data: Read input variables and BCs for i := 1 to i_{max} do for j := 1 to j_{max} do if not boundary (\mathbf{x}_{ij}) then $\tau_n := 0;$ for k := 1 to n do S := 0; $\alpha := i; \beta := j;$ while not boundary $(\mathbf{x}_{\alpha\beta})$ do $\begin{vmatrix} \alpha := \alpha + 2 \lfloor \mathcal{U}(0, 1) + \frac{1}{2} \rfloor - 1; \\ \beta := \beta + 2 \lfloor \mathcal{U}(0, 1) + \frac{1}{2} \rfloor - 1; \\ S := S + 1; \\ \tau_n := \tau_n + S; \\ \phi_{ij} := -\frac{ah^2}{2} \frac{\tau_n}{n}; \end{vmatrix}$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Lattice Boltzmann Method

Definitions and ideas

The kinetic theory of gases treats gas as a large number of small molecules. They are in constant (and random) motion and constantly collide with one another. Knowing the position and velocity of each particle at some instant in time it would be possible to know the exact dynamical state of the whole system. The motion of particles could then be described by means of classical mechanics. This would allow for prediction of all future states of the system.

Due to the large number of molecules a statistical treatment is possible and necessary.

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Assumptions

- The gas is compose of small molecules which means that the average distance separating particles is large in comparison with their size.
- Molecules are in constant and random motion
- The large number of molecules make it possible to apply statistical treatment
- Molecules have the same mass and spherical shape
- Molecules constantly and elastically collide
- The only interaction is due to collision (no other forces on one another)

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

For N molecules we can think of *phase space* in which the coordinates consist of the position x_i , velocity vectors (v_i) and the time t. For a three dimensional case we have 6N dimensional phase space (three coordinates + three velocities times N molecules). The system can be described by a probability distribution function f that depends on 6N variables plus time t. For a single molecule this reduces to 6 dimensional phase space $(x_1, x_2, x_3, v_1, v_2, v_3)$. This can be treated as a

statistical approach in which a system is represented by an ensemble of many copies. Contents

The elementary volume and dV and product dv of elementary velocities are defined as

$$\mathrm{d}V = \prod_{i=1}^{D} \mathrm{d}x_{i}, \quad \mathrm{d}v = \prod_{i=1}^{D} \mathrm{d}v_{i}$$
(449)

where D means the physical dimension size. The distribution f that depends on $\mathbf{r}, \mathbf{v}, t$ represents the probability of finding a particular molecule mass with a given position and velocity per unit phase space.

$$\int_{\mathbb{R}^D} \int_{\mathbb{R}^D} f(\mathbf{r}, \mathbf{v}, t) \, \mathrm{d}V \, \mathrm{d}v$$
(450)

The above integrate represents the total mass of molecules.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

If no collisions occur then the probability of finding a particular molecule mass with a given position and velocity at $(\mathbf{r}, \mathbf{v}, t)$ equals the probability at $(\mathbf{r} + d\mathbf{r}, \mathbf{v} + d\mathbf{v}, t + dt)$

$$f(\mathbf{r} + d\mathbf{r}, \mathbf{v} + d\mathbf{v}, t + dt) dV dv - f(\mathbf{r}, \mathbf{v}, t) dV dv = 0$$
(451)

If, however, collisions take place then

$$f(\mathbf{r} + d\mathbf{r}, \mathbf{v} + d\mathbf{v}, t + dt) dV dv - f(\mathbf{r}, \mathbf{v}, t) dV dv = \Omega(f) dV dv dt \quad (452)$$

where Ω is so called collision operator. It takes under consideration collisions during dt interval.

Contents

We can now expand the left hand side of the previous equation by means of Taylor's theorem

$$f(\mathbf{r} + d\mathbf{r}, \mathbf{v} + d\mathbf{v}, t + dt) \approx$$
$$f(\mathbf{r}, \mathbf{v}, t) + d\mathbf{r} \cdot \nabla f + d\mathbf{v} \cdot \nabla_v f + \frac{\partial f}{\partial t} dt \quad (453)$$

The two above equations give the Boltzmann equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m} \cdot \nabla_v f = \Omega(f)$$
 (454)

where $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$ and $m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{F}$.

Contents

Collision operator

The simplification of the complicated collision operator Ω is needed. It should, however, fulfil at least two conditions:

lacksquare conservation of collision invariants arphi

$$\int_{\mathbb{R}^D} \varphi \, \Omega \, \mathrm{d}v = 0$$

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Contents

scales

Method

Method

Method

Description of

Finite Difference

Finite Volume

Finite Element

fluid/solid at different

where collision invariants are: 1 (obvious), v and $\frac{1}{2} \|v\|^2$.

 tendency to the Maxwell–Boltzmann distribution (relaxation to local equilibrium) The BGK (Bhatnagar–Gross–Krook) approximation is the most popular simplification of the collision operator

$$\Omega = \frac{1}{\tau} \left(f^{eq} - f \right) \tag{456}$$

It expresses relaxation to local equilibrium f^{eq} with the relaxation time τ . Both conditions are fulfilled. The Boltzmann equations without external forces \mathbf{F} is now

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \frac{1}{\tau} \left(f^{eq} - f \right)$$
 (457)

Now the equation is linear! More precisely, it is a linear partial differential equation.

Description of
fluid/solid at different
scales
Finite Difference
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Mothod
Internou
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

It is the basic law of the kinetic theory of gases. The Maxwell–Boltzmann distribution is used for molecules being not far from thermodynamic equilibrium. Other effects like quantum effects and relativistic speeds are neglected. The distribution is

$$f^{eq} = \rho \left(2\pi RT\right)^{-\frac{D}{2}} e^{-\frac{\|\mathbf{v}-\mathbf{u}\|^2}{2RT}} = \rho \left(\sqrt{2\pi}c_s\right)^{-D} e^{-\frac{\|\mathbf{c}\|^2}{2c_s^2}}$$
(458)

This distribution is valid for freely moving molecules without interacting with one another. The exceptions are only elastic collisions.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

From Boltzmann eq. to conservation eqs

It is possible to derive the conservation laws from the Boltzmann equation. Firstly, from the interpretation of distribution function f it arises the definition of macroscopic density

$$\rho(\mathbf{r},t) = \int_{\mathbb{R}^D} f(\mathbf{r},\mathbf{v},t) \,\mathrm{d}v \tag{459}$$

The average value of a quantity φ is defined as

$$\langle \varphi \rangle = \frac{\int\limits_{\mathbb{R}^{D}} \varphi f \, \mathrm{d}v}{\int\limits_{\mathbb{R}^{D}} f \, \mathrm{d}v} = \frac{1}{\rho} \int\limits_{\mathbb{R}^{D}} \varphi f \, \mathrm{d}v$$
(460)

The integration is carried out over velocity space.

Contents

Multiplying the Boltzmann equation by φ and then integrating over velocity space results in

$$\int_{\mathbb{R}^{D}} \varphi \frac{\partial f}{\partial t} \, \mathrm{d}v + \int_{\mathbb{R}^{D}} \varphi \, \mathbf{v} \cdot \nabla f \, \mathrm{d}v + \int_{\mathbb{R}^{D}} \varphi \frac{\mathbf{F}}{m} \cdot \nabla_{v} f \, \mathrm{d}v = \int_{\mathbb{R}^{D}} \varphi \, \Omega(f) \, \mathrm{d}v \quad (461)$$

Taking advantage of the average definition the averaged Boltzmann equation may now be rewritten as

$$\frac{\partial}{\partial t} \left(\rho \langle \varphi \rangle \right) + \nabla \cdot \left(\rho \langle \varphi \, \mathbf{v} \rangle \right) - \rho \mathbf{f} \cdot \langle \nabla_v \varphi \rangle = 0 \qquad (462)$$

Contents

Mass conservation equation

Substituting $\varphi = 1$ into the averaged Boltzmann equation we have

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \langle \mathbf{v} \rangle \right) = 0 \tag{463}$$

Comparing the above equation with the mass conservation equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{464}$$

it becomes obvious that the macroscopic velocity ${\bf u}$ must be

$$\mathbf{u} = \langle \mathbf{v} \rangle = \frac{1}{\rho} \int_{\mathbb{R}^D} \mathbf{v} f \, \mathrm{d}v \tag{465}$$

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Momentum conservation equation

Substituting $\varphi \leftarrow \mathbf{v}$ into the averaged Boltzmann equation we have

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \langle \mathbf{v} \mathbf{v} \rangle \right) - \rho \mathbf{f} = 0$$
 (466)

Introducing the microscopic velocity $\ensuremath{\mathbf{c}}$ in the mean velocity frame

$$\mathbf{c}(\mathbf{r}, \mathbf{v}, t) = \mathbf{v} - \mathbf{u}(\mathbf{r}, t)$$
(467)

it is possible to define the stress tensor

$$\mathbf{\sigma} = -\rho \langle \mathbf{cc} \rangle = -\int_{\mathbb{R}^D} \mathbf{cc} f \, \mathrm{d}v \tag{468}$$

Now, the averaged Boltzmann equations becomes the macroscopic momentum conservation equation

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} \right) = \rho \mathbf{f} + \nabla \cdot \boldsymbol{\sigma}$$
 (469)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References
Energy conservation equation

