DESIGN LEVELS FOR OFFSHORE STRUCTURES

State-of-the-Art and Instantaneous Pore-Pressure Model

W. Richwien
W. Magda

September 1994

ISSN 0947-0921
FORSCHUNGSBERICHT AUS DEM FACHBEREICH BAUWESEN 63
Design Levels For Offshore Structures

State-of-the-Art
and
Instantaneous Pore-Pressure Model

W. Richwien
University of Essen, Soil Mechanics and Foundation Engineering Institute

W. Magda
University of Hannover, SFB-205 "Küsteningenieurwesen", c/o IGBE

ESSEN, HANNOVER, September 1994
Contents

1 Introduction

2 Requirements for Different Design Levels
2.1 General concept
2.2 Design schemes

3 State-of-the-Art on Modelling Design Levels Related to Offshore Structures
3.1 Introduction
3.2 Feasibility stage – limit state analyses
3.2.1 Bearing capacity
3.2.1.1 Elastic approach
3.2.1.2 Analysis based on failure lines
3.2.1.3 Numerical solution
3.2.2 Sliding resistance
3.2.3 Overturning
3.2.4 Overall stability
3.2.5 Effect of cyclic loading
3.2.6 Safety factors
3.2.7 Additional notes
References

3.3 Deformation analysis
3.3.1 General
3.3.2 Analysis based on elastic theory
3.3.2.1 Vertical displacements
3.3.2.2 Rotation
3.3.2.3 Horizontal displacement
3.3.2.4 Increasing soil moduli with depth
3.3.2.5 Soil parameters
3.3.2.6 Critical statement
3.3.3 Finite-element analysis
3.3.4 Boundary element method
References
3.4 Dynamic response analysis
3.4.1 General
3.4.2 Methods
3.4.3 Aproximations and soil parameters
References

4 Instantaneous Pore-Pressure Model
4.1 Review of Existing Theories
4.1.1 Theoretical considerations
4.1.2 Experimental verification
4.1.3 Conclusions
4.2 'Potential' problem
4.3 'Consolidation' problem
4.3.1 Results of example calculations
4.4 'Storage' problem – analytical solution
4.4.1 Boundary conditions
4.4.2 Infinite thickness of homogeneous seabed layer
4.4.3 Finite thickness of the seabed layer
4.4.4 Results of example calculation
4.5 'Storage' problem – finite-element solution
4.5.1 Harmonic approximation of governing equations
4.5.2 Finite-element formulation
4.5.3 Implementation of the complex number properties
4.5.4 Approximation of integral equations using two-node finite element
4.5.5 Imposition of boundary conditions
4.5.6 Example calculations and comparison of their results
4.5.7 Conclusions
4.5.8 2-D finite-element model
References
system. It seems (see Figs. 4.24 and 4.25) that the later has much stronger influence on the results quality. The preparation of all elements [Eqs. (4.26.1a) to (4.26.16)] from the coefficient matrix D in the analytical solution requires much more mathematical operations with relatively small and large values before the equations system is solved. This complicated and superfluous procedure is omitted in the finite-element solution where the elements of coefficient matrix [Eqs. (4.35a) to (4.35m)] are taken directly from the constant coefficients of the three coupled linear equations [Eqs. (4.34a) to (4.34c)] multiplied only by proper values obtained from the element matrices (see Figs. 4.28(a) and 4.28(b)].

4.5.8 2-D finite-element model

The above presented one-dimensional finite element solution for the wave-induced pore pressure and soil matrix displacements is thought as a very convenient tool in solving the problem of instantaneous pore-pressure. In order to make computations in terms of the pore-pressure amplitude and phase-lag, the 1-D finite-element model does not require any time-approximation in the solution procedure. It means that the coupled equations system is solved only once – this bring an enormous time-benefits comparing to the 2-D finite-element model where a certain model-time (required to assure the stability of computed results) is mainly divided into many smaller time-steps. The ability of the 1-D finite-element model is however restricted to the harmonic sinusoidal wave and no structure existence on/in the seabed sediments.

In some approximations of geotechnical problems, having either linear or non-linear character, enlarged to a two-dimensional solution and for any type of loading history, it seems to be necessary to use 2-D modelling. An example of the 2-D finite-element model for the instantaneous pore-pressure response was given by Magda (1992(b)).

References

Magda, W. (1990(d)). On one-dimensional model of pore pressure generation in a highly saturated sandbed due to cyclic loading acting on a sand surface. Part II: Laboratory tests and comparison with theoretical approach. *Internal Report No. 5, SFB-205 ‘Küsteningenieurwesen’, TP A13*, University of Hannover, pp. 1-62.