Substituting $\varphi = \frac{1}{2} ||\mathbf{v}||^2 \equiv \frac{1}{2} \mathbf{v} \cdot \mathbf{v}$ into the averaged Boltzmann equation we have

$$e = \frac{1}{2} \langle \| \mathbf{c} \|^2 \rangle = \frac{1}{2\rho} \int_{\mathbb{R}^D} \| \mathbf{c} \|^2 f \, \mathrm{d}v \tag{470}$$

Introducing the heat vector ${\bf q}$ definition

$$\mathbf{q} = \frac{1}{2}\rho \langle \mathbf{c} \| \mathbf{c} \|^2 \rangle = \frac{1}{2} \int_{\mathbb{R}^D} \mathbf{c} \| \mathbf{c} \|^2 f \, \mathrm{d}v \qquad (471)$$

we have the macroscopic energy conservation equation

$$\frac{\partial}{\partial t} \left(\rho \left(e + \frac{1}{2} \| \mathbf{u} \|^2 \right) \right) + \nabla \cdot \left(\rho \left(e + \frac{1}{2} \| \mathbf{u} \|^2 \right) \mathbf{u} \right) = \rho \mathbf{f} \cdot \mathbf{u} + \nabla \cdot (\mathbf{\sigma} \cdot \mathbf{u} - \mathbf{q}) \quad (472)$$

	Description of
	fluid/solid at different
_	scales
	Finite Difference
	Method
-	
	Finite Volume
-	Method
	Finite Element
	Method
	Monte Carlo Method
-	
-	Lattice Boltzmann
-	Lattice Boltzmann Method
-	Lattice Boltzmann Method
-	Lattice Boltzmann Method Smoothed Particle
-	Lattice Boltzmann Method Smoothed Particle Hydrodynamics
-	Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling
-	Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling
-	Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References
-	Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Equation of state

From the definition of the stress tensor $\mathbf{\sigma} = -\rho \langle \mathbf{cc} \rangle$ and the internal energy $e = 2^{-1} \langle \mathbf{c} \cdot \mathbf{c} \rangle$ we have

$$\operatorname{tr}\langle \mathbf{cc} \rangle = 2e$$
 (473)

Additionally, by means of the stress tensor we have pressure definition $p = -D^{-1} \operatorname{tr} \sigma$. Combining these results in

$$2\rho e = pD \tag{474}$$

The above equation together with the equipartition of energy for mono-atomic gases gives the equation of state

$$p = \rho RT = \rho c_s^2 \tag{475}$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Velocity space discretisation

The velocity space \mathbf{v} is discretised into a finite set of Q velocities $\{\mathbf{v}_n\}$ where $Q = |\{\mathbf{v}_n\}|$. Discrete distributions are defined by means of the discretised velocity space

$$f_n(\mathbf{r}, t) = W_n f(\mathbf{r}, \mathbf{v}_n, t)$$
(476a)
$$f_n^{eq}(\mathbf{r}, t) = W_n f^{eq}(\mathbf{r}, \mathbf{v}_n, t)$$
(476b)

 W_n are the weights of the Gaussian quadrature rule. The density may now be approximated as

$$\int_{\mathbb{R}^D} f(\mathbf{r}, \mathbf{v}, t) \, \mathrm{d}v \approx \sum_n W_n f(\mathbf{r}, \mathbf{v}_n, t) = \sum_n f_n(\mathbf{r}, t)$$
(477)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

The discrete distribution function f_n satisfies the discrete Boltzmann equation (with BGK approximation)

$$\frac{\partial f_n}{\partial t} + \mathbf{v}_n \cdot \nabla f_n = \frac{1}{\tau} \left(f_n^{eq} - f_n \right)$$
(478)

The fluid density, velocity and internal energy are now calculated from the discrete distribution function:

Quantity	Continuous	discrete
ρ	$\int_{\mathbb{R}^D} f \mathrm{d} v$	$\sum_n f_n$
$ ho {f u}$	$\int_{\mathbb{R}^D} \mathbf{v} f \mathrm{d} v$	$\sum_n \mathbf{v}_n f_n$
ho e	$\frac{1}{2} \int_{\mathbb{R}^D} \ \mathbf{v} - \mathbf{u}\ ^2 f \mathrm{d}v$	$\frac{1}{2}\sum_n \ \mathbf{v}_n - \mathbf{u}\ ^2 f_n$

Description of
fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Quadratures

(481)

(482)

To recover correct form of the Navier–Stokes equations the discrete velocity set has to be chosen so the following quadratures hold exactly

$$\bigvee_{0 \le m \le 3} \int_{\mathbb{R}^D} f^{eq} \prod_{i=0}^m \mathbf{v} \, \mathrm{d}v = \sum_n f_n^0 \prod_{i=0}^m \mathbf{v}_n$$
(479)

The above may be reduced to

$$I = \int_{\mathbb{R}^{D}} e^{-\frac{\|\mathbf{v}\|^{2}}{2c_{s}^{2}}} \psi(v) \, \mathrm{d}v \approx \sum_{n} W_{n} e^{-\frac{\|\mathbf{v}_{n}\|^{2}}{2c_{s}^{2}}} \psi(v_{n}) \quad (480)$$

where

$$W_n = e^{\frac{\|\mathbf{v}_n\|^2}{2c_s^2}} \left(\sqrt{2\pi}c_s\right)^D w_n$$

and

$$w_n = \pi^{-\frac{D}{2}} \prod_{i=1}^{D} \omega_i$$

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

K. Tesch; Numerical Methods

Space discretisation

The space discretisation follows the velocity space discretisation. This means it is discretised into a lattices (D1Q3, D2Q9, D3Q27 discussed further). From the quadratures it arises speed of the model

$$c = \sqrt{3}c_s \tag{483}$$

The speed c is used for space discretisation in the following manner $\Delta x_i = c \Delta t$ where Δt represents time step (time space discretisation).

One may also introduce dimensionless lattice velocities

$$\mathbf{e}_n = \frac{\mathbf{v}_n}{c} \tag{484}$$

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Lattice Boltzmann equation

Introducing the substantial derivative symbol $\frac{\mathrm{d}_n}{\mathrm{d}t} = \frac{\partial}{\partial t} + \mathbf{v}_n \cdot \nabla$ makes it possible to rewrite the discretised Boltzmann equation

$$\frac{\mathrm{d}_n f_n}{\mathrm{d}t} = \frac{1}{\tau} \left(f_n^{eq} - f_n \right) \tag{485}$$

The substantial derivative is approximated by means of

$$\frac{\mathrm{d}_{n}f_{n}(\mathbf{r},t)}{\mathrm{d}t} = \frac{f_{n}(\mathbf{r} + \mathbf{v}_{n}\Delta t, t + \Delta t) - f_{n}(\mathbf{r},t)}{\Delta t} + \mathcal{O}\left(\Delta t\right)$$
(486)

From the two above one gets the Lattice Boltzmann equation

$$f_{n}(\mathbf{r} + \mathbf{v}_{n}\Delta t, t + \Delta t) - f_{n}(\mathbf{r}, t) = \frac{1}{\hat{\tau}} \left(f_{n}^{0}(\mathbf{r}, t) - f_{n}(\mathbf{r}, t) \right)$$

where dimensionless collision time is $\hat{\tau} = \frac{\tau}{\Delta t}$. (487)

K. Tesch; Numerical Methods

Contents

scales

Method

Method

Method

Method

References

Description of

Finite Difference

Finite Volume

Finite Element

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle Hydrodynamics

Turbulence modelling

fluid/solid at different

Equations

(488)

Continuous Boltzmann equation $\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \Omega(f)$

Continuous Boltzmann equation with BGK approximation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \frac{1}{\tau} \left(f^{eq} - f \right)$$
(489)

Discrete Boltzmann equation

$$\frac{\partial f_n}{\partial t} + \mathbf{v}_n \cdot \nabla f_n = \frac{1}{\tau} \left(f_n^{eq} - f_n \right)$$
(490)

Lattice Boltzmann equation

$$f_n(\mathbf{r} + \mathbf{v}_n \Delta t, t + \Delta t) - f_n(\mathbf{r}, t) = \frac{1}{\hat{\tau}} \left(f_n^0(\mathbf{r}, t) - f_n(\mathbf{r}, t) \right)$$
(491)

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Inethod
Finite Element
Method
Monte Carlo Method
Lattice Baltanaan
Lattice Boitzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

Typical lattices

D1Q3 lattice

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

$$w_n = \begin{cases} \frac{2}{3}, & n = 0;\\ \frac{1}{6}, & n \in \{1, 2\}. \end{cases}$$

D2Q9 lattice

$$w_n = \begin{cases} \frac{4}{9}, & n = 0; \\ \frac{1}{9}, & n \in \{1, \dots, 4\}; \\ \frac{1}{36}, & n \in \{5, \dots, 8\}. \end{cases}$$

fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

D3Q27 lattice

$$w_n = \begin{cases} \frac{8}{27}, & n = 0; \\ \frac{2}{27}, & n \in \{1, \dots, 6\}; \\ \frac{1}{54}, & n \in \{15, \dots, 26\}; \\ \frac{1}{216}, & n \in \{7, \dots, 14\}; \end{cases}$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

D3Q19 lattice

$$w_n = \begin{cases} \frac{1}{3}, & n = 0; \\ \frac{2}{18}, & n \in \{1, \dots, 6\}; \\ \frac{1}{36}, & n \in \{7, \dots, 18\}; \end{cases}$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

D3Q15 lattice

$$w_n = \begin{cases} \frac{2}{9}, & n = 0; \\ \frac{1}{9}, & n \in \{1, \dots, 6\}; \\ \frac{1}{72}, & n \in \{7, \dots, 14\}; \end{cases}$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Expansion of the Maxwell–Boltzmann distribution

The Maxwell–Boltzmann distribution can be rearranged

$$f^{eq} = \rho \left(\sqrt{2\pi}c_s\right)^{-D} e^{-\frac{\|\mathbf{v}\|^2}{2c_s^2}} e^{-\left(\frac{\|\mathbf{u}\|^2}{2c_s^2} - \frac{\mathbf{v}\cdot\mathbf{u}}{c_s^2}\right)}$$
(492)

Now f^{eq} can be expanded into a Taylor series in terms of the fluid velocity

$$f^{0} = \rho \left(\sqrt{2\pi}c_{s}\right)^{-D} e^{-\frac{\|\mathbf{v}\|^{2}}{2c_{s}^{2}}} \left(1 + \frac{\mathbf{v}\cdot\mathbf{u}}{c_{s}^{2}} + \frac{\left(\mathbf{v}\cdot\mathbf{u}\right)^{2}}{2c_{s}^{4}} - \frac{\|\mathbf{u}\|^{2}}{2c_{s}^{2}}\right)$$
(493)

This is valid for low Mach numbers

$$f^{eq} = f^0 + \mathcal{O}\left(\frac{\|\mathbf{u}\|^3}{c_s^3}\right) = f^0 + \mathcal{O}\left(\mathrm{Ma}^3\right) \qquad (494)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Discrete Maxwell–Boltzmann distribution

The discrete equilibrium distribution is defined by means of the discretised velocity space

$$f_n^0(\mathbf{r},t) = W_n f^0(\mathbf{r},\mathbf{v}_n,t)$$
(495)

where weights are

$$W_n = e^{\frac{\|\mathbf{v}_n\|^2}{2c_s^2}} \left(\sqrt{2\pi}c_s\right)^D w_n \tag{496}$$

Together with the Taylor expansion for low Mach numbers we have

$$f_n^0 = w_n \rho \left(1 + \frac{\mathbf{v}_n \cdot \mathbf{u}}{c_s^2} + \frac{\left(\mathbf{v}_n \cdot \mathbf{u}\right)^2}{2c_s^4} - \frac{\|\mathbf{u}\|^2}{2c_s^2} \right)$$
(497)

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Valume
Mothod
Internod
Finite Element
Method
Marsta Carla Mathad
Ivionte Carlo Ivietnod
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Trydrodynamics
Turbulence modelling
Poforoncoc
Neierences

Streaming and collision

The Lattice Boltzmann equation

$$f_n(\mathbf{r} + \mathbf{v}_n \Delta t, t + \Delta t) = f_n(\mathbf{r}, t) + \frac{1}{\hat{\tau}} \left(f_n^0(\mathbf{r}, t) - f_n(\mathbf{r}, t) \right)$$
(498)

The collision step

$$f_n^t(\mathbf{r}, t + \Delta t) = f_n(\mathbf{r}, t) + \frac{1}{\hat{\tau}} \left(f_n^0(\mathbf{r}, t) - f_n(\mathbf{r}, t) \right)$$
(499)

The streaming step

$$f_n(\mathbf{r} + \mathbf{v}_n \Delta t, t + \Delta t) = f_n^t(\mathbf{r}, t + \Delta t)$$
 (500)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Streaming

fluid/solid at different

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle

Turbulence modelling

Streaming

fluid/solid at different

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle

Turbulence modelling

Streaming

fluid/solid at different

Monte Carlo Method

Lattice Boltzmann

Smoothed Particle

Turbulence modelling

LBM pseudocode

k := 0;Contents repeat Description of fluid/solid at different R := 0;scales $\rho := \sum_n f_n;$ **Finite Difference** Method $\mathbf{u} := \frac{1}{a} \sum_{n} \mathbf{v}_n f_n;$ Finite Volume Method Calculate residue; Finite Element Method $f_n^0 := w_n \rho \left(1 + \frac{\mathbf{v}_n \cdot \mathbf{u}}{c_s^2} + \frac{(\mathbf{v}_n \cdot \mathbf{u})^2}{2c_s^4} - \frac{\|\mathbf{u}\|^2}{2c_s^2} \right);$ Monte Carlo Method Lattice Boltzmann $f_n^t(\mathbf{r}, t + \Delta t) := f_n(\mathbf{r}, t) + \frac{1}{\hat{\tau}} (f_n^0(\mathbf{r}, t) - f_n(\mathbf{r}, t));$ Method Smoothed Particle Apply Bounceback; Hydrodynamics $f_n(\mathbf{r} + \mathbf{v}_n \Delta t, t + \Delta t) := f_n^t(\mathbf{r}, t + \Delta t);$ Turbulence modelling Apply other BCs; References k := k + 1;until $k < k_{max}$ and $R > R_{min}$;

Boundary conditions

Chapman–Enskog expansion

The Navier–Stokes equations can be recovered from the Lattice Boltzmann equation

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$$
 (502)

through the Chapman–Enskog expansion (multi-scale analysis). The expansion of the discrete Maxwell–Boltzmann distribution is used

$$f_n^0 = w_n \rho \left(1 + \frac{\mathbf{v}_n \cdot \mathbf{u}}{c_s^2} + \frac{\left(\mathbf{v}_n \cdot \mathbf{u}\right)^2}{2c_s^4} - \frac{\|\mathbf{u}\|^2}{2c_s^2} \right)$$
(503)

The first RHS term is responsible for ∇p , the second for $\nabla^2 \mathbf{u}$, the last two terms are related to $\rho \mathbf{u} \mathbf{u}$.

De	escription of
flu	iid/solid at different
SC	ales
Fi	nite Difference
M	ethod
Fi	nite Volume
Μ	ethod
Fi	nite Element
M	ethod
Ν.4	anta Caula Mathad
	onte Carlo Ivietnod
La	ttice Boltzmann
Μ	ethod
Sr	noothed Particle
H	/drodynamics
<u> </u>	Irbulence modelling
Re	eferences

(504)

Knowing the structure of the discrete Maxwell–Boltzmann distribution we can now drop the nonlinear terms

$$f_n^0 = w_n \rho \left(1 + \frac{\mathbf{v}_n \cdot \mathbf{u}}{c_s^2} \right)$$

to recover Stokes equations

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$$
 (505)

For both cases the dynamic viscosity is defined as

$$\mu = \rho \left(\hat{\tau} - \frac{1}{2} \right) c_s^2 \Delta t \tag{506}$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Smoothed Particle Hydrodynamics

Properties

- the flow domain is divided into a set of particles,
- the particles are assigned a mass and velocity,
- Lagrangian description of motion is utilised,
- properties of a particle are calculated as summations over all the neighbouring particles (smoothed as an average),
- SPH can be classified as meshfree method,
- takes advantage of the integral representation and approximation of a function.

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

The basis of SPH method is the integral representation of a function f where δ is the Dirac delta

$$f(\mathbf{x}) = \iiint_{\Omega} f(\mathbf{x}') \,\delta(\mathbf{x} - \mathbf{x}') \,\mathrm{d}V'$$
(507)

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

Smoothing kernel

If the Dirac delta is replaced in the integral (exact) representation of a function

$$f(\mathbf{x}) = \iiint_{\Omega} f(\mathbf{x}') \,\delta(\mathbf{x} - \mathbf{x}') \,\mathrm{d}V' \tag{508}$$

by a smoothing function (smoothing kernel) W, the following approximation of a function is obtained

$$f(\mathbf{x}) \approx \iiint_{\Omega} f(\mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) \, \mathrm{d}V'$$
 (509)

where h is the smoothing length.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Smoothing kernel – properties

normalisation condition

$$\iiint_{\Omega} W(\mathbf{x} - \mathbf{x}', h) \, \mathrm{d}V' = 1 \tag{510}$$

approaching to Dirac delta property

$$\lim_{h \to 0} W(\mathbf{x} - \mathbf{x}', h) = \delta(\mathbf{x} - \mathbf{x}')$$
 (511)

symmetry condition – symmetric property

$$W(\mathbf{x} - \mathbf{x}', h) = W(\mathbf{x}' - \mathbf{x}, h)$$
(512)

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Smoothing kernel – properties

compact support condition

$$\forall_{\|\mathbf{x}-\mathbf{x}'\|>kh}W(\mathbf{x}-\mathbf{x}',h)=0$$
(513)

positivity

$$W(\mathbf{x} - \mathbf{x}', h) \ge 0 \tag{514}$$

- monotonically decreasing W as h increase decay property,
- smoothness (continues and differentiable W) up to the second order at least.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Smoothing kernel

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Smoothing kernel

There are many forms of W. To simplify the notation, the following substitutions are adopted

$$W(\mathbf{x} - \mathbf{x}', h) = W\left(\frac{\|\mathbf{x} - \mathbf{x}'\|}{h}\right) = W(r) = \frac{w(r)}{h^D}$$
(515)

where r is the relative distance (related to the smoothing length h). Therefore, the kernel W decomposes into the kernel w relative to h^D . Thus, w has the same properties as W, but is dimensionless and simpler to analyse and write.

Finite Difference Method Finite Volume Method Finite Element
Finite Volume Method Finite Element
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Gaussian kernel

The Gaussian smoothing kernel is given by

$$w(r) = \sigma e^{-r^2}, \quad r \in [0; \infty[$$
 (516)

The value of the normalization coefficient σ , depending on the dimension of the space D, is

$$\sigma = \pi^{-D/2} \tag{517}$$

The Gaussian kernel fulfils the conditions of normalisation, symmetry, positivity and decay property. What is more, the Gaussian kernel is also smooth (continuous with derivatives). The compactness condition is not met. Approaches to the Dirac delta as $h \rightarrow 0$.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Gaussian kernel

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Super Gaussian kernel

$$w(r) = \left(\frac{D}{2} + 1 - r^2\right)\sigma e^{-r^2}, \quad r \in [0; \infty[$$
 (518)

where

$$\sigma = \pi^{-D/2} \tag{519}$$

Similar to original Gaussian kernel but lacks positivity!

Description of
fluid/solid at different
scales
Finite Difference
Method
Method
Finite Volume
Method
Finite Element
Mothod
Inethod
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics

Iurbulence modelling
References

Quadratic kernel

$$w(r) = \sigma \begin{cases} (2-r)^2, & r \in [0; 2[, \\ 0, & r \in [2; \infty[\end{cases}$$
(520)

where
$$\sigma = \frac{3}{16}$$
 for $D = 1$, $\sigma = \frac{3}{8\pi}$ for $D = 2$, $\sigma = \frac{15}{64\pi}$ for $D = 3$.

However, w is continues but w^\prime is only piecewise linear and $w^{\prime\prime}$ is discontinues!

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References
Quadratic kernel

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Cubic kernel

$$w(r) = \sigma \begin{cases} \frac{1}{4}(2-r)^3 - (1-r)^3, & r \in [0;1[,\\ \frac{1}{4}(2-r)^3, & r \in [1;2[,\\ 0, & r \in [2;\infty[\end{cases}) \end{cases}$$
(521)

where
$$\sigma = \frac{2}{3}$$
 for $D = 1$, $\sigma = \frac{10}{7\pi}$ for $D = 2$, $\sigma = \frac{1}{\pi}$ for $D = 3$.

However, w, w' are continues but w'' is only piecewise linear.

_	Description of fluid/solid at different scales
_	Finite Difference Method
_	Finite Volume Method
_	Finite Element Method
-	Monte Carlo Method
_	Lattice Boltzmann Method
_	Smoothed Particle Hydrodynamics
-	Turbulence modelling
-	References

Quadratic kernel

$$w(r) = \sigma \begin{cases} \left(\frac{5}{2} - r\right)^4 - 5\left(\frac{3}{2} - r\right)^4 + 10\left(\frac{1}{2} - r\right)^4, & r \in [0; \frac{1}{2}[, \\ \left(\frac{5}{2} - r\right)^4 - 5\left(\frac{3}{2} - r\right)^4, & r \in [\frac{1}{2}; \frac{3}{2}[, \\ \left(\frac{5}{2} - r\right)^4, & r \in [\frac{3}{2}; \frac{5}{2}[, \\ 0 & r \in [\frac{5}{2}; \infty[\\ (522) \\ \end{bmatrix} \\ \text{where } \sigma = \frac{1}{24} \text{ for } D = 1, \sigma = \frac{96}{1199\pi} \text{ for } D = 2, \sigma = \frac{1}{20\pi} \\ \text{for } D = 3. \\ \text{This time } w, w' \text{ and } w'' \text{ are continuous.} \end{cases}$$

Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method **Smoothed Particle** Hydrodynamics Turbulence modelling References

Approximation of a function

The approximation of a function comes directly from the integral representation of the function

$$f(\mathbf{x}) \approx \iiint_{\Omega} f(\mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) \,\mathrm{d}V'$$
(523)

when discretising the integral by means of a finite sum

$$f(\mathbf{x}) \approx \sum_{j} f(\mathbf{x}_{j}) W(\mathbf{x} - \mathbf{x}_{j}, h) \Delta |V_{j}|$$
 (524)

Elementary volume is $\Delta |V_j| = \frac{m_j}{\rho_j}$ so

$$f(\mathbf{x}) \approx \sum_{j} \frac{m_j}{\rho_j} f(\mathbf{x}_j) W(\mathbf{x} - \mathbf{x}_j, h)$$
(525)

Contents

Description of fluid/solid at different scales	nt
Finite Difference Method	
Finite Volume Method	
Finite Element Method	
Monte Carlo Method	<u>+</u>
Lattice Boltzmann Method	
Smoothed Particle Hydrodynamics	
Turbulence modellin	g_
References	

K. Tesch; Numerical Methods

Approximation of a function

The function $f(\mathbf{x}_j)$ is related to the particles j inside the smoothing kernel of the W approximation. Thus, the approximation

$$f(\mathbf{x}) \approx \sum_{j} \frac{m_j}{\rho_j} f(\mathbf{x}_j) W(\mathbf{x} - \mathbf{x}_j, h)$$
 (526)

is a discrete approximation of the continuous function fat any point \mathbf{x} that belongs to the area Ω . If the value of the function f is to be calculated at the point \mathbf{x}_i , then

$$f(\mathbf{x}_{i}) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(\mathbf{x}_{j}) W(\mathbf{x}_{i} - \mathbf{x}_{j}, h) = \sum_{j} \frac{m_{j}}{\rho_{j}} f(\mathbf{x}_{j}) W_{ij}$$
where W_{ij} means $W(\mathbf{x}_{i} - \mathbf{x}_{j}, h)$.
(527)

Description of
fluid/solid at different
scales
scales
Finite Difference
M II I
Iviethod
Einita Valuma
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Method
Smoothed Particle
Hydrodynamics
Tryurouynamics
.
Turbulence modelling
References

Approximation of a gradient

The gradient of the function f relative to the \mathbf{x} coordinates is obtained from the integral representation of the function

$$\nabla f(\mathbf{x}) \approx \iiint_{\Omega} f(\mathbf{x}') \nabla W(\mathbf{x} - \mathbf{x}', h) \,\mathrm{d}V'$$
 (528)

By discretising the integral, we have a gradient at \mathbf{x}_i

$$\nabla f(\mathbf{x}_i) \approx \sum_j \frac{m_j}{\rho_j} f(\mathbf{x}_j) \,\nabla_i W_{ij} \tag{529}$$

Spatial differentiation is performed on the known form of the smoothing kernel W.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Better approximation of a gradient

$$\nabla f(\mathbf{x}_i) \approx \sum_j \frac{m_j}{\rho_j} \left(f(\mathbf{x}_j) - f(\mathbf{x}_i) \right) \nabla_i W_{ij}$$
 (530)

gives exact 0 for constant f.

$$\nabla f(\mathbf{x}_i) \approx \rho_i \sum_j m_j \left(\frac{f(\mathbf{x}_i)}{\rho_i^2} + \frac{f(\mathbf{x}_j)}{\rho_j^2} \right) \nabla_i W_{ij} \quad (531)$$

is symmetric for i and j.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Valume
Finite Volume
Method
Finite Element
Method
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
-
Iurbulence modelling
Keterences

Approximation of a divergence

The divergence approximation of the vector f is similar to the gradient approximation. This is because the divergence operator is computed relative to the xcoordinates

$$\nabla \cdot \mathbf{f}(\mathbf{x}) \approx \iiint_{\Omega} \mathbf{f}(\mathbf{x}') \cdot \nabla W(\mathbf{x} - \mathbf{x}', h) \, \mathrm{d}V' \qquad (532)$$

The simplest approximation of divergence is obtained by discretising the above integral

$$\nabla \cdot \mathbf{f}(\mathbf{x}_i) \approx \sum_j \frac{m_j}{\rho_j} \mathbf{f}(\mathbf{x}_j) \cdot \nabla_i W_{ij}$$
(533)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Better approximation of a divergence

$$\nabla \cdot \mathbf{f}(\mathbf{x}_i) \approx \sum_j \frac{m_j}{\rho_j} \left(\mathbf{f}(\mathbf{x}_j) - \mathbf{f}(\mathbf{x}_i) \right) \cdot \nabla_i W_{ij}$$
 (534)

gives exact 0 for constant f.

$$\nabla \cdot \mathbf{f}(\mathbf{x}_i) \approx \rho_i \sum_j m_j \left(\frac{\mathbf{f}(\mathbf{x}_i)}{\rho_i^2} + \frac{\mathbf{f}(\mathbf{x}_j)}{\rho_j^2} \right) \cdot \nabla_i W_{ij} \quad (535)$$

is symmetric for i and j.

Description of
fluid/solid at different
scales
Finite Difference
Method
Method
Finite Volume
Mothod
Method
Finite Flement
Mothod
Method
Manta Carla Mathead
Ivionte Carlo Ivietnod
Lattice Boltzmann
Iviethod
Smoothed Particle
Hydrodynamics
Iurbulence modelling
References

Approximation of a Laplacian

The Laplacian approximation of a scalar can be represented by the same method as in the case of the gradient

$$\nabla^2 f(\mathbf{x}) \approx \iiint_{\Omega} f(\mathbf{x}') \,\nabla^2 W(\mathbf{x} - \mathbf{x}', h) \,\mathrm{d}V' \qquad (536)$$

The simplest approximation of the Laplacian is obtained by discretizing the above integral

$$\nabla^2 f(\mathbf{x}_i) \approx \sum_j \frac{m_j}{\rho_j} f(\mathbf{x}_j) \,\nabla_i^2 W_{ij} \tag{537}$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Better approximation of a Laplacian

$$\nu \nabla^2 \mathbf{u}_i = \frac{\mu}{\rho} \nabla \cdot \nabla \mathbf{u}_i \approx \mu \sum_j \frac{m_j}{\rho_i \rho_j} \mathbf{u}_j \nabla_i^2 W_{ij}$$
(538)

$$\nu \nabla^2 \mathbf{u}_i = \frac{\mu}{\rho} \nabla \cdot \nabla \mathbf{u}_i \approx -\mu \sum_j \frac{m_j}{\rho_i \rho_j} \left(\mathbf{u}_i - \mathbf{u}_j \right) \nabla_i^2 W_{ij}$$
(539)

$$\nabla \cdot (\nu_i \nabla \mathbf{u}_i) = \frac{1}{\rho} \nabla \cdot (\mu_i \nabla \mathbf{u}_i)$$
$$\approx \sum_j \frac{(\mu_i + \mu_j) m_j \mathbf{u}_{ij}}{\rho_i \rho_j} \frac{\mathbf{x}_{ij} \cdot \nabla_i W_{ij}}{r_{ij}^2 + 0.01h^2} \quad (540)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mass conservation equation in SPH

The mass conservation equation

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho\nabla\cdot\mathbf{u}$$

is approximated using the velocity divergence approximation

$$\frac{\mathrm{d}\rho_i}{\mathrm{d}t} = -\rho_i \sum_j \frac{m_j}{\rho_j} \mathbf{u}_j \cdot \nabla_i W_{ij}$$
(542)

In most cases, a function approximation is used, assuming $f=\rho.$ Therefore

$$\rho_i = \sum_j m_j W_{ij} \tag{543}$$

Contents

(541)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

The momentum conservation equation in its most general form, taking into account the mass forces from gravity g, is written as

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{g} + \frac{1}{\rho}\nabla\cdot\boldsymbol{\sigma}$$
 (544)

The approximation of this equation in the SPH method can be obtained by means of the divergence approximation

$$\frac{\mathrm{d}\mathbf{u}_i}{\mathrm{d}t} = \mathbf{g}_i + \frac{1}{\rho_i} \sum_j \frac{m_j}{\rho_j} \mathbf{\sigma}_j \cdot \nabla_i W_{ij}$$
(545)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

In the approximation of the Navier–Stokes equation in the SPH method, particular types of forces are distinguished: forces from the pressure gradient \mathbf{f}_{pi} and forces related to viscosity $\mathbf{f}_{\mu i}$. The equation of motion then has the following form

$$\frac{\mathrm{d}\mathbf{u}_i}{\mathrm{d}t} = \mathbf{g}_i - \mathbf{f}_{pi} + \mathbf{f}_{\mu i}$$
(546)

Assuming the following notation for each type of force together with the gravity acceleration g in the form $\mathbf{f}_i = \mathbf{g}_i - \mathbf{f}_{pi} + \mathbf{f}_{\mu i}$, the equation of motion can be presented in a form that occurs in other Lagrangian methods

$$\frac{\mathrm{d}\mathbf{u}_i}{\mathrm{d}t} = \mathbf{f}$$

(547)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

The determination of pressure in the SPH method involves the use of an artificial equation of state in which pressure is explicitly related to density. One possible form for such an equation could be

$$p = p_0 + B\left(\left(\frac{\rho}{\rho_0}\right)^{\gamma} - 1\right)$$
 (548)

In this case, it is referred to as a weakly compressible fluid. The γ exponent is usually taken as $\gamma \approx 7$, and ρ_0 is the reference fluid density. Often, due to simplicity, $p_0 = 0$ is assumed.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

SPH pseudocode

$t \sim 0$	Contents
foreach <i>i</i> do Generate $\mathbf{x}_i(0)$, $\mathbf{u}_i(0)$, $\rho_i(0)$, $h_i(0)$;	Description of fluid/solid at different scales
foreach <i>i</i> do	Finite Difference Method
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Finite Volume Method
foreach <i>i</i> do	Finite Element Method
Calculate ρ_i , p_i ;	Monte Carlo Method
foreach i do	Lattice Boltzmann Method
$\begin{bmatrix} Calculate \mathbf{f}_{pi}, \mathbf{f}_{\mu i}; \\ \mathbf{f}_{areach}, \mathbf{i}_{da} \end{bmatrix}$	Smoothed Particle Hydrodynamics
Calculate new \mathbf{x}_i , \mathbf{u}_i ;	Turbulence modelling
Apply BCs;	References
$t := t + \Delta t;$	
until $t < t_{max}$;	

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Turbulence modelling

Turbulence features

- Irregularity
- Unsteadiness
- 3-D in terms of space and vortex structures
- Diffusivity
- Dissipation
- Energy cascade
- Need for constant energy supply

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Kolmogorov scales

Kolmogorov scales are the smallest vorticity scales where nearly the whole dissipation takes place. There are three scales, for velocity $\mathcal{U}_K = (\nu \varepsilon)^{1/4}$, length $\mathcal{L}_K = (\nu^3 \varepsilon^{-1})^{1/4}$ and time $t_K = (\nu \varepsilon^{-1})^{1/2}$. The Reynolds number for these scales

 $\operatorname{Re}_{K} = \frac{\mathcal{U}_{K}\mathcal{L}_{K}}{\nu} = \frac{(\nu\varepsilon)^{1/4} \left(\nu^{3}\varepsilon^{-1}\right)^{1/4}}{\nu} = 1 \qquad (549)$

It means that at this level the inertial forces are of the same order as the viscous forces.

The dissipation intensity of the kinetic energy of fluctuation can also be estimated in terms of a length scale for large scale motion (vorticity) as

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Kolmogorov scales

$$\varepsilon \sim \frac{\mathcal{U}^2}{t} = \frac{\mathcal{U}^2}{\mathcal{L}/\mathcal{U}} = \frac{\mathcal{U}^3}{\mathcal{L}}$$
 (550)

It means that the energy \mathcal{U}^2 of the large scales is dissipated proportionally to time \mathcal{L}/\mathcal{U} . Substituting the dissipation in equation for \mathcal{L}_K with that for ε we have

$$\mathcal{L}_K = \left(\frac{\nu^3 \mathcal{L}}{\mathcal{U}^3}\right)^{1/4} \tag{551}$$

Introducing a Reynolds number for large scales $\operatorname{Re}_{\mathcal{L}} = \frac{\mathcal{UL}}{\nu}$ it is possible to find a relation for the ratio of length scales by means of this Reynolds number in the form of

$$\frac{\mathcal{L}}{\mathcal{L}_K} \sim \left(\frac{\mathcal{U}^3}{\nu^3 \mathcal{L}}\right)^{1/4} \mathcal{L} = \left(\frac{\mathcal{U}\mathcal{L}}{\nu}\right)^{3/4} = \operatorname{Re}_{\mathcal{L}}^{3/4} \qquad (552)$$

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Mesh size

The ratio of length scales, as a function of the Reynolds number is

$$rac{\mathcal{L}}{\mathcal{L}_K} \sim \operatorname{Re}_{\mathcal{L}}^{3/4}$$
 (553)

A three dimensional mesh (number of nodes) is then proportional to

$$\left(\frac{\mathcal{L}}{\mathcal{L}_K}\right)^3 \sim \operatorname{Re}_{\mathcal{L}}^{9/4}$$
 (554)

If, for instance, $Re = 10^4$ then

$$\left(\frac{\mathcal{L}}{\mathcal{L}_K}\right)^3 \sim 10^9 \tag{555}$$

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Calculation time

A minimal number of time steps $\Delta t \leq \mathcal{L}_K / \mathcal{U}$ of a simulation time t can be estimated by means of \mathcal{L}_K

$$\frac{t}{\Delta t} = \frac{t}{\mathcal{L}_K / \mathcal{U}} = \frac{t}{\mathcal{L} / \mathcal{U}} \operatorname{Re}^{3/4}$$
(556)

The necessary number of operations equals a number of nodes times a number of time steps

$$\left(\frac{\mathcal{L}}{\mathcal{L}_K}\right)^3 \frac{t}{\Delta t} = \frac{t}{\mathcal{L}/\mathcal{U}} \operatorname{Re}^3$$
(557)

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Calculation time

The computation time equals a number of necessary operations times a number of evaluations per operation (e.g. 10^3) over a CPU performance expressed in e.g. TFLOPS = 10^{12} s^{-1}

$$\frac{10^3}{10^{12}} \left(\frac{\mathcal{L}}{\mathcal{L}_K}\right)^3 \frac{t}{\Delta t} = \frac{10^3}{10^{12}} \frac{t}{\mathcal{L}/\mathcal{U}} \operatorname{Re}^3 \quad s \tag{558}$$

For instance, if the time of a numerical simulation is $t = 10 \mathcal{L}/\mathcal{U}$ then the following CPU time is estimated

$$\frac{10^3}{10^{12}} \left(\frac{\mathcal{L}}{\mathcal{L}_K}\right)^3 \frac{t}{\Delta t} = \frac{10^4 \,\mathrm{Re}^3}{10^{12}} \,\mathrm{s} \,(559)$$

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Calculation time

(560)

(561)

Estimated 1 teraFLOPS CPU time is

$$\frac{10^3}{10^{12}} \left(\frac{\mathcal{L}}{\mathcal{L}_K}\right)^3 \frac{t}{\Delta t} = \frac{10^4 \,\mathrm{Re}^3}{10^{12}} \quad \mathsf{s}$$

for $\text{Re} = 10^3$ it takes 10 second, for $\text{Re} = 10^4$ it takes 3 hours, for $\text{Re} = 10^5$ it takes 115 days, for $\text{Re} = 10^6$ it takes 327 years...

only for a short period of simulated time

 $t = 10 \mathcal{L} / \mathcal{U}$

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
Deferences
References

Performance

CPU	0	TFLOPS [†]	Contents Description of
i3 M380	2.53 GHz × 2(4)	0.017	fluid/solid at different scales
i7 930	2.80 GHz \times 4(8)	0.034	Finite Difference Method
i7 870	2.93 GHz \times 4(8)	0.041	Finite Volume
i7 2670QM	2.20 GHz \times 4(8)	0.064	Method Finite Element
i5 1035G1	$1.00 \text{ GHz} \times 4(8)$	0.132	Method
i7 10700T	2.00 GHz \times 8(16)	0.257	Monte Carlo Method
i7 6850K	$3.60 \text{ GHz} \times 6(12)$	0.284	Lattice Boltzmann Method
2 x Xeon Gold 5120	2.20 GHz x 28	0.673	Smoothed Particle

[†]Intel[®] LINPACK Benchmark for Linux

Turbulence modelling

References

Some classical experiments

Reynolds experiment (Reynolds number Re)

$$\operatorname{Re} = \frac{uL}{\nu}$$

Taylor instability or vortices (Taylor number Ta)

$$Ta = \frac{\omega R_1}{\nu^2} \left(R_2 - R_1 \right)^3$$
 (563)

Rayleigh-Bénard instability (Rayleigh number Ra)

$$Ra = \frac{g\beta h^3}{\nu\alpha} \left(T_b - T_u\right) \tag{564}$$

Contents

(562)

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Einita Element
Method
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
<u>- Hydrodynamics</u>
Turbulence modelling
Defense
Keterences

Turbulence glossary

- DNS Direct Numerical Simulation
- LES Large Eddy Simulation
- RANS Reynolds Averaged Navier–Stokes
- RAS Reynolds Averaged Simulation
- URANS Unsteady Reynolds Averaged Navier–Stokes
- URAS Unsteady Reynolds Averaged Simulation
- DES Detached Eddy Simulation
- SST Shear Stress Transport
- RNG ReNormalisation Group
- EARSM Explicit Algebraic Reynolds Stress Models
- RST Reynolds Stress Transport

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Turbulence modelling

- DNS
- LES
- DES
- URAS/RAS
 - Models based on the Boussinesq hypothesis (0-eq, 1-eq, 2-eq models)
 - Models which do not take advantage of the Boussinesq hypothesis
 - RST models
 - EARSM

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

Decompositions and averages

Decomposition

$$f(\mathbf{r},t) = \bar{f}(\mathbf{r}) + f'(\mathbf{r},t)$$

Contents

(565)

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Comments

In practice it is usually enough to know what the average velocity is (not the fluctuation). The velocity vector field is be decomposed into average and fluctuation components $\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$. The time of averaging Δt should be chosen to be greater than the fluctuation range and smaller than the function that is going to be averaged. The averaging process of the Navier–Stokes equation introduces a number of new unknown functions.

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

References

RAS

(566)

Averaged mass conservation equation

$$\nabla \cdot \bar{\mathbf{u}} = 0$$

Averaged Navier–Stokes equation

$$\frac{\partial \bar{\mathbf{u}}}{\partial t} + \nabla \cdot (\bar{\mathbf{u}}\bar{\mathbf{u}}) = \bar{\mathbf{f}} - \nabla \bar{p}_k + \nu \nabla^2 \bar{\mathbf{u}} - \nabla \cdot \overline{\mathbf{u'u'}}$$
(567)

Reynolds stress tensor $\mathbf{R} = -\overline{\mathbf{u}'\mathbf{u}'}$ and the total stress tensor $\overline{\mathbf{\sigma}} = -\overline{p}\mathbf{\delta} + 2\mu\overline{\mathbf{D}} + \rho\mathbf{R}$ makes it possible to obtain the averaged momentum equation

$$\rho \frac{\mathrm{d}\bar{\mathbf{u}}}{\mathrm{d}t} = \rho \bar{\mathbf{f}} + \nabla \cdot \bar{\boldsymbol{\sigma}}$$
(568)

Contents

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References

RAS

Averaged Fourier–Kirchhoff equation

$$c_{v} \left(\frac{\partial (\rho \bar{T})}{\partial t} + \nabla \cdot (\rho \bar{T} \bar{\mathbf{u}}) \right) = 2\mu \bar{\mathbf{D}}^{2} + \nabla \cdot (\lambda \nabla \bar{T}) - c_{v} \nabla \cdot (\rho \overline{T' \mathbf{u}'}) + \rho \varepsilon \quad (569)$$

The averaging process of the Navier–Stokes equation introduces six unknown (because of the symmetry) components of the Reynolds stress tensor. The averaged Fourier–Kirchhoff equations gives a further three of the vector $\overline{T'\mathbf{u'}}$.

```
Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
References
```

Comments

It is important to realise that the closure of system of the mass conservation and Navier–Stokes equations has been lost. Further modelling is required. Formulating additional relationships for unknown functions to achieve closure of equations is called turbulence modelling. Any additional closure equation must fulfil a few basic criteria such as coordinate invariance. This is fulfilled by proper tensor formulation of the exact and modelled equations. Another criterion is called realisability meaning that a solution must be physical.

Practically, however, it is difficult to achieve all these requirements. This is because some parts of the exact transport equations are modelled or even dropped.

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle **Hydrodynamics** Turbulence modelling References

Closure

There are two main approaches to achieve closure. The models may be divided between those which assume the eddy viscosity hypothesis and those which do not

- Models not assuming the eddy viscosity hypothesis
 - Reynolds stress transport equation
 - Algebraic stress tensor models
- Boussinesq hypothesis assumed

Contents

Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Reynolds stress transport equation

$$\frac{\partial \mathbf{R}}{\partial t} + \nabla \cdot (\bar{\mathbf{u}}\mathbf{R}) = -\nabla \bar{\mathbf{u}} \cdot (\mathbf{R}^{\mathrm{T}} + \mathbf{R}) + \nabla \cdot \left(\left(Ck^{2}\varepsilon^{-1} + \nu \right) \nabla \mathbf{R} \right) - \mathbf{\Pi} + \frac{2}{3}\varepsilon \delta \quad (570)$$

The left hand side represents unsteadiness and convection. On the right hand side the two first terms represent production. The two terms under divergence are responsible for diffusion.

The right hand side fourth term is the second unknown tensor Π need to be modelled. The last right hand side term $\frac{2}{3}\rho\varepsilon\delta$ is the so called dissipation tensor for isotropic turbulence.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Without using the eddy viscosity hypothesis two transport equations for k and a second variable are formulated. Instead of the linear Boussinesq hypothesis – algebraic, non-linear relationships are formulated between the stress anisotropy tensor a and the average flow properties. The tensor a is related to the Reynolds stress tensor by:

$$\mathbf{a} = \frac{\mathbf{R}}{k} - \frac{2}{3}\boldsymbol{\delta} \tag{571}$$

Typically, relationships depend on average strain rate and spin tensors

$$\mathbf{a} = f(\bar{\mathbf{D}}, \bar{\mathbf{\Omega}}) \tag{572}$$

Description of
fluid/solid at different
scales
Scales
Finite Difference
Matha al
Iviethod
Finita Valuma
Finite volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Method
- Meenou
Smoothed Particle
Hydrodynamics
Tryurouynamics
-
Turbulence modelling
References
Boussinesq hypothesis

The turbulence stresses is related to the mean flow $R_{xy} = \mu_t \frac{\partial \bar{U}_x}{\partial y}$. This linear relationship is

$$\mathbf{R} = a_0 \mathbf{\delta} + 2\nu_t \bar{\mathbf{D}} \tag{573}$$

The trace of this relations allows to find a constant $-2k = 3a_0$ which gives

$$\mathbf{R} = -\frac{2}{3}k\boldsymbol{\delta} + 2\nu_t \bar{\mathbf{D}} \tag{574}$$

The Reynolds equation becomes

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\bar{\mathbf{u}}\bar{\mathbf{u}}) = \bar{\mathbf{f}} - \nabla p_e + \nabla \cdot (2\nu_e \bar{\mathbf{D}})$$
(575)

where $\nu_{e} = \nu_{t} + \nu$, $p_{e} = \bar{p}_{k} + \frac{2}{3}k$.

K. Tesch; Numerical Methods

Contents

The eddy diffusivity hypothesis is introduced by direct analogy with the eddy viscosity hypothesis. It reduces the number of unknown functions in the Fourier–Kirchhoff equation $-c_v \rho \overline{T' \mathbf{u'}} = \lambda_t \nabla \overline{T}$. The Fourier–Kirchhoff equation then becomes

$$c_v \left(\frac{\partial (\rho \bar{T})}{\partial t} + \nabla \cdot \left(\rho \bar{T} \bar{\mathbf{u}} \right) \right) = 2\mu \bar{\mathbf{D}}^2 + \nabla \cdot \left(\lambda_e \nabla \bar{T} \right) + \rho \varepsilon$$
(576)

where λ_t can be estimated by means of the turbulent Prandtl number $\lambda_t = \frac{\mu_t c_v}{\Pr_t}$. Effective conductivity is introduced by means of the definition $\lambda_e = \lambda_t + \lambda = \frac{\mu_t c_v}{\Pr_t} + \lambda$.

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Iviethod
Smoothed Particle
Hydrodynamics
Trydrodynamics
Turbulence modelling
References

Trace of RST equation

Calculating the trace of the Reynolds stress transport equation

$$\frac{\partial \mathbf{R}}{\partial t} + \nabla \cdot (\bar{\mathbf{u}}\mathbf{R}) = -\nabla \bar{\mathbf{u}} \cdot (\mathbf{R}^{\mathrm{T}} + \mathbf{R}) + \nabla \cdot \left(\left(Ck^{2}\varepsilon^{-1} + \nu \right) \nabla \mathbf{R} \right) - \mathbf{\Pi} + \frac{2}{3}\varepsilon \delta \quad (577)$$

results in kinetic energy k transport equation which is used in the preceding one- and two-equation turbulence models $\operatorname{tr} \mathbf{R} = -2k$ for $\nu_t = C_\mu k^2 \varepsilon^{-1}$. The traces of $\boldsymbol{\Pi}$ by definition $\operatorname{tr} \boldsymbol{\Pi} = 0$ and the transport equation for k takes the following form

$$\frac{\partial k}{\partial t} + \nabla \cdot \left(\rho k \bar{\mathbf{u}}\right) = \nabla \bar{\mathbf{u}} : \mathbf{R} + \nabla \cdot \left(\left(\nu_t \sigma_k^{-1} + \nu\right) \nabla k\right) - \varepsilon$$
(578)

Contents

Zero-equation model

Zero k and ε are assumed. It allows the Boussinesq equation to be reduced to $\mathbf{R} = 2\nu_t \bar{\mathbf{D}}$. Eddy viscosity μ_t is modelled by means of the Prandtl-Kolmogorov hypothesis. This hypothesis comes directly from dimensionless analysis $\nu_t = c\mathcal{UL}$. The velocity scale \mathcal{U} is often approximated by means of the maximal velocity $|\bar{\mathbf{u}}|_{max}$ and length scale \mathcal{L} by the volume of the flow domain |V| by $\mathcal{U} \sim |\bar{\mathbf{u}}|_{max}$, $\mathcal{L} \sim \sqrt[3]{|V|}$. The Boussinesq hypothesis takes the following form

$$\mathbf{R} = C\sqrt[3]{|V|} |\bar{\mathbf{u}}|_{max} \bar{\mathbf{D}}$$
(579)

No new unknown functions! However, zero-equation models are not as accurate but they are robust (first approximation for more complex models). Contents

Description of fluid/solid at different scales Finite Difference Method Finite Volume Method Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

One-equation model

One transport equation for k is introduced

$$\frac{\mathrm{d}k}{\mathrm{d}t} = \nabla \bar{\mathbf{u}} : \mathbf{R} + \nabla \cdot \left(\left(\nu_t \sigma_k^{-1} + \nu \right) \nabla k \right) - \varepsilon \qquad (580)$$

where 'production' $\nabla \bar{\mathbf{u}} : \mathbf{R} = 2\nu_t \bar{\mathbf{D}}^2$. According to Prandtl–Kolmogorov hypothesis $\mathcal{U} = \sqrt{k}$ and $\varepsilon \sim \frac{\mathcal{U}^3}{\mathcal{L}}$ so $\varepsilon = k^{3/2} \mathcal{L}^{-1}$. Finally, the k transport equation arrives

$$\frac{\mathrm{d}k}{\mathrm{d}t} = 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\nu_t \sigma_k^{-1} + \nu \right) \nabla k \right) - k^{3/2} \mathcal{L}^{-1} \quad (581)$$

where eddy viscosity is estimated as $\nu_t = \sqrt{k}\mathcal{L}$ by means of another Prandtl hypothesis.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Two-equation k- ε model

Two additional equations have to be formulated. The first, for the kinetic energy k, comes from the Reynolds stress transport equation

$$\frac{\mathrm{d}k}{\mathrm{d}t} = 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_k} + \nu \right) \nabla k \right) - \varepsilon \qquad (582)$$

and that for the dissipation ε is analogous to it

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = C_{\varepsilon 1} \frac{\varepsilon}{k} 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{\varepsilon}} + \nu \right) \nabla \varepsilon \right) - C_{\varepsilon 2} \frac{\varepsilon^2}{k}$$
(583)

Both of them are transport equations for a scalar function. The eddy viscosity depends on both k and ε and is postulated, as previously, to have the form $\nu_t = C_{\nu} \frac{k^2}{\varepsilon}$.

Description of fluid/solid at different
scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Comments

The five constants in equations are empirical, that is, should be deduced from experiment for a specific geometry. This 'standard' set is given by

$$\sigma_k = 1, \ \sigma_{\varepsilon} = 1.3,$$

 $C_{\mu} = 0.09, \ C_{\varepsilon 1} = 1.44, \ C_{\varepsilon 2} = 1.92$ (584)

Contents

The turbulent frequency ω is proportional to the ratio of dissipation and kinetic energy $\omega \sim \frac{\varepsilon}{k}$ and using the constant C_{μ} , they are then related by $\varepsilon = C_{\mu}k\omega$. The eddy viscosity takes the form $\nu_t = \frac{k}{\omega}$. The two transport equations take the following form

$$\frac{\mathrm{d}k}{\mathrm{d}t} = 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{k1}} + \nu \right) \nabla k \right) - C_\mu k \omega \quad (585)$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \alpha_1 \frac{\omega}{k} 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{\omega 1}} + \nu \right) \nabla \omega \right) - \beta_1 \omega^2$$
(586)

This 'standard' set is constant is
$$\sigma_{k1} = 2$$
, $\sigma_{\omega 1} = 2$, $C_{\mu} = 0.09$, $\alpha_1 = \frac{5}{9}$, $\beta_1 = \frac{3}{40}$.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Two equations SST model

The shear stress model combines the k- ω model near the wall with the k- ε far from it. Firstly, the k- ε model has to be transformed to the k- ω formulation by means of relation $\varepsilon = C_{\mu}k\omega$. This results in

$$\frac{\mathrm{d}k}{\mathrm{d}t} = 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{k2}} + \nu \right) \nabla k \right) - C_\mu k\omega \quad (587)$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \alpha_2 \frac{\omega}{k} 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{\omega 2}} + \nu \right) \nabla \omega \right) - \beta_2 \omega^2 + 2 \frac{\omega}{\sigma_{\omega 2}} \nabla k \cdot \nabla \omega \quad (588)$$

Additional cross-diffusion terms now appear. The 'standard' set of constants is different from that for the original k- $\varepsilon \sigma_{k2} = 1$, $\sigma_{\omega 2} = 0.856$, $C_{\mu} = 0.09$, $\alpha_2 = 0.44$, $\beta_2 = 0.0828$.

Finite Difference MethodFinite Volume MethodFinite Element MethodMonte Carlo MethodLattice Boltzmann MethodSmoothed Particle Hydrodynamics
Finite Volume MethodFinite Element MethodMonte Carlo MethodLattice Boltzmann MethodSmoothed Particle Hydrodynamics
Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Lattice Boltzmann Method Smoothed Particle Hydrodynamics
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Two equations SST model

Secondly, the equations for the k- ω model are multiplied by a blending function F_1 and the transformed k- ε equations by $(1 - F_1)$. The equations then are added. This results in

$$\frac{\mathrm{d}k}{\mathrm{d}t} = 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{k3}} + \nu \right) \nabla k \right) - C_\mu k\omega \quad (589)$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \alpha_3 \frac{\omega}{k} 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\frac{\nu_t}{\sigma_{\omega3}} + \nu \right) \nabla \omega \right) - \beta_3 \omega^2 + (1 - F_1) \frac{2}{\omega} \sigma_{\omega3} \nabla k \cdot \nabla \omega \quad (590)$$

Constants marked with the subscript '3', namely σ_{k3} , $\sigma_{\omega3}$, α_3 , β_3 are linear combinations of constants from the component models $C_3 = F_1C_1 + (1 - F_1)C_2$.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Additional passive transport equation

The additional variable transport equation may be added to the closed system after averaging, as

$$\frac{\partial f}{\partial t} + \nabla \cdot \left(\bar{f} \bar{\mathbf{u}} \right) = -\nabla \cdot \left(\overline{f' \mathbf{u}'} \right) - \nabla \cdot \bar{\mathbf{k}} + \bar{S}_f \qquad (591)$$

The first term of the right hand side can be modelled by means of the eddy diffusivity hypothesis and the turbulent diffusivity coefficient Γ , $-\overline{f'\mathbf{u'}} = \Gamma \nabla \overline{f}$ and the additional transport equation takes the form

$$\frac{\partial \bar{f}}{\partial t} + \nabla \cdot \left(\bar{f}\bar{\mathbf{u}}\right) = \nabla \cdot \left(\left(\frac{\nu_t}{\mathrm{Sc}_t} + D\right)\nabla \bar{f}\right) + \bar{S}_f \quad (592)$$

where the turbulent diffusivity coefficient Γ may be represented as a function of the eddy viscosity and the turbulent Schmidt number $\Gamma = \frac{\nu_t}{Sc_t}$ where $Sc = \frac{\nu}{D}$.

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

Turbulent boundary layer

- I $y^+ < 11$ laminar sub-layer
- $5 < y^+ < 30$ buffer region
- $11 < y^+ < 250$ turbulent sublayer (log-law layer)
- $y^+ < 250$ inner turbulent boundary layer
- $y^+ > 250$ outer turbulent boundary layer

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

Contents Description of fluid/solid at different scales **Finite Difference** Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics Turbulence modelling References

Filtration of the N–S equations is associated with LES method. Small scales are removed by means of filtering $\bar{f}(\mathbf{r},t) = \iiint_{\mathbb{R}^3} \int_{-\infty}^{+\infty} f(\mathbf{r}'',t'') G(\mathbf{r}-\mathbf{r}'',t-t'') \, \mathrm{d}t'' \, \mathrm{d}V''$ (593)

where G is a filter. Typically it is a product

$$G(\mathbf{r} - \mathbf{r}'', t - t'') = G_t(t - t'') \prod_{i=1}^3 G_{vi}(x_i - x_i'') \quad (594)$$

For
$$G_t(t - t'') = \tau^{-1} H(t'')$$
 and $G_{vi}(x_i - x''_i) = \delta(x_i - x''_i)$
we have time average $\bar{f}_{\tau}(\mathbf{r}) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} f(\mathbf{r}, t) dt$.

Filtration of the N–S equations results in $\frac{\partial \bar{\mathbf{u}}}{\partial t} + \nabla \cdot (\bar{\mathbf{u}}\bar{\mathbf{u}}) = \bar{\mathbf{f}} - \nabla p_k + \nabla \cdot (2\nu \bar{\mathbf{D}} + \boldsymbol{\tau}) \quad (595)$ where Leonard's decomposition $\boldsymbol{\tau} = -\mathbf{L} - \mathbf{C} - \mathbf{R}$

$$\mathbf{L} = \overline{\mathbf{u}}\overline{\mathbf{u}} - \overline{\mathbf{u}}\overline{\mathbf{u}}, \ \mathbf{C} = \overline{\overline{\mathbf{u}}\mathbf{u'}} + \overline{\mathbf{u'}\overline{\mathbf{u}}}, \ \mathbf{R} = \overline{\mathbf{u'}\mathbf{u'}}$$
 (596)

represents the cross stress tensor C (interactions between large and small scales), Reynolds subgrid tensor R (interactions among subgrid scales) and Leonard tensor L (interactions among the large scales). For L = 0 and C = 0 we have Reynolds equations.

Contents

(597)

(598)

Subgrid stress tensor need to be modelled

 $oldsymbol{ au} = ar{\mathrm{u}}ar{\mathrm{u}} - ar{\mathrm{u}}ar{\mathrm{u}}$

Boussinesq like hypothesis assumed

$$oldsymbol{ au} = -rac{2}{3}k_{sgs}oldsymbol{\delta} + 2
u_{sgs}ar{\mathbf{D}}$$

Filtered Navier–Stokes equation

$$\frac{\partial \bar{\mathbf{u}}}{\partial t} + \nabla \cdot (\bar{\mathbf{u}}\bar{\mathbf{u}}) = -\nabla p_e + \nabla \cdot \left(2(\nu + \nu_{sgs})\bar{\mathbf{D}}\right) \quad (599)$$

Contents

Description of fluid/solid at different scales
Finite Difference Method
Finite Volume Method
Finite Element Method
Monte Carlo Method
Lattice Boltzmann Method
Smoothed Particle Hydrodynamics
Turbulence modelling
References

K. Tesch; Numerical Methods

Most popular SGS LES models

zero-equation

- Smagorinsky
- WALE (Wall-Adapting Local Eddy-viscosity)
- one-equation k_{sgs}

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

(602)

Smagorinsky – the simplest model. The SGS eddy viscosity is modelled as

$$\nu_{sgs} = C_k \Delta \sqrt{k_{sgs}} \tag{600}$$

where Δ is the filter width. The SGS kinetic energy is modelled by means of an algebraic equation – zero-equation model

$$k_{sgs} = C_k C_{\varepsilon}^{-1} \Delta^2 \bar{\mathbf{D}}^2 \tag{601}$$

Finally, the SGS u_t is

$$\nu_{sgs} = C_S \Delta^2 \sqrt{2\bar{\mathbf{D}}^2}$$

Contents

WALE (Wall-Adapting Local Eddy-viscosity) The SGS kinetic energy is modelled by means of an algebraic equation – zero-equation model

$$k_{sgs} = \frac{C_w^4 \Delta^2}{C_k^2} \frac{\left(\bar{\mathbf{S}}:\bar{\mathbf{S}}\right)^3}{\left(\left(\bar{\mathbf{D}}:\bar{\mathbf{D}}\right)^{\frac{5}{2}} + \left(\bar{\mathbf{S}}:\bar{\mathbf{S}}\right)^{\frac{5}{4}}\right)^2}$$

(603)

where

 $\bar{\mathbf{S}} = \frac{1}{2} \left(\nabla \mathbf{u} \cdot \nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}} \cdot (\nabla \mathbf{u})^{\mathrm{T}} \right)$ (604)

Method Finite Volume Method Finite Element Method Monte Carlo Method Lattice Boltzmann Method Smoothed Particle Hydrodynamics

Turbulence modelling

References

Contents

scales

Description of

Finite Difference

fluid/solid at different

One-equation k_{sgs} – one transport (differential) equation is introduced by direct analogy with the one-equation RAS k transport equation

$$\frac{\mathrm{d}k_{sgs}}{\mathrm{d}t} = 2\nu_{sgs}\bar{\mathbf{D}}^2 + \nabla\cdot\left(\left(\nu + \nu_{sgs}\right)\nabla k_{sgs}\right) - C_{\varepsilon}k_{sgs}^{\frac{3}{2}}\Delta^{-1}$$
(605)

The reduced version of the above

$$2\nu_{sgs}\bar{\mathbf{D}}^2 = -C_{\varepsilon}k_{sgs}^{\frac{3}{2}}\Delta^{-1}$$
(606)

leads to Smagorinsky model.

DES

DES is a combination of LES and RAS. RAS is used near the wall and LES is used when the mesh if fine enough (far from the wall). DES modification is introduce by means of DES length scale

$$\tilde{d} = \min\left(C_{DES}\Delta, \mathcal{L}\right) \tag{607}$$

in the \boldsymbol{k} transport equation

$$\frac{\mathrm{d}k}{\mathrm{d}t} = 2\nu_t \bar{\mathbf{D}}^2 + \nabla \cdot \left(\left(\nu + \nu_t \sigma_k^{-1} \right) \nabla k \right) - C_\varepsilon k^{\frac{3}{2}} \tilde{d}^{-1} \quad (608)$$

Description of
fluid/solid at different
scales
Finite Difference
Method
Finite Volume
Method
Method
Finite Element
Method
Monte Carlo Method
Lattice Boltzmann
Mathad
Method
Smoothed Particle
Hydrodynamics
Turbulence modelling
Keterences

References

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling

List of references

- [1] Ferziger J.H., Perić M., *Computational Methods for Fluid Dynamics*, Springer-Verlag, Berlin, 2002
- [2] Groot R. D., Warren P. B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, The Journal of Chemical Physics, 107, pp 4423–4435, 1997
- [3] Jasak H., Error analysis and estimation for the finite volume method with applications to fluid flows, PhD Thesis, 1996
- [4] Monaghan J. J., Smoothed Particle Hydrodynamics, Annual Review of Astronomy and Astrophysics, 30, pp 543–574, 1992
- [5] Pope S. B., *Turbulent Flows*, Cambridge University Press, Cambridge, 2000
- [6] Succi S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford, 2001
- [7] Tesch K., Fluid Mechanics, Wyd. PG, 2008 (in Polish)
- [8] Tesch K., Numerical Fluid Mechanics, Wyd. PG, 2021 (in Polish)
- [9] Wilcox D. C., *Turbulence Modeling for CFD*, DCW Industries, California, 1994
- [10] Zienkiewicz O. C., Taylor R. L., *The Finite Element Method*, Butterworth–Heinemann, Oxford, 2000

Contents

Description of fluid/solid at different scales

Finite Difference Method

Finite Volume Method

Finite Element Method

Monte Carlo Method

Lattice Boltzmann Method

Smoothed Particle Hydrodynamics

Turbulence modelling